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ABSTRACT
Pain is typically assessed by patient self-report. Self-reported
pain, however, is difficult to interpret and may be impaired
or not even possible, as in young children or the severely
ill. Behavioral scientists have identified reliable and valid
facial indicators of pain. Until now they required manual
measurement by highly skilled observers. We developed an
approach that automatically recognizes acute pain. Adult
patients with rotator cuff injury were video-recorded while
a physiotherapist manipulated their affected and unaffected
shoulder. Skilled observers rated pain expression from the
video on a 5-point Likert-type scale. From these ratings,
sequences were categorized as no-pain (rating of 0), pain
(rating of 3, 4, or 5), and indeterminate (rating of 1 or 2).
We explored machine learning approaches for pain-no pain
classification. Active Appearance Models (AAM) were used
to decouple shape and appearance parameters from the dig-
itized face images. Support vector machines (SVM) were
used with several representations from the AAM. Using a
leave-one-out procedure, we achieved an equal error rate of
19% (hit rate = 81%) using canonical appearance and shape
features. These findings suggest the feasibility of automatic
pain detection from video.
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Categories and Subject Descriptors
I.2.1.0 [Vision and Scene Understanding]: [video anal-
ysis, motion, modeling and recovery of physical attributes];
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—psychology

General Terms
Measurement, Algorithms, Experimentation, Human Fac-
tors

Keywords
Active Appearance Models, Support Vector Machines, Pain,
Facial expression, Automatic facial image analysis

1. INTRODUCTION
Pain is difficult to assess and manage. Pain is funda-

mentally subjective and is typically measured by patient
self-report, either through clinical interview or visual analog
scale (VAS). Using the VAS, a patient indicates the intensity
of pain by marking a line on a horizontal scale, anchored at
each end with words such as “no pain” and “the worst pain
imaginable”. This and similar techniques are popular be-
cause they are convenient, simple, satisfy a need to attach a
number to the experience of pain, and often yield data that
confirm expectations.

Self-report measures, however, have several limitations [7,
12]. These include idiosyncratic use, inconsistent metric
properties across scale dimensions, reactivity to suggestion,
efforts at impression management or deception, and differ-
ences between clinician’s and sufferers’ conceptualization of
pain [9]. Moreover, self-report measures cannot be used with
young children, with many patients in postoperative care or
transient states of consciousness, and with severe disorders
requiring assisted breathing, among other conditions.

Significant efforts have been made to identify reliable and
valid facial indicators of pain [8]. These methods require
manual labeling of facial action units or other observational
measurements by highly trained observers [4, 11]. Most must
be performed offline, which makes them ill-suited for real-
time applications in clinical settings.

In the past several years, significant progress has been
made in machine learning to automatically recognize facial
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Figure 1: Examples of temporally subsampled sequences. (a) and (c) : Pain ; (b) and (d) : No Pain

expressions related to emotion [16, 17]. While much of this
effort has used simulated emotion with little or no head mo-
tion, several systems have reported success in facial action
recognition in real-world facial behavior, such as people ly-
ing or telling the truth, watching movie clips intended to
elicit emotion, or engaging in social interaction [3, 5, 18]. In
real-world applications and especially in patients experienc-
ing acute pain, out-of-plane head motion and rapid changes
in head motion and expression are particularly challenging.
Extending the approach of [14], we applied machine learn-
ing to the task of automatic pain detection in a real-world
clinical setting involving patients undergoing assessment for
pain.

In machine learning, the choice of representation is known
to influence recognition performance [10]. Both appear-
ance and shape representations have been investigated. Ex-
amples of appearance based representations are raw pixels
and Gabor filters [1, 2]. A drawback of appearance based
approaches is that they lack shape registration, and thus
cannot locate vital expression indicators, such as the eyes,
brows, eyelids, and mouth.

Shape-based representations, which include Active Shape
Models [6] and Active Appearance Models(AAM) [6, 15] ad-
dress this concern. They decouple shape and appearance
and perform well in the task of expression recognition, es-
pecially in the context of non-rigid head motion [19]. In
our previous work [14], we explored various representations
derived from AAMs and concluded that this decoupling be-
tween shape and appearance was indeed beneficial for action
unit recognition. In this paper we extend our work based on
AAM representations to pain expression recognition.

