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Abstract

When we see other humans, we can quickly make judgements regarding many aspects, including

their demographic description and identity if they are familiar to us. We can answer questions

related to the activities of, emotional states of, and relationships between people in an image.

We draw conclusions based not just on what we see, but also from a lifetime of experience of

living and interacting with other people. In this dissertation, we propose contextual features

and models for understanding images of people with the objective of providing computers with

access to the same contextual information that humans use.

We show through a series of visual experiments that humans can exploit contextual knowledge

to understand images of people. Recognizing other people becomes easier when the full body is

shown instead of just the face. Social context is exploited to assign faces to corresponding first

names, and age and gender recognition is improved when subjects see a face from an image in

context with the other faces from the image instead of only a single face.

In this dissertation, we provide contextual features and probabilistic frameworks to allow the

computer to interpret images of people with contextual information. We propose features re-

lated to clothing, groups of associated people, relative positions of people, first name popularity,

anthropometric measurements, and social relationships. The contextual features are learned

from image data and from publicly available data from research organizations. By consider-

ing the context, we show improvement in a number of understanding tasks related to images

of people. When applied to collections of multiple people, we show that context improves the

identification of others in the collection. When considering single images, we show that context

allows us to improve estimates of demographic descriptions of age and gender, as well as allow-

ing us to determine the most likely owner of a first name such as “Taylor”. Finally, we show that

context allows us to perform high-level tasks such as segmenting rows of people and identifying

the horizon in a single image of a group of people.

This work shows that people act in predictable ways, for example that human patterns of as-

sociation contain regular structure that can be effectively modeled and learned. From a broad

perspective, this work shows that by exploiting information that is learned about people (in any

field of science) we can improve our understanding of images of people.
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Chapter 1

Introduction

Images of people are of particular importance to the field of computer vision, relevant to both

the domains of consumer imaging and security. With only a glance at an image, even small

children can recognize people as well as comprehend the story behind the image. People ac-

complish these amazing understanding feats in part because they have the ability to interpret the

image based on context. While computer vision is presently not nearly as capable, this ability

defines the overarching goal to which this thesis contributes: to understand images of people

with context. We want to describe or recognize people and their activities and associations from

images.

An image contains a great deal of information related to physical entities such as objects and

surfaces. However, we must also recognize that because of the role that photography plays in

human society, an image also contain information related very much to the behaviors of humans

themselves. Consider the image in Figure 1.1(a). We can easily see that is an image of four

people, one woman, one man and and two children. Beyond the simple description of the people

in the scene, it is also reasonable for us to surmise that this is an image of a family comprised

of a mother, a father, and two children. How were we able to jump to this conclusion? We

carry with us a great deal of “intuition” based on our personal experiences and observations that

enables us to interpret the image. We know that the people in an image or collection of images

are not selected at random from the world population; rather they generally have strong social

or familial bonds. Further, we know that parents are typically a few decades older than their

children. Taking this contextual evidence as a whole, it is a plausible explanation that the image

is of a couple and their children. This thesis presents features and a framework for considering

1
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(a) Family (b) Children (c) Children (d) Children

FIGURE 1.1: Images with people can be extremely complex. By considering context, we
reason that (a) is a family, the child on the left in (b) is a young girl (even though her face
is covered), in (c) we conclude this family is the same as the one in (a), and in roughly the
same positions even though the image was captured five months later. In (d), we recognize the
two boys from (a), (b) and (c), and suppose that the girl might also be the same one who was
occluded in (b) (she is). By considering all available contextual clues, our understanding of

these images can be improved.

context in the interpretation of the images of people. The context can either be learned from

images or from other statistical sources such as national health databases.

The goal of this thesis is to provide the computer with the same intuition that humans would

use for analyzing images of people. Fortunately, rather than relying on a lifetime of experience,

context can often be modeled with large amounts of publicly available data. Probabilistic graph

models and machine learning are used to model the relationship between people and context in

a principled manner. In this thesis, we are interested in using context to understand images of

people in two distinct but related problem domains. The first is recognizing people in collections

of consumer images. In this scenario, a person captures images of family and friends. Typically,

collections contain between 20-80 distinct individuals, although certain people appear more

often than others (e.g. family members). Secondly, we use context to interpret single images of

people. In this scenario, we model the context associated with the image to answer questions

such as: What are the ages and genders of people in the image? Which face in this image is

most likely to be “Taylor”? How many rows of people are in the image? And even, is this a

picture of people dining?

1.1 What is Context?

Context is broadly defined as information relevant to something under consideration. In [134],

the definition of context in computer vision is information relevant to the detection task but not

directly due to the physical appearance of the object. In our work, context includes information

from other (i.e. non-face) regions of the image, information related to the capture of the image,

or the social context of the interactions between people. Table 1 shows examples of context that
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are considered in our research on understanding images of people. For a good summary of the

types of context that have been considered in the field of computer vision as a whole, see [36].

In this work we explore the use of several classes of context in applications related to under-

standing images of people. The classes we define are pixel context, capture context, and social

context. Pixel context includes context derived from analyis of non-face image regions. For

example, distinctive clothing can be useful for recognizing people in images. Further, because

people tend to appear in images with friends and family, the identities of other people in an

image aid our recognition of a person of interest. Even the position of a person in the image is

important (for example, babies are often held by another person when photographed).

Simply knowing the capture conditions of an image can help identify the persons in the image.

The image capture time is particularly relevant, as it allows us to group multiple images in the

collection captured at the same event into clusters. Within an event, it is likely that a given person

will maintain a constant appearance and wear the same clothing. The geographic location of the

image capture is intuitively useful for determining the identities of people in the image.

Social context is information about people and their society that is useful for understanding

images. For example, because specific first names rise and fall in popularity over time and are

selected based on the gender and culture or location of the child, a first name provides prior

information about the age, gender and origin of a person [128]. When multiple people appear in

an image, their social relationships are related to their age, gender, and relative position within

the image. The distributions of relative ages between spouses [14, 39], parents and children [83],

and siblings [24] are either documented in or can be estimated from demographic statistics. A

standard actuarial table [5] allow us to consider life expectancy as a prior.

Of course, each of these contextual clues are inter-related and each may be known only to some

degree of certainty. For example, knowing the first name of a face provides some information

about the age and gender of the person. Likewise, if the age and gender are known, the uncer-

tainty about the person’s name decreases. We use probabilistic graph models to represent this

uncertainty and allow all evidence to be considered.

1.2 Contributions

The key contributions of this thesis are as follows:
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Pixel Context Capture Context Social Context
Clothing Image capture time First name
Other people Location Age and Gender
Relative pose Calibration Parameters Social relationship
Posture Flash Fire Anthropometric Data
Glasses, hats Personal Calendar

TABLE 1.1: Different types of context are useful for recognizing people. Items in green in-
dicate contextual items discussed in this paper. Items in black represent potential contextual

features for future work.

• The introduction of novel contextual features for improving person recognition and de-

mographic descriptions from images of people, including novel clothing features and seg-

mentation, the group prior for describing associations between people, and the relative

pose between people.

• We show that understanding images of people improves by considering social context,

a context that relates to social environment in which an image is captured. Our results

show that well-studied phenomena from the social sciences can be used to improve im-

age understanding. We believe this work represents the first demonstration of using raw

demographic statistics as social context to significantly improve a computer vision task.

[50, 53]

• Probabilistic models for inference on images of people with factors that represent rela-

tionships between variables which can be learned from images or from demographic and

anthropometric data. [50, 52]

• The creation of several data sets for evaluating our results and sharing with the vision

community, including:

– A personal image collection of 931 faces of 32 individuals in 589 images. [49]

– A collection of 339 people from 148 images having first names drawn from a distri-

bution of names given to babies. [50]

– A collection of 5080 group images containing 28231 faces labeled for gender and

age category. A subset of the images are labeled with additional information, in-

cluding row designation (for 222 images). [51, 53, 54]
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1.3 Thesis Overview

The dissertation is organized as follows:

Chapter 2 presents the related work.

Chapters 3 to 6 describe the use of context for understanding single images of people. Chapter

3 describes the general problem of understanding images of groups of people using content and

context. Age and gender estimates are improved by considering context in addition to content

alone. In addition, the global structure of the people in the image is used to determine a horizon,

and to classify the activity of “group dining”. The structure of the faces is also used to segment

an image in rows in Chapter 4. In Chapter 5, we explore the problem of an image tagged with

the first names of the people it contains. Context provided from first names, age, gender and

relative pose is used to resolve the ambiguous labels. In Chapter 6, we address the problem of

jointly estimating age, gender and height by using a calibrated camera and context related to

anthropometric data.

Chapters 7, 8 and 9 address the use of using context to infer identity in collections of images

with people. In Chapter 7, the emphasis is on the segmentation of clothing for use as context

for identifying people in image collections. We show the results of retrieval based on clothing,

and the improvement on recognition from combining clothing and face features. Chapter 8

describes the group prior (a prior over specific social groups) and its use to identify specific

people in consumer images. Chapter 9 shows the results of merging multiple contextual cues

together.

Finally, Chapter 10 presents the conclusions of the dissertation.



Chapter 2

Background

This thesis is focused on using context to understand images of people. As such, the work

spans several areas of computer vision, specifically, facial and human image understanding and

object recognition with context. In this chapter, we describe an overview of related work, and

subsequent chapters contain additional topical discussion of the related work.

2.1 Context in Computer Vision

Our use of contextual features from people images is motivated by the use of context for object

detection and recognition. Context is useful to capture the relationship between objects and

other information (for example, other objects, time, location) relevant to the scene. For a few

simple examples, we would not expect to see images of airplanes captured prior to 1900, images

of ocean beaches in Kansas, or images of snow in Panama. Similarly, we expect boats to rest on

a body of water rather than the sky.

There are many different features that represent context in images ([36]), and many ways of

incorporating the context into frameworks for recognizing scenes or objects. There is general

agreement that context helps detection tasks, although the benefit of context decreases as the

clarity of the object in question increases [101, 134]. Essentially, this means that when an

object can be confidently identified by its appearance, contextual evidence does not make that

conclusion more clear.

Hoiem [66], and Torralba and Sinha [126] describe the context (in 3D and 2D, respectively)

of a scene and the relationship between context and object detection. A holistic impression

6
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of the image [125] provides contextual evidence of an object’s presence, position, and size.

Researchers recognize that recognition performance is improved by learning reasonable object

priors, encapsulating the idea that cars are on the road and cows stand on grass (not trees).

Learning these co-occurrence, relative co-locations, and scale models improves object recogni-

tion [55, 73, 101, 112, 114]. These contextual approaches are successful because the real world

is highly structured, and objects are not randomly scattered throughout an image (or in space).

Of course, each object in the image acts as context for others, so graphical models are a natural

choice to combine the available information [122]. Similarly, we show that there is structure to

the positions of people in a scene that can be modeled and used to aid our interpretation of the

image.

2.2 Face Detection, Analysis, and Recognition

From the early days of computer vision research, images containing faces and people have been a

topic of focus. In the 1960s and 1970, researchers began to investigate the computational recog-

nition of human faces from images. In general, a query face is compared with a set of gallery

faces with known identity to determine the identity of the query face. In the early papers, recog-

nition was based on extracted features and facial measurements [17, 69]. Later research used

the facial appearance from actual pixel values (rather than facial measurements) for recognition,

implementing methods such as Eigenfaces [127] based on PCA, Gabor filter responses [133],

Fisherfaces [11] based on linear discriminant analysis, and 3D models [16].

Other facial imaging tasks have been extensively addressed in the literature. Face detection

[67, 110, 137] which is essentially an exercise in sliding window classification, has been refined

over several decades to the point where it executes at video rates and is a feature commonly

embedded into consumer electronic products such as digital cameras.

Once a face is detected, many analysis techniques have been proposed to address specific tasks.

Facial features or fiducial points are identified with deformable templates [142] or with shape

or appearance models [30, 31]. Pose is estimated [88] and illumination [148] is estimated and

modified. The detected face is analyzed for various attributes such as facial expression [100].

Facial hair [95, 133] and glasses [133, 135] can be detected and even removed.

Facial image analysis is used to produce a demographic description of the individual. Gender

classification from a facial image is a classic computer vision problem, and a wide array of
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machine learning techniques including neural networks [58], support vector machines [138],

and boosting [8] have been applied. In practice, all of these methods achieve roughly similar

performance [82]. Age can be estimated [56, 63, 75] or the apparent age of a facial image can

be modified [76] through regression or subspace methods.

2.3 People Recognition with Context

The common thread of the work in the previous Section is that personal attributes are inferred

based on the facial image itself, and each face is treated as an independent problem. However,

this approach is in contrast with the system that humans use to recognize people. We know

that we recognize people by integrating many contextual clues such as appearance voice, odor,

gait, clothing, and body shape [131]. Despite the efforts of many researchers [115], a complete

model of how humans recognize people does not yet exist. There is general agreement that as

a person develops, portions of the human visual system become dedicated to face recognition

[43]. This observation in itself suggests that general object recognition approaches may not

achieve optimal results when applied to recognition problems associated with people. In effect,

humans become experts at incorporating specialized context into their decisions regarding faces

and people.

There are examples of person recognition that incorporates context, generally for multimedia

applications or for applications related to organizing and retrieving images based on facial iden-

tity in consumer image collections. Image or video captions are assigned to faces by respecting

the constraint that a person can only appear once per image [13, 109, 145]. In movies, scripts

are used as context and matched with speakers to identify characters [41, 42].

Research devoted to solving the face recognition problem for consumer image collections has

begun to employ context. A context-only solution is described by Naaman [90] et al. where

co-occurrences between individuals in labeled images are considered for reasoning about the

identities of groups of people (instead of one person at a time), though features related to ap-

pearance are not considered. Generally, at a given event where images are captured, people are

wearing the same clothing. Thus, clothing (and other cues such as hair) are considered as con-

text for recognition [3, 26, 27, 98, 117, 119, 124, 144, 145]. In an interesting application, Cao

et al. [22] show that gender can be predicted from body shape (normally considered context)

with reasonable accuracy. Geographic location derived from cellular phone or a GPS device is
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considered by [35, 98]. In [121], contextual features of a social network (e.g. a list of “friends”)

are considered with a Conditional Random Field to reason about personal identity. When at-

tempting to identify a person from the same day as the training data for applications such as

teleconferencing and surveillance, clothing is an important cue [29, 71, 91].

Recently, several publically software applications became available that allow users to either

tag or recognize faces in their collection, including Picasa 3 [59], Riya [3], iPhoto [4], and

EasyAlbum [34, 85, 124]. Descriptions of these algorithms show that context including event

categorization and clothing features are considered. The MediAssist package [97, 98], while not

publicly available, also considers contextual features related to time, clothing, and geographic

location for identifying people in collections.

2.4 Social Sciences

In the social sciences, researchers study all aspects of human function in the environment. We

are interested in results from these fields for two reasons. First, in the study of the human vi-

sual system, researchers have shown strong evidence of the effect of context on object and face

recognition. This provides motivation for our approach of using context to better understand

images of people. Second, researchers study the social behaviors of humans and quantify these

behaviors. We use this statistical knowledge as context in our models to better understand im-

ages of people. A major portion of this thesis involves incorporating the discoveries from the

social sciences into computer vision algorithms to improve image understanding of images of

humans.

2.4.1 Human Vision as Motivation

Certainly, learnings about the human visual system are used to justify and tune approaches for

image processing and computer vision algorithms. For example, image compression algorithms

such as JPEG [102] exploit knowledge of the human visual system to reduce the number of bits

spent encoding data that will not be missed by the viewer. The use of Gabor wavelets is often

given a biological motivation [133]. The human visual system is a proof positive that vision is

possible, and without it we may have either never attempted this task, or given up long ago in

our attempts to interpret visual images!
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Our motivation for incorporating context into the understanding of images of people from sev-

eral areas of the social sciences. In neuropsychology, the role of context in human understanding

has been investigated for decades (see [9] for a review). Research has shown that humans have

difficult time recognizing objects that are presented out of context. Objects displayed with an

appropriate context were most effectively recognized [99], but inappropriate context results in

more mistakes (e.g. a mailbox incorporated a kitchen context is mistakenly interpreted as a loaf

of bread.) Biederman [15] describes relations that comprise the interactions between objects in

a scene including: interposition (occlusion), support, probability, position, and size. When these

contextual rules are violated, object detectability in humans decreases.

Evidence shows that person recognition by humans also benefits from context. Models of per-

son recognition in humans contain similar functional components to those of word and object

recognition [21, 118] although it is surmised that different object encodings are used. The per-

son recognition unit can be primed by the presence of specific context [20, 132]. In [132], and

experiment was performed where faces were presented in context pairs. Later, faces were again

shown, and the subject was required to indicate familiarity. Performance suffers when a face

was presented with a face other than as it was originally, or with no context at all. Similarly,

Bruce and Valentine [20] found that recognition of a face was facilitated by a short (250 ms)

pre-exposure to a related face (e.g. Jackie Kennedy precedes JFK). Thompson et al [123] used

images of actors in natural environments to show that context plays an expecially strong role for

recognizing unfamiliar faces.

Particularly strong evidence of the role of context in person recognition is uncovered by Young,

Hay and Ellis [139] when they asked 22 participants to diary “mistakes” at recognizing people

in daily life. In many examples, seeing a person out of context made recognition difficult, for

example, seeing a clerk from the bank on the street [118].

The role of context in recognizing people is relevant especially when face recognition skills are

suboptimal. The term prosopagnosia refers to the condition where an individual cannot recog-

nize people, even close friends or relatives, from their faces. The condition is not one of general

memory, but of recognition, as the affected individuals can form new short and long term mem-

ories and recognize general object categories. The cause is believed to be due to an impairment

in the face processing region of the brain. In daily life, those affected by prosopagnosia can still

recognize people from context [131], such as hair [37], clothing [10], and other contextual cues

such as voice [38].
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2.4.2 Social Sciences as Context

In anthropology and social psychology, the topic of the spacing between people during their

interactions has been thoroughly studied [2, 64]. A comfortable spacing between people depends

on social relationship, social situation, gender and culture. This concept, called proxemics, is

considered in architectural design [68, 129] and we suggest computer vision can benefit as well

by understanding the spacings between people.

Furthermore, the first names people choose for their children and the ages of people at various

milestones in life are quantified [5, 14, 24, 39, 83, 128]. In addition, the medical and mili-

tary establishments have extensive anthropometric data that quantify the distributions of various

measurements of the human body [44, 60, 92].

In our work, we show experimental results that our contextual features from group images im-

proves understanding. In addition, we show that human vision perception exploits similar con-

textual clues in interpreting people images.

2.5 Position of this Thesis

The work in this dissertation builds on the work of other researchers. We continue the research

dedicated to incorporating context into computer vision by specifically addressing the under-

standing of images of people with context. In addition to the results from computer vision,

we also describe several studies on human that were performed to better understand how we

incorporate context into our own understanding of people images.

A portion of the thesis addresses recognizing people in consumer image collections with context.

This can be seen as an extension of the aforementioned related work by introducing new con-

textual features such as new clothing segmentation and features related to the relative positions

of people in an image.

In another portion of the thesis, we show that by considering context, meaningful understanding

is achieved on a single image of people. In both portions, features are motivated by research in

the social sciences, and we train our model with both images and data that describes the actions

of people in society. Because imaging is an integral part of our society, this knowledge is useful

to improve our understanding of images of people.
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Understanding Images Groups of

People with Social Context

In many social settings, images of groups of people are captured. The structure of this group

provides meaningful context for reasoning about individuals in the group, and about the structure

of the scene as a whole. For example, men are more likely to stand on the edge of an image than

women. Instead of treating each face independently from all others, we introduce contextual

features that encapsulate the group structure locally (for each person in the group) and globally

(the overall structure of the group). This “social context” allows us to accomplish a variety of

tasks, such as such as demographic recognition, calculating scene and camera parameters, and

even event recognition. We perform human studies to show this context aids recognition of

demographic information in images of strangers.

It is a common occurrence at social gatherings to capture a photo of a group of people. The

subjects arrange themselves in the scene and the image is captured, as shown for example in

Figure 7.1. Many factors (both social and physical) play a role in the positioning of people

in a group shot. For example, physical attributes are considered, and physically taller people

(often males) tend to stand in the back rows of the scene. Sometimes a person of honor (e.g. a

grandparent) is placed closer to the center of the image as a result of social factors or norms. To

best understand group images of people, the factors related to how people position themselves

in a group must be understood and modeled.

We contend that computer vision algorithms benefit by considering social context, a context

that describes people, their culture, and the social aspects of their interactions. In this Chapter,

12



Chapter 3. Understanding Images Groups of People with Social Context 13

FIGURE 3.1: Just as birds naturally space themselves on a wire (Upper Left), people position
themselves in a group image. We extract contextual features that capture the structure of the
group of people. The nearest face (Upper Right) and minimum spanning tree (Lower Left) both
capture contextual information. Among several applications, we use this context to determine

the gender of the persons in the image (Lower Right).

we describe contextual features from groups of people, one aspect of social context. There are

several justifications for this approach. First, the topic of the spacing between people during their

interactions has been thoroughly studied in the fields of anthropology [64] and social psychology

[2]. A comfortable spacing between people depends on social relationship, social situation,

gender and culture. This concept, called proxemics, is considered in architectural design [68,

129] and we suggest computer vision can benefit as well. In our work, we show experimental

results that our contextual features from group images improves understanding. In addition,

we show that human vision perception exploits similar contextual clues in interpreting people

images.

We propose contextual features that capture the structure of a group of people, and the position

of individuals within the group. A traditional approach to this problem might be to detect faces

and independently analyze each face by extracting features and performing classification. In

our approach, we consider context provided by the global structure defined by the collection of

people in the group. This allows us to perform or improve several tasks such as: identifying
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the demographics (ages and genders) of people in the image, estimating the camera and scene

parameters, and classifying the image into an event type.

3.1 Related Work

A large amount of research addresses understanding images of humans, addressing issues such

as recognizing an individual, recognizing age and gender from facial appearance, and deter-

mining the structure of the human body. The vast majority of this work treats each face as an

independent problem. However, there are some notable exceptions. In [13], names from cap-

tions are associated with faces from images or video in a mutually exclusive manner (each face

can only be assigned one name). Similar constraints are employed in research devoted to solving

the face recognition problem for consumer image collections. In [48, 90, 121], co-occurences

between individuals in labeled images are considered for reasoning about the identities of groups

of people (instead of one person at a time). However, the co-occurence does not consider any

aspect of the spatial arrangement of the people in the image. In [117], people are matched be-

tween multiple images of the same person group, but only appearance features are used. Facial

arrangement was considered in [1], but only as a way to measure the similarity between images.

Our use of contextual features from people images is motivated by the use of context for ob-

ject detection and recognition. Hoiem et al. [66], and Torralba and Sinha [126] describe the

context (in 3D and 2D, respectively) of a scene and the relationship between context and object

detection. Researchers recognize that recognition performance is improved by learning rea-

sonable object priors, encapsulating the idea that cars are on the road and cows stand on grass

(not trees). Learning these co-occurence, relative co-locations, and scale models improves ob-

ject recognition [55, 101, 112, 114]. These approaches are successful because the real world

is highly structured, and objects are not randomly scattered throughout an image. Similarly,

there is structure to the positions of people in a scene that can be modeled and used to aid our

interpretation of the image.