2. IMAGE DATA
Image data were from the UNBC-McMaster Shoulder Pain

Expression Archive, which includes video clips for 129 sub-
jects (63 male, 66 female). Each subject was seen in “active”
and “passive” conditions. In the active condition, subjects
initiated shoulder rotation on their own; in passive, a phys-
iotherapist was responsible for the movement. Camera angle
for active tests was approximately frontal to start; camera
angle for passive tests was approximately 70 degrees to start.

Following each movement, subjects completed a 10 cm Vi-
sual Analog Scale to indicate their level of subjective pain.
The scale was presented on paper, with anchors of “no pain”
and “worst pain imaginable”. Video of each trial was then
rated by an observer with considerable training in the iden-
tification of pain expression, using a 0(no pain) – 5(strong
pain) Likert-type scale. Reliability of coding was estab-
lished with a second coder, proficient in Facial Action Cod-
ing System (FACS) [11]. The Pearson correlation between
the observers’ ratings on 210 randomly selected tests was
0.80. Correlation between observer rating and subject self-
reported pain on VAS was 0.74, for the tests used for recog-
nition of pain from no pain. This correlation suggests mod-
erate to high concurrent validity for pain intensity. For the
current study, we included subjects in the active condition
who had one or more pain ratings of both pain (0) and no-
pain (3, 4, or 5). Fifty eight subjects met this initial cri-
terion. Of these 58, 31 were excluded for reasons including
face out of frame, glasses, facial hair, bad image quality, oc-
clusion, and hair in face. The final sample consisted of 21
subjects.

Videos were captured at a resolution of 320x240, out of
which the face area spanned an average of approximately
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140x200 (28000) pixels. Sample pain sequences are shown
in Figure 1.

3. AAMS

In this section we briefly describe Active Appearance Mod-
els (AAMs). The key dividend of AAMs is that they provide
a decoupling between shape and appearance of a face image.
Given a pre-defined linear shape model with linear appear-
ance variation, AAMs have been demonstrated to produce
excellent alignment of the shape model to an unseen im-
age containing the object of interest. In general, AAMs fit
their shape and appearance components through a gradient
descent search, although other optimization methods have
been employed with similar results [6]. Keyframes within
each video sequence were manually labeled, while the re-
maining frames were automatically aligned using a gradient-
descent AAM fit described in [15].

3.1 AAM Derived Representations
The shape s of an AAM [6] is described by a 2D trian-

gulated mesh. In particular, the coordinates of the mesh
vertices define the shape s (see row 1, column (a), of Fig-
ure 2 for examples of this mesh). These vertex locations
correspond to a source appearance image, from which the
shape was aligned (see row 2, column (a), of Figure 2). Since
AAMs allow linear shape variation, the shape s can be ex-
pressed as a base shape s0 plus a linear combination of m

shape vectors si:

s = s0 +
m∑

i=1

pi si (1)

where the coefficients p = (p1, . . . , pm)T are the shape pa-
rameters. These shape parameters can typically be divided
into similarity parameters ps and object-specific parame-
ters po, such that pT = [pT

s , pT
o ]. Similarity parameters

are associated with the geometric similarity transform (i.e.,
translation, rotation and scale). The object-specific parame-
ters, are the residual parameters representing geometric vari-
ations associated with the actual object shape (e.g., mouth
opening, eyes shutting, etc.). Procrustes alignment [6] is
employed to estimate the base shape s0.

Once we have estimated the base shape and shape pa-
rameters, we can normalize for various variables to achieve
different representations as outlined in the following subsec-
tions.

3.1.1 Similarity Normalized Shape, sn

As the name suggests, this representation gives the vertex
locations after all similarity variation ( translation, rotation
and scale ) has been removed. The similarity normalized
shape sn can be obtained by synthesizing a shape instance
of s, using Equation 1, that ignores the similarity parameters
of p. An example of this similarity normalized mesh can be
seen in row 1, column (b), of Figure 2.