Our contribution is a new approach for analyzing images of multiple people. We propose fea-

tures that relate to the structure of a group of people and demonstrate that they contain useful

information. The features provide social context that allows us to reason effectively in differ-

ent problem domains, such as estimating person demographics, estimating parameters related

to scene structure, and even categorizing the event in the image. In Section 3, we describe our
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0-2 3-7 8-12 13-19 20-36 37-65 66+
Female 439 771 378 956 7767 3604 644
Male 515 824 494 736 7281 3213 609
Total 954 1595 872 1692 15048 6817 1253

TABLE 3.1: The distribution of the ages and genders of the 28231 people in our image collec-
tion.

image collection. In Section 4, we introduce contextual person features, and we detail their per-

formance for classifying person demographics. We introduce the concept of a face plane and

demonstrate its relationship to the scene structure and event semantics (Section 6). Finally, in

Section 7 we describe experiments related to human perception based on cues related to social

context.

3.2 Images and Labeling

We built a collection of people images from Flickr images. As Flickr does not explicitly allow

searches based on the number of people in the image, we created search terms likely to yield

images of multiple people. The following three searches were conducted:

“wedding+bride+groom+portrait”

“group shot” or “group photo” or “group portrait”

“family portrait”

A standard set of negative query terms were used to remove undesirable images. To prevent a

single photographer’s images from over-representation, a maximum of 100 images are returned

for any given image capture day, and this search is repeated for 270 different days.

In each image, we labeled the gender and the age category for each person. As we are not

studying face detection, we manually add missed faces, but 86% of the faces are automatically

found. We labeled each face as being in one of seven age categories: 0-2, 3-7, 8-12, 13-19,

20-36, 37-65, and 66+, roughly corresponding to different life stages. In all, 5,080 images

containing 28,231 faces are labeled with age and gender (see Table 3.1), making this what we

believe is the largest dataset of its kind [54]. Many faces have low resolution. The median face

has only 18.5 pixels between the eye centers, and 25% of the faces have under 12.5 pixels.

As is expected with Flickr images, there is a great deal of variety. Some images have people are

sitting, laying, or standing on elevated surfaces. People often have dark glasses, face occlusions,

or unusual facial expressions. Is there useful information in the structure and arrangement of
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people in the image? The rest of the chapter is devoted to answering this question to the affir-

mative.

3.3 Contextual Features from People Images

A face detector and an Active Shape Model [30] are used to detect faces and locate the left and

right eye positions. The position p =
[
xi yi

]T
of a face f is the two dimensional centroid of

the left and right eye center positions l =
[
xl yl

]T
and r =

[
xr yr

]T
:

p =
1
2
l +

1
2
r (3.1)

The distance between the two eye center positions for the face is the size e = ||l− r|| of the face.

To capture the structure of the people image, and allow the structure of the group to represent

context for each face, we compute the following features and represent each face fx as a 12-

dimensional contextual feature vector:

Absolute Position: The absolute position of each face p, normalized by the image width and

height, represents two dimensions. A third dimension in this category is the angle of the face

relative to horizontal.

Relative Features: The centroid of all the faces in an image is found. Then, the relative position

of a particular face is the position of the face to the centroid, normalized to the mean face size:

r =
p− pµ

eµ
(3.2)

where r is the relative position of the face, pµ is the centroid of all faces in the image, and eµ

is the mean size of all faces from the image. The third dimension in this category is the ratio of

the face size to the mean face size:

er =
e

eµ
(3.3)

When three or more faces are found in the image, a linear model is fit to the image to model

the face size as a function of y-axis position in the image. This is described in more detail in

Section 5.2. Using (3.9), the predicted size of the face compared with the actual face size is the
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(a) All (b) Female-Male (c) Baby-Other

FIGURE 3.2: The position of the nearest face to a given face depends on the social relationship
between the pair. (a) The relative position of two nearest neighbors, where the red dot represents
the first face, and lighter areas are more likely positions of the nearest neighbor. The red circle
represents a radius of 1.5 feet (457mm). (b) When nearest neighbors are male and female, the
male tends to be above and to the side of the female (represented by the red dot). (b) The
position of the nearest neighbor to a baby. The baby face tends to be spatially beneath the

neighbor, and incidentally, the nearest neighbor to a baby is a female with probability 63%.

last feature:

ep =
e

α1yi + α2
(3.4)

Minimal Spanning Tree: A complete graph G = (V,E) is constructed where each face fn is

represented by a vertex vn ∈ V , and each edge (vn, vm) ∈ E connects vertices vn and vm. Each

edge has a corresponding weight w(vn, vm) equal to the Euclidean distance between the face

positions pn and pm. The minimal spanning tree of the graph MST (G) is found using Prim’s

algorithm. The minimal spanning tree reveals the structure of the people image; if people are

arranged linearly, the minimal spanning tree MST (G) contains no vertices of degree three or

greater. For each face fn, the degree of the vertex vn is a feature deg(vn). An example tree is

shown in Figure 1.

Nearest Neighbor: The K nearest neighbors, based again on Euclidean distance between face

positions p are found. As we will see, the relative juxtaposition of neighboring faces reveals

information about the social relationship between them. Using the nearest neighbor face, the

relative position, size, and in-plane face tilt angle are calculated, for a total of four dimensions.

The feature vector fx captures both the pairwise relationships between faces and a sense of of

the person’s position relative to the global structure of all people in the image.
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(a) P (p) (b) P (fg = m|p) (c) P (fa < 8|p)

FIGURE 3.3: The absolute position of a face in the image provides clues about age and gender.
Each of the three images represent a normalized image. (a) The density of all 28231 faces in
the collection. (b) P (fg = male|p). A face near the image edge or top is likely to be male.

(c) P (fa < 8|p). A face near the bottom is likely to be a child.

(a) Random Faces (b) Average Faces

FIGURE 3.4: For each quantized (10×10) position bin in the family image subset of the group
images, a random face is selected in (a). In (b), the mean of all faces is computed at each
quantized position. A face near the image edge or top is likely to be male. A face near the

bottom is likely to be a child.

3.3.1 Evidence of Social Context

It is evident the contextual feature fx captures information related to demographics. Figure 4.3

shows the spatial distributions between nearest neighbors. The relative position is dependent

on gender (b) and age (c). Using the fact that the distance between human adult eye centers is

61±3 mm [44], the mean distance between a person and her nearest neighbor is 306 mm. This

is smaller than the 18-inch radius “personal space” of [2], but perhaps subjects suspend their
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(c) Both

FIGURE 3.5: The structure of people in an image provides context for estimating age. Show
are the confusion matrices for classifying age using (a) context alone (no face appearance), (b)
content (facial appearance) alone, (c) both context and facial appearance. Context improves

over content alone.

need for space for the sake of capturing an image.

Figure 3.3 shows maps of P (fa|p) and P (fg|p), the probability that a face has a particular gen-

der or age given absolute position. Samples and averages of the faces at particular normailzed

postions within the images are shown in 3.4. Intuitively, physically taller men are more likely to

stand in the group’s back row and appear closer to the image top. Regarding the degree deg(vn)

of a face in MST (G), females tend to be more centrally located in a group, and consequently

have a higher mean degree in MST (G). For faces with deg(vn) > 2 the probability the face is

female is 62.5%.

3.3.2 Demographics from Context and Content

The interesting research question we address is this: How much does the structure of the people

in images tell us about the people? We estimate demographic information about a person using

fx. The goal is to estimate each face’s age fa and gender fg. We show that age and gender can

be predicted with accuracy significantly greater than random by considering only the context

provided by fx and no appearance features. In addition, the context has utility for combining

with existing appearance-based age and gender discrimination algorithms.

3.3.2.1 Classifying Age and Gender with Context

Each face in the person image is described with a contextual feature vector fx that captures local

pairwise information (from the nearest neighbor) and global position. We trained classifiers for
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Gender Age
Random Baseline 50.0% 14.3% 38.8%
Absolute Position 62.5% 25.7% 56.3%
Relative Position 66.8% 28.5% 60.5%
Min. Spanning Tree 55.3% 21.4% 47.2%
Nearest Neighbor 64.3% 26.7% 56.3%
Combined fx 66.9% 32.9% 64.4%

TABLE 3.2: Predicting age and gender from context features fx alone. The first age column is
the accuracy for an exact match, and the second allows an error of one age category (e.g. a 3-7

year old classified as 8-12).

discriminating between age and gender. In each case, we use a Gaussian Maximum Likelihood

(GML) classifier to learn P (fa|fx) and P (fg|fx). The distribution of each class (7 classes for

age, 2 for gender) is learned by fitting a multi-variate Gaussian to the distributions P (fx|fa)

and P (fx|fg). Other classifiers (Adaboost, decision forests, SVM) yield similar results on this

problem, but GML has the advantage that the posterior is easy to directly estimate.

The age classifier is trained from a random selection of 3500 faces, selected such that each

age category has an equal number of samples. Testing is performed on an independent (also

uniformly distributed) set of 1050 faces. Faces for test images are selected to achieve roughly

an even distribution over the number of people in the image. The prior for gender is roughly

even in our collection, so we use a larger training set of 23218 images and test on 1881 faces.

For classifying age, our contextual features have an accuracy more than double random chance

(14.3%), and gender is correctly classified about two-thirds of the time. Again, we emphasize

that no appearance features are considered. Table 3.2 shows the performance of our classifiers

for the different components of the contextual person feature fx. The strongest single component

is Relative Position, but the inclusion of all features is the best. Babies are recognized with good

accuracy, mainly because their faces are smaller and positioned lower than others in the image.

3.3.2.2 Combining Context with Content

We trained appearance-based age and gender classifiers. These content-based classifiers pro-

vide probability estimates P (fg|fa) and P (fa|fa) that the face has a particular gender and age

category, given the visual appearance fa. Our gender and age classifiers were motivated by the

works of [56, 63] where a low dimension manifold for the age data is learned. Using cropped

and scaled faces (61×49 pixels, with the scaling so the eye centers are 24 pixels apart) from

the age training set, two linear projections (Wa for age and Wg for gender) are learned. Each
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column of Wa is a vector learned by finding the projection that maximizes the ratio of interclass

to intraclass variation (by linear discriminate analysis) for a pair of age categories, resulting in

21 columns for Wa. A similar approach is used to learn a linear subspace for gender Wg. In-

stead of learning a single vector from two gender classes, a set of seven projections is learned

by learning a single projection that maximizes gender separability for each age range.

The distance dij between two faces is measured as:

dij = (fi − fj)WWT (fi − fj)T (3.5)

For classification for both age and gender, the nearest N training samples (we use N = 25) are

found in the space defined by Wa for age or Wg for gender. The class labels of the neighbors

are used to estimate P (fa|fa) and P (fg|fg) by MLE counts. One benefit to this approach is that

a common algorithm and training set are used for both tasks, only the class labels and pairing

for learning discriminative projections are modified.

The performance of both classifiers seems reasonable given the difficulty of this collection. The

gender classifier is correct about 70% of the time. This is lower than others [8], but our collec-

tion contains a substantial number of children, small faces and difficult expressions. For people

aged 20-65, the gender classification is correct 75%, but for ages between 0-19, performance is

a poorer 60%, as facial gender differences are not as apparent. For age, the classifier is correct

38% of the time, and if a one-category error is allowed, the performance is 71%. These classi-

fiers may not be state-of-the-art, but are sufficient to illustrate our approach. We are interested

in the benefit that can be achieved by modeling the social context.