3.1.2 Similarity Normalized Appearance, an

This representation contains appearance from which sim-
ilarity variation has been removed. Once we have similarity
normalized shape sn, as computed in section 3.1.1, a sim-
ilarity normalized appearance an can then be synthesized
by employing a piece-wise affine warp on each triangle patch
appearance in the source image (see row 2, column (b), of

Figure 2) so the appearance contained within s now aligns
with the similarity normalized shape sn.

3.1.3 Shape Normalized Appearance, a0

If we can remove all shape variation from an appearance,
we’ll get a representation that can be called as shape nor-
malized appearance, a0. a0 can be synthesized in a similar
fashion as an was computed in section 3.1.2, but instead
ensuring the appearance contained within s now aligns with
the base shape s0. We shall refer to this as the face’s canon-
ical appearance (see row 2, column (c), of Figure 2 for an
example of this canonical appearance image) a0.

3.2 Features
Based on the AAM derived representations in Section 3.1

we define three representations:

S-PTS: similarity normalized shape sn representation (see
Equation 1) of the face and its facial features. There
are 68 vertex points in sn for both x− and y− co-
ordinates, resulting in a raw 136 dimensional feature
vector.

S-APP: similarity normalized appearance an representa-
tion. Due to the number of pixels in an varying from
image to image, we apply a mask based on s0 so that
the same number of pixels (approximately 27, 000) are
in an for each image.

C-APP: canonical appearance a0 representation where
all shape variation has been removed from the source
appearance except the base shape s0. This results in an
approximately 27, 000 dimensional raw feature vector
based on the pixel values within s0.

The naming convention S-PTS, S-APP, and C-APP will
be employed throughout the rest of this paper.

4. SVM CLASSIFIERS
Support vector machines (SVMs) have been proven useful

in a number of pattern recognition tasks including face and
facial action recognition. Because they are binary classifiers,
they are well suited to the task of Pain Vs No Pain classifica-
tion. SVMs attempt to find the hyper-plane that maximizes
the margin between positive and negative observations for a
specified class. A linear SVM classification decision is made
for an unlabeled test observation x∗ by,

wT x∗

true
≷

false
b (2)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b are estimated so that they
minimize the structural risk of a train-set, thus avoiding the
possibility of overfitting to the training data. Typically, w
is not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions, such as the radial
basis function (RBF), polynomial and sigmoid kernels. A
linear kernel was used in our experiments due to its ability
to generalize well to unseen data in many pattern recogni-
tion tasks [13]. Please refer to [13] for additional information
on SVM estimation and kernel selection.
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Figure 2: Example of AAM Derived Representations (a) Top row :input shape( s), Bottom row : input image,
(b) Top row: Similarity Normalized Shape( sn), Bottom Row: Similarity Normalized Appearance( an), (c)
Top Row: Base Shape( s0), Bottom Row: Shape Normalized Appearance( a0)
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Figure 3: Example of Video Sequence Prediction (a) Sample frames from a pain-video sequence with their
frame indices, (b) Scores for individual frames. Points corresponding to the frames shown in (a) are high-

lighted. For the example sequence shown, a cumulative score Dsequence =
∑T

i=1
di = 195 was computed and

compared to the derived equal error threshold of −3 (as explained in Section 5.2) to yield an output decision
of ‘Pain’
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5. EXPERIMENTS

5.1 Pain Model Learning
To ascertain the utility of various AAM representations,

different classifiers were trained by using features of Sec-
tion 3.2 in the following combinations:

S-PTS: similarity normalized shape sn

S-APP: similarity normalized appearance an

C-APP + S-PTS: canonical appearance a0 combined
with the similarity normalized shape sn

To check for subject generalization, a leave-one-subject-
out strategy was employed for cross validation. Thus, there
was no overlap of subjects between the training and test-
ing set. The number of training frames from all the video
sequences was prohibitively large to train an SVM, as the
training time complexity for SVM is O(m3), where m is the
number of training examples. In order to make the step
of model learning practical, while making the best use of
training data, each video sequence was first clustered into
a preset number of clusters. Standard K-Means clustering
algorithm was used, with K set to a value that reduces the
training set to a size manageable by SVM.