Using the Naı̈ve Bayes assumption, the final estimate for the class (for example, gender fg)

given all available features (both content fa and context fx) is:

P (fg|fa, fx) = P (fg|fa)P (fg|fx) (3.6)

Table 4.1 shows that both gender and age estimates are improved by incorporating both content

(appearance) and context (the structure of the person image). Gender recognition improves by

4.5% by considering person context. Exact age category recognition improves by 4.6%, and

when the adjacent age category is also considered correct, the improvement is 6.8%. Figure 6.3

shows the results of gender classification in image form, with discussion. Accuracy suffers on

smaller faces, but the benefit provided by context increases, as shown in Table 3.4. For example,
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(a) Context (b) Appearance (c) Both (d) Context (e) Appearance (f) Both

(g) Context (h) Appearance (i) Both (j) Context (k) Appearance (l) Both

(m) Context (n) Appearance (o) Both (p) Context (q) Appearance (r) Both

FIGURE 3.6: Gender classification improves using context and appearance. The solid circle in-
dicates the gender guess (pink for female, blue for male), and a dashed red line shows incorrect
guesses. For the first four images (a)-(l), context helps correct mistakes made by the appearance
classifier. The mislabeled men in (b) are taller than their neighbors, so context corrects their
gender in (c), despite the fact that context has mistakes of its own (a). Similar effects can be
seen in (d)-(l). The final two images (m)-(r) shows images where adding context degrades the
result. In (p), context causes an incorrect gender estimate because the woman in on the edge
and taller than neighbors even though the appearance classifier was correct (o). In (p)-(r), the
people are at many different and apparently random depths, breaking the social relationships

that are learned from training data. Best viewed in electronic version.

Gender Age
Context fx 66.9% 32.9% 64.4%
Appearance fa 69.6% 38.3% 71.3%
Combined fx, fa 74.1% 42.9% 78.1%

TABLE 3.3: In images of multiple people, age and gender estimates are improved by consid-
ering both appearance and the social context provided by our features. The first age column is

exact age category accuracy; the second allows errors of one age category.

Gender Age
Context fx 65.1% 27.5% 63.5%
Appearance fa 67.4% 30.2% 65.9%
Combined fx, fa 73.4% 36.5% 74.6%

TABLE 3.4: For smaller faces≤18 pixels between eye centers, classification suffers. However,
the gain provided by combine context with content increases.

context now improves gender accuracy by 6%. This corroborates [101] in that the importance

of context increases as resolution decreases.
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3.4 Scene Geometry and Semantics from Faces

The position of people in an image provides clues about the geometry of the scene. As shown

in [81], camera calibration can be achieved from a video of a walking human, under some

reasonable assumptions (that the person walks on the ground plane and head and feet are visible).

By making broader assumptions, we can model the geometry of the scene from a group of face

images. First, we assume faces approximately define a plane we call the face plane, a world

plane that passes through the heads (i.e. the centroids of the eye centers) of the people in the

person image. Second, we assume that head sizes are roughly similar. Third, we assume the

camera has no roll with respect to the face plane. This ensures the face plane horizon is level.

In typical group shots, this is approximately accomplished when the photographer adjusts the

camera to capture the group.

Criminisi et al. [33] and Hoiem et al. [66] describe the measurement of objects rooted on the

ground plane. In contrast, the face plane is not necessarily parallel to the ground, and many

times people are either sitting or are not even on the ground plane at all. However, since the true

face sizes of people are relatively similar, we can compute the face horizon, the vanishing line

associated with the face plane.

3.4.1 Modeling the Face Plane

From the set of faces in the image, we compute the face horizon and the camera height (the

distance from the camera to the face plane measured along the face plane normal), not the

height of the camera from the ground. Substituting the face plane for the ground plane in Hoiem

et al. [66], we have:

Ei =
eiYc

yi − yo
(3.7)

where Ei is the face inter-eye distance in the world (61 mm for the average adult), ei is the face

inter-eye distance in the image, Yc is the camera height, yi is the y-coordinate of the face center

p, and yo is the y-coordinate of the face horizon.



Chapter 3. Understanding Images Groups of People with Social Context 24

FIGURE 3.7: Horizon estimates from faces for images where the face and ground planes are
approximately parallel. The solid green line shows the horizon estimate from the group of faces
according to (3.8), and the dashed blue line shows the manually derived horizon (truth). The
poor accuracy on the last image results from the four standing people, which violate the face

plane assumption.

Each of the N face instances in the image provides one equation. The face horizon yo and

camera height Yc are solved using least squares by linearizing (3.7) and writing in matrix form:




Ei1 ei1

Ei2 ei2

. . . . . .

EiN eiN





yo

Yc


 =




yi1Ei1

yi2Ei2

. . .

yiNEiN




(3.8)

Reasonable face vanishing lines and camera height estimates are produced, although it should

be noted that the camera focal length is not in general recovered. A degenerate case occurs when

the face plane and image planes are parallel (e.g. a group shot of standing people of different

heights), the face vanishing line is at infinity, and the camera height (i.e. in this case, the distance

from the camera to the group) cannot be recovered.

To quantify the performance of the camera geometry estimates, we consider a set of 18 images

where the face vanishing plane and ground plane are parallel and therefore share a common

vanishing line, the horizon. The horizon is manually identified by finding the intersection in

image coordinates of two lines parallel to the ground and each other (e.g. the edges of a dinner

table). Figure 3.7 shows the estimated and ground truth horizons for several images, and the

accuracy is reported in Table 3.5. Using the group shot face geometry achieves a median horizon

estimate of 4.6%, improving from an error of 17.7% when the horizon is assumed to pass through

the image center, or 9.5% when the horizon estimate is the mean position of all other labeled

images. We experimented with RANSAC to eliminate difficult faces from consideration, but it

made little difference in practice. We considered using the age and gender specific estimates for

inter-eye distance values Ei, but this also resulted in a negligible gain in accuracy (<0.01%).
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Mean Median
Center Prior 19.8% 17.7%
Mean Horizon Prior 9.6% 9.5%
Face Horizon 6.3% 4.6%

TABLE 3.5: The geometry of faces in group shots are used to accurately estimate the horizon.
Mean and median absolute error (as percentage of image height) is shown for horizon estimates.

3.4.2 Event Recognition from Structure

Interestingly enough, the geometrical analysis of a group photo also represents context for se-

mantic understanding. When a group shot is captured, the arrangement of people in the scene

is related to the social aspect of the group. When a group is dining together, the face plane is

roughly parallel to the ground. In most other circumstances, a group photo contains a mixture

of sitting and standing people at a nearly uniform distance from the camera, so the face plane is

closer to orthogonal to the ground plane. An analysis of the face plane is useful for identifying

the group structure and yields about the group activities.

We compute the value of dei
dyi

, the derivative of face size with respect to position in the image. We

use least squares to learn parameters α1 and α2 to model the face size as a function of position

in the image according to:

ei = α1yi + α2 (3.9)

and then dei
dyi

= α1. The model from (3.8) could also be used to estimate the size of a face in

the face plane, but its objective function minimizes a quantity related to the camera and scene

geometry and does not guarantee that the estimated face sizes in the image are optimal.

Figure 3.8 shows the ten images from the group photo collection with the most negative values

of dei
dyi

. Clearly, the structure of the face plane has semantic meaning. We perform an experiment

to quantify this observation. Among the 826 “group photo” images with 5 or more people from

the image collection, 44 are dining images. Using the single feature of dei
dyi

, the group dining

detection accuracy is shown in Figure 3.9. The good performance is somewhat remarkable

given that dining images are recognized without explicitly looking for tables, plates, or any

other features but facial arrangement. We find 61% of the dining images with a precision of

61%. This performance at least rivals that of [23] at detecting eating images (54%), even though

they consider visual words and geographic location. This is a powerful demonstration that the

structure in a people image provides important context for scene understanding.
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FIGURE 3.8: Sorting images with respect to dei

dyi
. The ten images with the most negative

values of dei

dyi
. These images tend to be ones where the face and ground planes are parallel, and

often semantically correspond to group dining images (only the first, with a strong linear face
structure, is a non-dining images).
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FIGURE 3.9: The face plane encapsulates semantically relevant information. The solid blue
curve shows the detection of group dining images using a single feature related to the face

plane. The red dashed curve shows expected random performance.

3.5 Human Understanding

In the past, human accuracy for the age recognition task has been measured [56], although the

effect of context from other people in images on human performance has not been quantified.

An experiment was designed to determine the role of context in the human interpretation of

faces in group shots. Image content is progressively revealed in three stages as shown in Figure

3.10. In each stage, the subject must guess the age (in years) and gender of a face from a group
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(a) (b) (c)

FIGURE 3.10: An example of the images shown to subjects in our human study. The subject
estimates age and gender based on (a) the face alone, (b) all the faces in the image, or (c) the
entire image. Human estimates of age and gender improve when additional context is available.
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FIGURE 3.11: The effect of context on age estimation by humans. The curves show the percent
of age estimates that are within a certain number of years in age error.

photo. In the first stage, only the face (the same size as used by our appearance classifiers) of

one individual is shown. Next, all faces in the image are revealed, and finally the entire image is

shown. A subject enters age and gender estimates for all faces within a stage before progressing

to the next stage.

The 45 images for the experiment come from a dataset of personal image collections where the

identity and birthdate of each person is known. True ages range from 2 to 83 years. A total of

13 subjects estimated age and gender for each of the 45 faces for each of the 3 stages, for a total

of 1755 evaluations for age and gender.

The results are shown in Figure 3.11 and described in Table 3.6. Age prediction error is reduced

as additional context is provided. Out of the 13 subjects, only 1 did not show an age error

improvement from (a) to (b). Similarly, for the 45 face images, 33 show a reduction in age error

from (a) to (b). Neither of these results could occur by chance with probability greater than
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(a) (b) (c)
Mean Age Error 7.7 6.9 4.9
Children (< 13) Age Error 5.1 4.6 1.9
Adult (> 12) Age Error 8.1 7.3 5.5
Gender Error 6.2% 6.2% 1.0%
Children (< 13) Gender Error 15.4% 17.6% 0%
Adult (> 12) Gender Error 4.5% 4.0% 1.2%

TABLE 3.6: Human estimates of age and gender are more accurate with increasing amounts of
context, from (a) face alone, to (b) all faces in the image, to (c) the entire image.

0.1%. As one might expect, estimating of a child’s age can be achieved with better accuracy, but

estimating the gender of a child is difficult from the face alone.

We draw several conclusions. First, human perception of faces benefits from considering social

context. By simply revealing the faces of other people in the image, the subjects’ age estimates

improved, despite the fact that the additional viewable pixels were not on the person of interest.

Finally, the experiment shows that the best estimates are achieved when the subject views the

entire image and considers all the information to make demographic estimates.

3.6 Conclusion

In this chapter we introduce contextual features for capturing the structure of people images.

Instead of treating each face independently from all others, we extract features that encapsulate

the structure of the group. Our features are motivated from research in several fields. In the

social sciences, there is a long history of considering the spatial interactions between people.

We provide evidence that our features provide useful social context for a diverse set of computer

vision tasks. Specifically, we demonstrate gender and age classification, scene structure anal-

ysis, and event type classification to detect dining images. Finally, we show that even human

understanding of people images benefits from the context of knowing who else in the image.

We feel this is a rich area for researchers, and we provide our image collection to other interested

researchers [54].



Chapter 4

Finding Rows of People in Group

Images

It is common in social gatherings to capture an image of a group of people. In these situations,

people are often arranged in rows to ensure that the camera can view each face. Depending

on the situation, the rows can be either highly structured, or more informal as shown in Fig.

7.1. The definition of what constitutes a row of people is not obvious. Our definition of a row of

people is as follows: within a row of people, each person is at roughly constant distance from the

camera, roughly in the same physical posture (e.g. sitting, standing, or kneeling), and roughly

supported by the same surface (e.g. all people in a row stand on the same step in a flight of

stairs). In this Chapter, we present a graph-based algorithm for detecting rows of people using

graph cuts with learned energy terms.

The algorithm itself relies on the fact that there is order in the manner in which people arrange

themselves in social situations. In the social sciences, the study of personal space dates to the

mid-twentieth century [64]. Even without conscious effort, the relative positions of people in

social situations is affected by, among other factors, age, gender, social status, the local culture,

and even lighting. Our broader goal is to use the discoveries from the social sciences as social

context for interpreting images of people. Social context is context that describes people, their

culture, and the social aspects of their interactions at the time and place the image was captured.

Recovering the rows of people in a group image has applications in searching, organizing, and

annotating images.

29
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FIGURE 4.1: In many group shots, people are arranged in rows that have physical meaning in
the scene. Sometimes these rows are highly structured (top) and other times less so (bottom).
Our algorithm discovers rows of faces in the images. In the images on the right, each row’s

faces are marked with a dot of the same color.

4.1 Related Work

There is, of course, a large body of work on facial features and recognition, e.g. [103, 147].

However, the majority of this work considers each face as an independent problem. Exceptions

include efforts to characterize the frequency of an individual appearing in a personal image

collection and modeling the likelihood that specific combinations of people will appear together

in an image or event [48, 90, 121]. None of this work considers the position of a face within the

image.

Despite the prevalence of group shots, there is surprisingly little work devoted to their analysis

and understanding. In [117], the authors attempt to match people in repeated shots of the same

scene. Clothing, face, and hair are considered to establish correspondences. Facial arrangement

was considered in [1] as a way to measure similarity between pairs of images, but was not

explored as a means for understanding a single image. In [28], a rule-based system is proposed

for tagging faces based on directional cues in annotations.

Regarding the method we use to solve the problem, graph cuts are used to solve many problems

in computer vision [19, 106]. In pairwise models, an energy function is composed of unary and
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Find Faces

Extract Features

Define Face Graph

Compute MinCut

Row Partition

FIGURE 4.2: The flow diagram of our algorithm for finding rows of faces in an image of a
group of people.

pairwise energy terms in a manner that a graph cut provides the optimal solution. However, the

unary and pairwise terms are usually defined by hand (e.g., based on pixel intensity difference

as in [45, 111]) to achieve good results. Recently, there have been efforts to learn distance

metrics [136] from labeled training samples to better express the similarity between samples.

Our problem is essentially to produce a clustering of the faces into k rows, where k is unknown.

In this paper, we take the latter approach by training a classifier to distinguish between pairs

of faces that are in the same row, and pairs that are in different rows. This classifier is used to

establish the energy terms in our graph model.

Our contributions are the following: We present an algorithm for detecting rows of people in

group images. Our approach uses graph cuts on a graph whose edge weights are learned with

a classifier from training data. Our model represents the social context of personal space for

solving a practical image understanding problem.

4.2 Features and the Face Graph

Fig. 4.2 shows the algorithm flow. First, faces are detected with a face detector and an Active

Shape Model [30] is used to locate the left and right eye positions that serve as features. Next,

an undirected graph is defined where each human face is represented as a vertex. Edge weights

are learned as a function of the features of the pair of faces connected by each edge. The graph

is constructed so that under certain assumptions, a minimum cut produces the most likely binary

split separating the group of faces into sets of rows of faces. By recursively applying this binary

split until a stopping criteria is met, the row partition of the image is found.



Chapter 4. Finding Rows of People in Group Images 32

4.2.1 Face Features

The position p =
[
xi yi

]T
of a face f is the two dimensional centroid of the left and right eye

center positions l =
[
xl yl

]T
and r =

[
xr yr

]T
. The distance between the two eye center

positions for the face is the size e = 〈l− r〉2 of the face. To capture the structure of the peo-

ple image, and allow the structure of the group to represent context for each face, we compute

the following features and represent each face fn as a 3-dimensional contextual feature vector

fn =
[
xn yn en

]T
.

4.2.2 The Face Graph

Next, the face graph G = (V, E) is constructed where each face n is represented by a vertex

vn ∈ V , and each edge (vn, vm) ∈ E connects vertices vn and vm. This graph defines a

Conditional Random Field (CRF) that represents P (v|F), the probability of a labeling given the

features associated with all faces in the image. We seek the most probable binary labeling v∗ of

the faces.

P (v|F) ∝
∏
n

Ψ(vn)
∏

(vm,vn)∈E

Φ(vm, vn) (4.1)

The most probable labeling v∗ is found as:

v∗ = argmax
v

P (v|F) (4.2)

= argmin
v

−
∑

n

log Ψ(vn)−
∑

(vm,vn)∈E

log Φ(vm, vn) (4.3)

where n and m are indices over particular faces in the image. Possible row labels for each face

are vn ∈ {0, 1} where 0 and 1 represent different rows. The unary term Ψ(vn) is constant

because nothing in our model distinguishes between the facial features and which row that face

is likely to be in. The pairwise term − log Φ(vm, vn) represents the cost of assigning either the

same or different labels (row indices) to a pair of faces.

From (4.3), the most likely row labeling v∗ corresponds with the minimum cut of the graph

G, when the edge weights are − log Φ(vn, vm). Learning these parameters Φ(vn, vm) in an

undirected graphical model is notoriously difficult. Intuitively we would like to be rewarded
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FIGURE 4.3: The distributions of the features fmn associated with a pair of faces in an image.
Faces in the same row tend to be of similar size (a), and be close horizontally (b), and vertically

(c).

for cutting between faces that are probably in different rows, and penalized for cutting between

faces that are likely in the same row. Under the naı̈ve Bayes assumption that each pair of faces

is independent of all others, then Φ(vn, vm) is related to the probability P (smn|fm, fn), where

smn is the event that vm = vn (faces m and n belong to the same row) as follows:

Φ(vm, vn) =


 1 1−P (smn)

P (smn)

1−P (smn)
P (smn) 1


 (4.4)

Using a set of training images where each face row has been identified, the term P (smn|fm, fn)

can be learned with any classifier. In our work, we learn P (smn|fm, fn) with Gaussian Max-

imum Likelihood (GML), using a multivariate Gaussian to represent each of the two classes

(either vn = vm or vn 6= vm) from the training data, where an equal prior is assumed. The

feature vector fmn is produced from fm and fn) and represents the relative position and scales

of the two faces in the image as follows:

fmn =
[

em
en

xm−xn
em

ym−yn

em

]T
(4.5)

Fig. 4.3 shows one-dimensional projections of the distributions of the values of fmn for each of

the two class values of snm.

4.2.3 Recursive Minimum Cuts

The graph G = (V, E) is formed with vertices at each face in the image and edge weights

assigned according to (4.3) and (4.4). A visualization of the graph G is shown in Fig. 4.4. The
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FIGURE 4.4: A visualization of the graph G for the two images from Fig. 1. Every face is a
node in the graph, and edges weights are the cost to cut the edge. Green edges indicate a cost
to cut (the pair is likely in the same row) and magenta edges indicate a reward for cutting (the

pair is likely in different rows). Black edges neither reward nor penalize a cut.

minimum cut of the graph is found, partitioning the graph vertices into two sets V1 and V2. Note

that the value of the cut need never exceed 0, since when V1 is the empty set no edges are cut.

The subgraph associated with each set is then recursively cut until the value of the cut is zero.

In this way, the original graph G is partitioned into k components, each representing a row of

people. Unlike many unsupervised clustering algorithms, the number of components does not

need to be supplied by a human because the whole process is guided by the labeled training data.

After the process converges, the rows are renumbered starting from the image top.

It is important to note several approximations in our approach. First, the general problem of

finding a minimum cut on a graph with negative weights is NP-hard, although in special cases

efficient algorithms exist. We use a spectral relaxation [111] to find an approximate solution.

Let A represent the adjacency matrix, where each element amn = − log 1−P (smn|fmn)
P (smn|fmn) is the

cost associated with cutting an edge. Then the eigenvector of the graph Laplacian L = D−A

associated with the smallest eigenvalue is binarized to approximate the minimum cut solution.

D is a diagonal matrix with each element equal to the corresponding row sum of A.

Second, is must be noted that even if each recursive minimum cut is exact, there is no guarentee

that the final partition will be equal to that achieved by performing an optimal exact k-way

minimum cut of the graph. In image segmentation, this problem is addressed with an application

of k-means after a dimensionality reduction [94]. We leave this topic as future work to explore.

Despite these approximations, the model provides useful solutions to the row segmentation prob-

lem, as shown in the next Section.
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FIGURE 4.5: Top: Examples where our algorithm perfectly recovered the rows of people.
Notice the variety of postures and arrangements of the people, from standing, sitting, and even
laying. Bottom: Imperfect results. Sometimes people smaller (left) or taller (second image)
than the rest of the row cause mistakes. Each of these images actually has only a single row of
people. In the third and fourth images, mistakes occur near the right side where the algorithm

is confused by a junction of multiple rows. Best viewed in color.

4.3 Experiments

To test our ideas, we collected a images from Flickr using the search string:

“group shot” or “group photo” or “group portrait”

The rows of people were manually labeled in 234 images. In total, these images contain 2222

faces and 465 rows of people (approximately 2 rows per image and 4.8 people per row. The

number of people in each image ranges from 4 to 28, and the number of rows per image ranges

from 1 to 5.

We test on one image at a time, leaving the rest of the images for training the GML classifier.

We use a complete graph G over the face vertices to find the rows of people. The row clustering

quality is compared to the manually labeled rows using the Rand Index [105]. Each partition

is viewed as a collection of n ∗ (n − 1)/2 decisions, one decision per pair of data points. In

a given partition of the data, two data points are either in the same or in different cluster. The

Rand Index quantifies the proportion of the decisions for which the algorithm’s decision and the

ground truth decision match. A perfect score in this metric is 1.0, or 100%.

Table 1 4.1 reports our results. The algorithm’s Rand Index is 92.6%. The algorithm achieved

perfect row segmentation on greater than two-thirds of the images (67.5%). The discovered
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Accuracy
Rand Index 92.6%
Correct Images 67.5%
Correct No. Rows 73.5%

TABLE 4.1: Quantitative results from applying our algorithm to 234 images containing 2222
people.

number of rows k is correct 73.5% of the time. Fig. 4.5 provides discussion of the algorithm

results on eight image examples.

4.4 Conclusions

In this paper we introduce a graph-based algorithm for finding rows of people in group images.

In our approach, a graph is constructed whose minimum cut corresponds to a separation be-

tween rows of people. Our approach is shown to be effective by testing on a large number of

images of people. We demonstrate that image understanding benefits by considering the social

context provided by the structure of multiple people in an image. We feel this is a rich area for

researchers, and we provide our image collection to other interested researchers [54].



Chapter 5

Estimating Age, Gender and Identity

using First Name Priors,

In this chaper, we introduce a probabilistic graphical model that represents the relationship be-

tween age, gender, identity, first names, and relative pose and demonstrates the power of using

social context for interpreting images of people. The model parameters are learned from a com-

bination of images and large volumes of publicly available demographic data.

We combine image-based gender and age classifiers with the social context information provided

by first names and relative pose to recognize people with no labeled examples. Our model uses

image-based age and gender estimates along with consideration of pose for assigning first names

to people and in turn, the age and gender estimates are improved. In summary, we show that

social context provides valuable information for understanding images of people.

The recognition of people in consumer images is far more than solely a face recognition prob-

lem. To best understand the semantics of who is in an image, we need to understand social

context, a context that describes people, their culture, and the social aspects of their interactions

at the time and place the image was captured. For example, it has been shown that context (from

clothing) assists even humans at recognize images of people [49]. To further illustrate this point,

consider Figure 7.1, which shows two images, each containing a pair of people. Given the first

names of the people in each image, most people familiar with American first names will be able

to correctly assign the first names to all four faces. If the names were merely labels that contain

no information (e.g. persons A and B), we would expect to properly assign only two names to

the correct people (by random chance). Instead, we recognize that first names have semantic

37
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FIGURE 5.1: Is it possible to recognize people for which no labeled examples exist? (Left)
An image of Sierra and Patrick. By recognizing the gender of the people and names, we can
confidently conclude that Patrick must be the man on the right, while Sierra is the woman.
(Right) This image contains Mildred and Lisa. Mildred, a first name popular in the early
20th century, is the older woman on the right, while Lisa is the younger woman on the left.
This recognition is possible for humans because of their extensive knowledge of social context

provided by first name semantics.

meaning that provide contextual information about a person, including birth year and gender.