Linear SVM training models were learned by by itera-
tively leaving one subject out, which gives rise to N number
of models, where N is the number of subjects. Since the
ground truth was available at the level of an entire video
sequence, all the clusters belonging to a pain containing se-
quence were considered as positive (pain) examples, while
clusters belonging to ‘no pain’ sequence were counted as neg-
ative (no pain) training examples.

5.2 Video Sequence Prediction
While learning was done on clustered video frames, testing

was carried out on individual frames. The output for every
frame was a score proportional to the distance of test-point
from the separating hyperplane.

In order to predict a video as a pain sequence or not, the
output scores of individual frames were summed together to
give a cumulative score for the entire sequence:

Dsequence =
T∑

i=1

di (3)

where di is the output score for the ith frame and T is the
total number of frames in the sequence.

Having computed the sequence level cumulative score in
Equation 3, we seek a decision rule of the form:

Dsequence

pain
≷

no pain
Threshold (4)

Using this decision rule, a threshold was set such that
false accept rate equaled false reject rate (i.e., equal error
rate point was computed). Output scores for a sample se-
quence along with the implementation of decision rule is
shown in Figure 3. The score values track the pain expres-
sion, with a peak response corresponding to frame 29 shown
in Figure 3(a).

Features EER Hit Rate
S-PTS 0.2899 0.7102
S-APP 0.5345 0.4655

C-APP + S-PTS 0.1879 0.8121

Table 1: Results of experiments performed in sec-
tion 5. Column 1 indicates the features used for
training, Columns 2 and 3 represent the correspond-
ing Equal-Error and Hit Rates respectively

6. RESULTS
Table 1 shows equal-error rates (EER) using each of the

representations. It is intuitively satisfying that the results
highlight the importance of shape features for pain expres-
sion. The best results ( EER = 0.1879 , Hit Rate : 0.8121)
are for canonical appearance combined with similarity nor-
malized shape (C-APP + S-PTS). This result is consistent
with our previous work [14], in which we used AAMs for
facial action unit recognition.

It is surprising, however, that similarity normalized appear-
ance features ( S-APP ) performed at close-to-chance levels
despite the fact that this representation can be fully derived
from canonical appearance and similarity normalized shape.
S-PTS combined with C-APP may add additional dimen-
sions that aid in finding an optimal separating hyperplane
between two classes.

7. DISCUSSION
In this paper, we have explored various face representa-

tions derived from AAMs for recognizing facial expression of
pain. We have demonstrated the utility of AAM represen-
tations for the task of pain-no pain classification. We have
also presented a method to handle large training data when
learning SVM models. Some conclusions of our experiments
are:

• Use of concatenated similarity normalized shape and
shape normalized appearance (S-PTS + C-APP) is su-
perior to either similarity normalized shape (S-PTS) or
similarity normalized appearance (S-APP) alone.

• Shape features have an important role to play in ex-
pression recognition generally, and pain detection par-
ticularly.

• Automatic pain detection through video appears to
be a feasible task. This finding suggests an oppor-
tunity to build interactive systems to detect pain in
diverse populations, including infants and speech im-
paired adults. Additional applications for system de-
velopment include pain-triggered automatic drug dis-
pensation and discriminating between feigned and real
pain.

• Two limitations may be noted. One was the exclu-
sion of subjects wearing glasses or having facial hair,
which limits generalizability. A second limitation was
the availability of ground-truth at the level of video
recorded tests instead of the level of individual frames.
Not all frames in a pain sequence actually correspond
to pain. Providing a frame-level ground-truth could
assist the model-learning step and thus improve recog-
nition performance. This limitation can be overcome
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either by expert labeling of frames or by automatic re-
finement of ground-truth by exploiting the information
embedded in no-pain video sequences. Incorporating
temporal information is also expected to positively in-
fluence the performance. Based on our initial findings,
further improvements on above lines can pave way to-
wards developing automatic pain detection tools for
clinical use.
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