Through a lifetime of experience, humans gain an understanding of the social context provided

by first name semantics that allows them to easily perform complex recognition tasks such as

illustrated here.

Figure 5.2 presents a second example that illustrates the contextual information that relative

pose between people provides for the interpretation of images of people. Two stereotypical

images are shown. On the left is an image of a male-female couple. As might be anticipated, the

physically taller male’s head [92] is located higher in the image and to the side of the female’s

head. On the right, a small baby is sitting on the lap of an older sibling, and the heads are

positioned such that the baby’s is below the sibling’s. In fact, just the relative positions of

the heads (omitting facial detail) provides a good deal of information for our interpretation of

who might be in these images. In essence, the goal is to provide the computer with the same

knowledge of social context that humans use for analyzing images of people. Fortunately, rather

than relying on a lifetime of experience, social context can often be modeled with large amounts

of publicly available data.

With these examples in mind, it is clear that the context considered for understanding an image

must extend beyond the borders of the image itself. Our model uses appearance from within the

image as well as social context (the relationships between age, gender, relative pose and first

name). The apparent age or gender affects the likelihood that a person has a particular name.

Likewise, a person’s first name allows us to better estimate their age and gender. Meanwhile,
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FIGURE 5.2: When multiple people are in an image, their relative pose provides clues about
their age and gender. (Left) When a male and female couple are in an image, the male’s head
is usually above and beside the female’s as a result of physical differences. (Right) A baby is

often pictured on the lap of an older sibling or parent.

age and gender affect the relative positions of people in consumer snapshot images. We model

and exploit these associations in our work.

This chapter makes the following contributions: First, we propose a probabilistic graphical

model that captures the inter-relationships between the social context, appearance, and identity

and allows for inference over these variables in a principled manner. Second, we demonstrate

that the model parameters can be learned from image data as well as from large public demo-

graphic datasets that were not collected with computer vision applications in mind. Our model

successfully employs this (non-image) demographic information for recognizing people. Third,

this work shows the importance of integrating social context into computer vision applications.

We believe we are the first to explore using the social context provided by first names or rela-

tive pose between people and we document its contribution for improving the understanding of

people images.

5.1 Related Work

Computer vision research has recently become focused on the use of context in object detection

and recognition. Hoiem et al. [66], and Torralba and Sinha [126] describe the context (in 3D and

2D, respectively) of a scene and the relationship between context and object detection. Further,

Singhal et al. [114] demonstrate that learning the co-occurrence and relative co-locations of ob-

jects improves object recognition. Other research has extended the idea of considering relative

location [55, 73, 101, 112, 143] for object recognition integrating this context into graphical
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models. We extend this line of work by exploring the contribution of relative pose for recogniz-

ing people and their physical attributes.

Regarding face recognition, there are many techniques for recognizing faces or for comparing

the similarity of two faces [147], and under controlled environments, recognition rates exceed

90% [103]. However, there are significant differences between the problem of face recognition

in general and the problem we are addressing. Often, a face of unknown identity is compared

against a gallery of face images with known identity, where each gallery image is captured with

similar pose, illumination and expression [61, 96]. For individual consumers, developing such

a gallery is inconvenient at best and impossible at worst. Researchers have incorporated face

recognition techniques to aid searching, retrieving, and labeling of consumer images [3, 57,

124, 145]. All of these systems rely on the user to label example faces for each individual to be

recognized and none rely on context from first name semantics or relative pose.

Both the Satoh and Kanade [109] “Name-It” system and the “Faces and Names” work [13, 62]

associate names from captions with faces from images or video. The main focus in these papers

is to use a large number of images to aid in the unsupervised clustering. Similarly, in Zhang et

al. [145], a user indicates a set of images that contain a certain person. The algorithm selects one

face from each image, maximizing the similarity, and concludes these faces must be the certain

person. Again, names are treated merely as labels that contribute no information to the problem

solution. The desire is always to assign the same label to similar faces from different images,

without incorporating context. As a result, none of these papers could resolve the problem of

associating multiple names and images in single image (as readily noted in [145]).

Several researchers have attempted to recognize people from contextual information that ex-

tends beyond pixel data. In an extreme example, Naaman et al. [90] describe an interactive

labeling application that uses only context (e.g. popularity, co-occurrence, and geographic re-

occurrence) to create a short drop-down list for labeling the identities of people in the image.

This method uses no image features, although the authors note that the combination of context-

and content-based techniques would be desirable. In [48], a group prior is used to learn social

groups that well-explain the observed image facial features of groups of people in consumer

image collections.

In this Chapter, we built on our work [50] that explores the relationship between first names,

gender, and age by incorporating relative pose between people into the probabilistic model. Our

complete model combines and exploits two elements of social context (first names and relative
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FIGURE 5.3: One approach to determining the likelihood of a first name given appearance is
to learn an appearance model for each first name. For example, the figure shows the average
of 50 images of people named “Tim” (Left) and “Bob” (Right). These models would need to
be updated as people age and first names rise or fall in popularity. Our alternative approach is
to learn the relationship between appearance and first name through the attributes of age and

gender.

pose between people) that had previously been overlooked by researchers. Further, we show

that learning can be accomplished using public demographic data rather than relying solely on

image data.

5.2 Modeling Appearance using Social Context

Our goal is to solve the problem illustrated in Fig. 7.1, where an image is tagged with the names

of the people in the image and the task is to determine the face corresponding to each name.

We would like to model the relationship between the appearance fi of a person p in an image

with the first name n. Ideally, this relationship P (fi, p = n), a statistical model of appearance

for each possible first name, could be learned given a huge number of training images of people

and associated names. For example, by collecting hundreds or thousands of portraits of people

for each possible first name, a model of the appearance of that first name could be learned. This

could be an attractive approach, but it is not yet feasible for a number of reasons as described in

Fig. 5.3. First, while there are billions of images of people on the internet and websites such as

Flickr (www.flickr.com), it is still not easy to find images of people that have been labeled with

accuracy, and a manual human review might still be necessary. Second, celebrities generally are

labeled with greater accuracy but in far greater numbers than are non-celebrities. For example, a

search for “Angelina” returns an inordinate number of pictures of actress Angelina Jolie, creating

a sampling bias that is difficult to address. Third, this appearance model changes over time as

a particular first name decreases or increases in popularity, and those already with a given first
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name change in appearance as they age. Managing this evolution would be a challenging task

in itself.

We take a different approach. Rather than directly learning the appearance for each name, we

instead propose a set of descriptors that has an easy-to-learn relationship with both first names

and the visual appearance of person images. The descriptors we select are birth year y and

gender g, as we can learn P (a|fa), an image-based estimate of the person’s age given age-

relevant appearance features fa and P (g|fg), the gender of the person given gender-relevant

appearance features fg. When the image has the associated image capture time stored in the

EXIF header, the relationship between P (a|fg) and P (y|fg) is simply:

P (y|fa) = P (a = c− y|fa) (5.1)

where c represents the image capture year, y represents a possible birth year and a is the age of

the person. We use the terms “age” and “birth year” synonymously because each conveys the

same information, given that the age is known with respect to a reference year.

In our model, we consider two elements of social context, first names and relative pose between

people in an image. We learn the relationship between each of these contextual items and the

ages and genders of people in an image. For example, the relationship between first name,

age, and birth year is contained in publicly available data. Given a first name database [128], the

distributions over these same descriptors (P (y|p = n) and P (g|p = n)), the distribution of birth

years for a given first name and the distribution over gender for a given first name, are learned

with maximum likelihood estimation. Relative pose represents a pair-wise term in our model,

and using either a set of labeled images, or a combination of labeled images and demographic

information, we learn the relationships between relative pose and the ages and genders of pairs

of people in an image.

In essence, our approach amounts to the following: A first name provides a description of at-

tributes (birth year and gender) associated with an individual. Likewise, relative pose provides

information about the ages and genders of the pair of people. By extracting the image-based

appearances from a person image from which these same attributes can be estimated, we can

compute distributions over relative pose, name, age, and gender.
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5.2.1 First Name Semantics as Context

In our work, we use the U.S. Social Security baby name database [128]. This database contains

the 1000 most popular male and female baby names (among applicants for a U.S. Social Security

Number) for each year between 1880 and 2006 (representing over 280 million named babies).

The results described here could be extended to other countries and cultures given the appropri-

ate demographic data. Using these data, we can compute statistics related to distributions over

birth year, gender, and first name.

The influence of popular culture on selected names in evident in the database. For example,

between 1936 and 1937, the popularity of the female name “Deanna” increased by 2000%, the

largest percentage increase in the database, coinciding with the first feature length film star-

ring popular actress Deanna Durbin in 1936. Likewise, the largest decline in name popularity

occurred between 1977 and 1978, when “Farrah” fell by 78% coinciding with actress Farrah

Fawcett leaving the popular show “Charlie’s Angels” in 1977.

The database contains a total of 6693 unique names, with 3401 names associated with male

babies, 3960 associated with female babies, and 668 shared between both genders. There is

nearly twice the diversity in the names selected for females (entropy of first names, given female

H(p|g = female) = 9.20 bits) than for males (H(p|g = male) = 8.22 bits). The majority of

first names are strongly associated with one gender or the other. The entropy of gender is nearly

one bit (0.998, less than 1.0 because male births are slightly more likely than female) but the

conditional entropy of gender given first name is only H(g|p = n) = 0.055. However, some

names are surprisingly gender-neutral. For example, the names “Peyton”, “Finley”, “Kris”,

“Kerry” and “Avery” all have nearly equal probability of being assigned to either a boy or girl.

First names also names convey a great deal of information about year of birth. Names such as

“Aiden”, “Caden”, “Camryn”, “Jaiden”, “Nevaeh”, “Serenity”, and “Zoey” all have expected

birth years more recent than 2001. Therefore, we expect recent images of people with these

names to be small children. Other names experience stable popularity, and consequently do

not reveal much about the age of the individual. For example, of all the first names, the name

”Nora” leaves us with the greatest uncertainty regarding the year of birth. Figure 5.4 shows the

distribution over birth year for a selection of first names, assuming that the person is alive in

2007 (when our image test set was collected). We consider life expectancy in our calculations,

using a standard actuarial table [5]. We estimate there are approximately 3.9 million men named
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FIGURE 5.4: (Left) The distribution over birth year for a selection of first names, given the
person is alive in 2007. (Right) Considering life expectancy, the probability that a person from

a given birth year is alive in 2007.

“James” and 2.6 million women named “Mary” alive today in the U.S.; the most popular names

for each gender.

5.2.2 Relative Pose as Context

The term “relative pose” refers to the juxtaposition of faces within in image, rather than the

pose of a specific head or face in the image. The relative pose between people in an image

provides a great deal of social context. Often, a vertical differential between a pair of faces

in an image provides insight into the relative heights of each person, which in turn provides

information about gender and age. Further, the horizontal displacement between a pair of faces

in an image indicates how physically close the two are, and often tells us something about the

social relationship that the two share. Because the vertical and horizontal dimensions each have

a relevant semantic interpretation, we maintain the rectangular coordinate system (rather than

polar) when quantizing the relative pose of a pair of people.

People in consumer images are there for a reason. Generally, the people in an image share some

kind of social relationship with each other. For example, if we are told that an image of a pair

of women contains a mother and her daughter, we would usually be able to pick out which

person is the mother and which is the daughter by ascertaining the relative ages between the

pair. In fact, knowing this social relationship exists allows us to improve our age estimates for

each person (since we know something about the relative age differences between mother and
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FIGURE 5.5: A graphical model that represents the relationship between a person p having a
first name n, the descriptors of birth year y and gender g, and the image-based features fa and

fg.

their children). Fortunately, the characteristics of people in various social relationships are well

documented by various government agencies.

Using available data, it is possible to model the distributions between the ages of people involved

in different social relationships, as shown in Figure 5.11, using demographic statistics from

sources as described in Section 5.4. In our work, we have two ways to learn about pose: Purely

from images, or from a combination of images and demographic data.

5.3 Social Context Probabilistic Models

In this section, we introduce probabilistic graphical models to represent the relationships be-

tween people in images and the social contexts of first names and relative pose. Of course, each

of these contextual clues are inter-related and each is known only to some degree of certainty.

For example, knowing the name of a face provides some information about the age and gender of

the person. Likewise, if the age and gender are known, the uncertainty about the person’s name

decreases. We use probabilistic models to represent this uncertainty and allow all evidence to

be considered.

The graph models allow us to infer the names of people in an image, based on the beliefs regard-

ing the ages and genders of the people. Each model asserts independence between the names
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of the people in the image and their appearance, given the attributes of ages and genders. In-

tuitively, this assumption means that once the age and the gender of a person are known, the

appearance features provide no new information about the identity of the person. For conve-

nience, we quantize all variables, age with 101 bins each representing a year, gender with 2

bins, and relative pose with 121 bins.

5.3.1 One Person

For a person in an image, we extract image-based features related to each of the descriptors

(gender and age). The name of the person and the values of the descriptors are represented as

random variables. We make the simplifying assumption that given a first name, birth year and

gender are independent, as in the graph model of Figure 5.5. Appearance features related to birth

year and age fa and gender fg are observed in the image, and we want to find the likelihood of

a particular first name given these descriptor-specific features. The joint distribution is written:

P (p, y, g|fa, fg) = P (p)P (y|p)
P (y|fa)
P (y)

P (g|p)
P (g|fg)
P (g)

(5.2)

The term P (g|p = n) is the probability that person with first name n has a particular gender.

The term P (y|p = n) is the probability that person p with first name n was born in a particular

year. This distribution is estimated from the name data, while considering the life expectancy as

follows:

P (y = i|p = n, c) ∝ count(y = i, p = n)c−ip0 (5.3)

where the notation c−ip0 is used in actuarial science to indicate the probability of survival from

birth (age 0) to age c − i, where c is the image capture year (since we know the person is alive

in this year).

Finding the likelihood P (p = n|f) of a particular name assignment p = n given all the fea-

tures f = {fa, fg} is accomplished by marginalizing the joint distribution over all possible

assignments of birth year and gender.
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FIGURE 5.6: A graphical model that represents the relationship between a person p having
name n, the descriptors of birth year y and gender g, and the associated features fy and fg .

5.3.2 First Name Model for Multiple People

When multiple people are in the image, the interactions between the name-person assignments

are represented with the graph model shown in Figure 5.6. Our model incorporates the indepen-

dence assumption that once the identity (first name) of a person pi is known, the age and gender

of this person are independent of the other people in the image. A particular person in the image

is pi, the associated features are fai and fgi, and the name assigned to person pi is ni. We seek

to map a set of K first names N to the set of M people p in a single image with associated

features f where there are no labeled training faces from which to directly estimate P (f |p = n),

where n is a particular assignment of names to people p in the image.

Using the independence assumptions from the graph model, we write P (p = n|f):

P (p = n|f) =
P (p = n)P (f |p = n)

P (f)
(5.4)

∝ P (p = n)
M∏

i=1

P (fi|pi = ni) (5.5)

The maximum likelihood assignment of names to people is the one that maximizes P (p = n|f).
P (p = n) is the group prior [48] for a particular set of individuals appearing together in an

image. In our case, we assume this term is a non-zero constant only for valid assignments of
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FIGURE 5.7: Assigning names to people can be represented as a bipartite graph. The estimates
of gender and birth year given the names Mildred and Lisa as well as the appearance features are
shown.The cost of each assignment is shown on each edge, and Munkres algorithm correctly

assigns the names to faces (green edges).

names to people. Then, the log likelihood we desire to minimize is:

L = − log P (p = n)−
M∑

i=1

log P (fi|pi = ni) (5.6)

The term log P (p = n) enforces that the name assignments are valid (no more than one person

for each name, and no more than one name for each person). Name assignments p = n with

zero probability incur an infinite penalty. Assuming K first names and M people in the image,

there are at most max(M, K)! possible combinations of names to people to consider. However,

the complexity is reduced by recognizing that equation 5.6 exactly describes the classic assign-

ment problem. The assignment problem is represented as a bipartite graph where one set of

nodes represents people in the image, and the other set represents first names, as illustrated in

Figure 5.7. The cost between each vertex is − log(P (fi|pi = ni)). This problem is solved in

O(max(M, K)3) using Munkres algorithm [87].

According to our model, age is influenced by both the first name and the age-specific features

extracted from the image of the person. Likewise, gender is affected by both the first name and
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FIGURE 5.8: A graphical model that represents the relationship between a person p with a
specific first name, relative pose, the descriptors of birth year y and gender g, and the associated

features fy and fg .

gender-specific features. Our model is used to select the most likely name to person assignment,

and also to refine the image-based estimates of age and gender. In the inference step, we first

find the maximum likelihood name assignments n∗ given the initial age and gender estimates,

then update the age and gender estimates by finding the marginal distributions over age and

gender with our model:

P (g|fg, p = n∗) ∝ P (g|p = n∗)
P (g|fg)
P (g)

(5.7)

A similar calculation is performed for using the model to find the distribution over age P (y|fa, p =

n).

5.3.3 A Model for First Name and Relative Pose

The relative pose between two people in an image is related to the ages and genders of the pair.

In Fig. 5.8, we extend the model of Fig. 5.6 by including the relative pose between each pair

of people. As relative pose kij is a pair-wise feature, this model’s nodes represent attributes
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between pairs of persons i and j, either first name identities (pi, pj), ages (ai, aj), or genders

(gi, gj). When more than two people are present in an image, then age, gender, and identity

nodes exist for each pair of people in the image, and the relative pose of each pair of people is

considered.

The relative pose model represents the joint distribution of age, gender, and identity conditioned

on observed image-based age and gender features and observed relative pose. For clarity, we

shows nodes of pairs of variables. The graphical model is a correct representation of the joint

distribution. However, we assert several independence assumptions that are not directly shown

in the model. For example, the joint distribution of genders of two people is not independent of

the relative pose of the people, but given the first names and relative poses of a pair of people i

and j, the gender of the ith person is independent of the appearance of the jth person, given the

gender of the jth person gj . That is:

P (gi, gj |fgi, fgj) ∝ P (gi|fgi)P (gj |fgj) (5.8)

With this in mind, we define the conditional probability of the model over the birth year, gender

and name of the people in the image conditioned on image-based features and relative pose as

the product of unary and pair-wise terms:

P (p,y,g|f ,k) ∝ P (p)
M∏

i=1

Ψi(Ii)
M∏

i,j=1

Φi,j(Ii, Ij) (5.9)

The variable Ii = {pi, yi, gi} comprises the set of demographic variables of first name pi, birth

year yi and gender gi associated with the ith person in the image. The unary terms Ψi, also

present in the multiple person model of Fig. 5.6, describe the direct relationships between image

appearance and individual attributes of birth year, age and gender as well as the relationship

between the attributes and the context provided by first name. The pair-wise terms Φi,j describe

the relationship between the relative pose of a pair of faces and the distribution of their ages and

genders. When the relative pose variable is omitted, the model simplifies to the first name model

of Fig. 5.6.

The term P (p) in (5.9) is the group prior. In this model, a pair-wise representation with factors

of θ(pi, pj) is used for the group prior. Again, for our purposes, the group prior simply ensures
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FIGURE 5.9: The relative pose between two faces is quantized into bins whose size is nor-
malized by the average intereye distance of the pair. The quantization is finer in the vertical
direction to capture the height differences between the people that provide context for our

model.

that no two faces are assigned to the same first name.

P (p = n) ∝
M∏

i,j=1

θ(pi, pj) (5.10)

The factor θ(pi, pj) is zero when a name is assigned to more than one face.

θ(pi, pj) =





1, if pi 6= pj

0, otherwise
(5.11)

Unary Terms: The unary terms of the model are factors that capture the relationship between

appearance, birth year, and gender as well as first name, as given in (5.2). The m subscript is

omitted for clarity.

Ψ(I) = P (p, y, g|fa, fg) (5.12)

= P (p)P (y|p)
P (y|fa)
P (y)

P (g|p)
P (g|fg)
P (g)

(5.13)

Pair-wise Relative Pose Terms: The pair-wise terms of the model are factors that capture the

relationship between appearance, birth year, and gender as well as first name.

Φi,j(Ii, Ij) ∝ P (yi, yj |kij)
P (yi, yj)

P (gi, gj |kij)
P (gi, gj)

(5.14)
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kij represents the quantized relative pose between the faces of two people in the image. The

relative pose between two faces is defined as the position of the second face relative to the

first. To find the relative pose, the eyes of each of the pair of faces are located with an Active

Shape Model [30]. The average inter-eye distance of the pair of people is found and used to

normalize the coordinate system. The position of the second face relative to the the first is found

in this quantized normalized coordinate system. We use a rectangular quantization of 11 × 11

or 121 total bins, with finer quantization in the vertical dimension. Horizontally, this represents

a maximum face separation of 20 inter-eye distances between the faces of the pair. In practice,

the model has been found to be robust to different quantization schemes given our training data.

Fig. 5.9 illustrates the process of quantizing the relative pose of a second face (in red) with

respect to a first face (in blue) and the coarseness of the quantization.

The model captures the influence shared between first names, age, gender, and the observed

image features and relative pose. Not only can the model be used for finding likely assignments

of names to faces, but it can also be used to refine image-based age and gender estimates, as was

also the case for the model in Section 5.3.2. After the maximum likelihood name assignments

are found, the age and gender estimated are updated by finding the marginal distributions over

age and gender with our model. For each person, the model is used to find the maximum a

posteriori probability estimate for gender, and the birth year estimate is refined by finding the

mean over the posterior birth year distribution.

5.4 Learning Relative Pose Context

The factors in the social context probabilistic models represent empirical distributions and are

learned using MLE counts by analyzing training data. As previously mentioned, the first name

factors (P (y|p = n), P (g|p = n), P (y), P (g)) are learned from the U.S. Social Security baby

name database [128] while considering life expectancy [5]. This section deals with learning

the parameters for the relative pose factors. The pair-wise relative pose terms capture the rela-

tionship between relative pose and the ages and genders of pairs of people. The parameters are

learned from training data in two different ways.
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FIGURE 5.10: Social relationship r is used as a latent variable for using publicly available
demographic data for learning factors that capture the interactions between relative pose, age,

and gender of pairs of people.

5.4.1 Learning From Labeled Images

Given a collection of images where each person’s age and gender is indicated, the terms P (yi, yj |kij)

and P (yi, yj |kij) are learned by determining the quantized pose index for each pair of faces

across all images, then counting the occurences of pairs of gender and birth year combinations

for each pose. Each pair of faces produces two observations, considering each face’s position

relative the other. In addition, we flip each image left-right to effectively double the training

set size. For the birth year factor, soft counts are used when estimating P (yi, yj |kij) from the

training data. Rather than incrementing only the bin corresponding to the ages of the two indi-

viduals, neighboring bins are also incremented. In addition, we assume that the training image

could easily have been captured a few years earlier or later, thereby aging each person of the pair

equally. In practice, this is accomplished by blurring the accumulator with a Gaussian filter with

a width of two years per standard deviation for each individual and six years along the diagonal

axis.

5.4.2 Learning From Images and Demographic Data

In an alternate approach, the power of a huge amount of demographic data is used to learn the

factors P (yi, yj |kij) and P (yi, yj |kij) that describe the relationship between relative pose and

the ages and genders of pairs of people. In this approach, we require that images be labeled

with the social relationship rij between the people in the image (rather than the age and gender
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FIGURE 5.11: Each image is a representation of P (A1, A2|R), the age of a first person (ver-
tical axis) and a second person (horizontal axis) sharing a social relationship R. The relation-
ships are, from left to right: “mother-child”, “father-child”, “wife-husband”, “siblings” and
“friends”. Except for the “friends” relationship, all of the other joint distributions are based on
demographic statistics. “Friends” are modeled in an age-dependent fashion, as we age, we are
more accepting of friends of different age. The joint distribution of ages of siblings is bimodal
for biological reasons (twins are rare, accounting for about 3% of births [83]). Husbands are,
on average, older than their wives, and it follows that the age gap between father and their

children is greater than between mothers and their children.

of each person). Using publicly available data, it is possible to model the distributions between

the ages of people involved in different social relationships, as shown in Figure 5.11, using

demographic statistics from [5, 14, 24, 39, 83, 128]. By modeling the relationship between the

ages, genders, relative pose and social relationship with a graphical model as shown in Fig. 5.10

(a Bayes network in this case), it is then easy to learn the factors P (yi, yj |kij) and P (gi, gj |kij)

using empirical counts and marginalizing over social relationships as follows:

P (r, ai, aj , gi, gj , k) = P (r)P (ai, aj |r)P (k|r)P (gi, gj |r) (5.15)

P (ai, aj , k) =
∑

r

P (r)P (ai, aj |r)P (k|r) (5.16)

P (gi, gj , k) =
∑

r

P (r)P (gi, gj |r)P (k|r) (5.17)

The social relationship variable r takes a value from the following set of social relationships:
Mother-Child Child-Mother Siblings
Father-Child Child-Father Friends
Husband-Wife Wife-Husband Other

TABLE 5.1: Social Relationships

In learning P (gi, gj |kij), the factor P (gi, gj |r), the distribution of genders for each relationship,

is easy to estimate from the definitions of the relationship. For example, a child can be a male

or female with equal likelihood, but a mother is always female. Publicly available demographic

data is used to estimate P (ai, aj |r). For the mother-child relationship, Tables 2 and 3 of [83]

provides the data necessary to compute model the age difference between a mother and child.

Likewise, Table 21 of [83] provides the data for modeling the age difference between father
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and child. The age difference distribution between siblings is found in Table 13 of [24] which

details the distributions in months between births for women. Two small studies show the joint

distribution of ages of husbands and wives, Tables md5 and md6 of [39] and [14]. We model

the age distribution between friends as follows: older people have more tolerance to age differ-

ences for friends than younger people. The social relationship “Other” is modeled simply as a

random selection of two people, drawn according to the distribution of ages. Fig. 5.11 shows a

visualization of the joint distribution of ages for five of the relationships.

The terms P (r), the relationship prior and P (kmn|r) are estimated from several family image

collections (similar to publicly available [49]). In total, 700 images with multiple people having

known social relationships from 12 family image collections are used along with the demo-

graphic data to estimate the model parameters for pose. In these collections, the identity of each

face is labeled and the social relationship is known for each pair of people.

Fig. 5.12 provides insight into the learned relative pose parameters. Each row shows four

images from the test set, with all images in a row having the same quantized relative pose. In

many cases, the ages and genders across images within a row are similar.

5.5 Image-Based Gender and Age Classifiers

Our model requires estimates of P (y|fa), age given age-specific features and P (g|fg), gender

given gender-specific features extracted from an image.

We implemented age and gender classifiers following the examples of [56, 76] and [8, 138].

For age classification, we acquired the image collections from three consumers, and labeled the

individuals in each image, for a total of 117 unique individuals. The birth year of each individual

is known or estimated by the collection owner. Using the image capture date from the EXIF

information and the individual birthdates, the age of each person in each image is computed.

This results in an independent training set of 2855 faces with corresponding ground truth ages.

Each face is normalized in scale (49×61 pixels) and projected onto a set of Fisherfaces [11]

created from an independent set of faces from 31 individuals. The age of a query face is found

by normalizing its scale, projecting onto the set of Fisherfaces, and finding the nearest neighbors

(we use 25) in the projection space using a Euclidean distance measure. The estimated age of

the query face is the median of the ages of these nearest neighbors. Given this estimate for

the age, we then model P (a|fa) as a Gaussian having a mean value of the estimated age, a
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FIGURE 5.12: Learning relative pose factors from demographic data. Each row shows four
images with the same quantized relative pose, where the first person’s eyes are enclosed in
a blue box and the second person’s quantized face pose is indicated with the red box. The
learned factor P (a1, a2|k12) indicates the joint distribution between the ages, is shown in the
fifth column with the first person’s age on the y-axis and the second person’s age on the x-
axis. The origin is in the upper left. The last column shows the learned P (g1, g2|k12), the joint
distribution of genders of the two persons. Row 1: A face positioned well below another face
is usually a small child, but sometimes a female-male couple. Rows 2 and 3: When one face
is above another and spatially close, it is usually a (taller) male-female couple. Row 4: Two

horizontally adjacent faces are usually roughly the same age.

standard deviation of one-third the estimated age (the accuracy of our age classifier decreases

with age), and truncated so that ages less than zero have no density. Figure 5.13 shows several

age classification results.

Following the example of [138], we implement a face gender classifier using a support vector

machine. We reduce the feature dimensionality by first extracting facial features using an Active

Shape Model [30]. The ASM locates 82 key points including the eyes, eyebrows, nose, mouth,

and face border. Following the method of [48], PCA is further used to reduce the dimensionality

to five features. A training set of 3546 gender-labeled faces from our consumer image database

is used to learn a support vector machine that outputs probabilistic density estimates for gender.

Figure 5.14 shows the gender estimation results for a selection of face images.
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FIGURE 5.13: A sampling of our image-based age estimation results. Each row shows a
random selection of people for which the age classification result was within a specific range.
(Top) Babies and children under the age of five. (Middle) Adults between the ages of 18 and
41. (Bottom) Adults older than 42. The colored bar indicates whether that classification agreed

with the human-estimated age for the person, where green indicates agreement.

5.6 Experiment

Tags are often used to indicate objects within an image without providing the spatial location of

the objects. For example Flickr and Adobe Albums software both allow users to tag images with

keywords. Our experiments address the scenario where images contain multiple people, and are

tagged to indicate the first names of the people in the image. Our goal is to disambiguate the

tags by assigning names to people based on a single image and to estimate the age and gender

of each person. This name-person assignment could be a useful first step for an application that

then searches for these same individuals in other images.

We used the following method to collect test sets of names and faces. For Set A, the U.S. baby

name database is used to generate random first names. We produce 100 independent pairs of

random names. For example, the first three name pairs are: “Jessica and Geraldine”, “Linda and

Rosemary”, and “Steven and Luke”. A search is performed on Flickr to find images containing

the pairs of people with those first names. The images from the search were painstakingly

examined to manually assign names to faces (using captions and other tagged images from

the same user’s collection). Most of the images are 500×375 pixels, and contain people with

challenging poses and expressions, difficult lighting, sunglasses, and occlusion. We also kept
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Classified as Male

Classified as Female

FIGURE 5.14: Gender classification results. (Top) A random selection of people classified as
male. (Bottom) A random selection of people classified as female. The colored bar beneath

each image is green if the classification is correct.

images where people in addition to the name pair of interest were present, resulting in 34 images

with more than 2 people. For most of the name pairs at least one image was located, resulting in

a test set of 134 images with 307 people.

In constructing Set B, we selected name pairs that might be difficult for humans to perform the

name assignment task. For example, the names “Chris” and “Dana” can each be male or female

but each lean towards a specific gender. Also, we used name pairs that have a large disparity

in expected birth year, but are perhaps less well known, for example “Tammy” (most popular

in the 1960’s) and “Paige” (popular in the past decade). This small but challenging set contains

14 images and the associated first name tags. Set C contains all those images from Sets A and

B where all people have a common gender. Name assignment is difficult in this subset since

recognizing gender alone is not sufficient to ensure good performance. Table 1 5.2 summarises
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FIGURE 5.15: The distribution of age and gender in the test set.

Set A Set B Set C Overall
Total images 134 14 48 148
Total people 307 32 105 339
Total males 132 8 26 140
Total females 175 24 79 199
Total children under 10 36 8 12 44
Images with >2 people 31 3 8 34
Uniform gender images 40 8 48 48

TABLE 5.2: A summary of our test sets. Set C is comprised of all images from Sets A and B
where the people all have the same gender. The Overall set is the union of sets A and B.

the characteristics of the test images for our experiments, and Fig. 5.15 shows the demographic

distribution of the people in the image collection.

For detecting faces, we use a cascade face detector similar to [67]. As our focus is not on face

detection, we manually add faces that are missed by our face detector by clicking on the eyes

of the missed face. Faces range in size from 12 to 74 pixels between the pupils. We compute

image-based estimates of the age and gender of each person using the classifiers described in

Section 5.5. Finally, our model (Section 5.3) is used to find the most likely assignment of first

names to faces and estimates of age and gender that incorporate evidence from image features

and the social context provided by first names and relative pose.

5.6.1 Name Assignment Accuracy

Table 5.3 reports the accuracy of our algorithm at the name assignment task, considering differ-

ent subsets of the testing set and the model. We show a considerable improvement over random

guessing for all subsets of test images. Using the image-based age classifier provides improved
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Set A Set B Set C Overall
Random 43.7% 43.8% 45.7% 43.7%
Age 47.9% 59.4% 58.1% 49.0%
Gender 59.3% 56.3% 51.4% 59.0%
Age+Gender 62.2% 56.3% 61.9% 61.7%
Pose 57.0% 43.8% 43.8% 55.8%
PoseA+Age+Gender 67.4% 59.4% 60.0% 66.7%
PoseB+Age+Gender 63.8% 56.3% 64.8% 63.1%

TABLE 5.3: Using image-based age and gender classifiers with first name and relative pose
as social context improves person recognition in single images. The percentage of correct
name assignments is reported. The “Random” row values are expectations rather than an actual
experiment. Rows 2-4 show the improved accuracy achieved by using the first name prior
along with image-based estimates of age, gender, or both. Row 5 shows the name assignment
accuracy using no image features other than the relative poses of pairs of people. Rows 6-7
show that the best performance comes from the integrated model that uses social context from
first name priors and relative pose. For the overall set, the results have a statistical margin of

error of 3.4%.

name assignment with images of constant gender (Set C), and in the challenging Set B. Using

either the image-based age or gender classifiers improves over random first name assignment.

By combining age and gender descriptors, greater accuracy is achieved (61.7% overall, versus

43.7% with random assignment).

The best accuracy is achieved by the model incorporating social context from relative pose

and first names (Section 5.3.3). In row 6, the model is trained from images labeled with age

and gender (leaving-one-out) as described in Section 5.4.1. This model provides a substantial

5.0% improvement (61.7% to 66.7%) over the first name model without pose. In row 7, the

model is trained using publicly available demographic data and images labeled only with social

relationships. In either case, relative pose provides a benefit over the first name model that

omits relative pose. On three of the four subsets, the image-trained pose model achieved the

best accuracy. However, it is noteworthy that the relative pose model trained with demographic

data achieves the best results on the difficult Set C, images with people of the same gender.

These results show that the vast amount publicly available provides a useful tool for learning

social context.

Figure 6.9 discusses several image examples, the name assignments, and the age and gender

classifications from the image-based classifiers and from the model.
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Age Gender
Image→Model Image→Model

Age 10.0 →9.33 →35.4%
Gender →13.7 28.6% →18.3%
Age+Gender →9.38 →19.5%
Pose →9.78 →21.5%
Pose+Age+Gender →9.91 →15.3%

TABLE 5.4: Our model provides improvement over the image-based age and gender classifiers.
This table shows the error reduction achieved by estimating age and gender with our model.
For the age column, we show that the mean absolute difference between an age estimate and a
manually labeled age. For the gender column, the percent is the gender classification error rate.
The rows show the error reduction using the image-based age classifier, the image-based gender
classifier, both age and gender, relative pose alone, or all the features. The model predicts age
even when no image-based age classifier is used, and gender even when no image-based gender

classifier is used.

5.6.2 Age and Gender

Our model improves the age and gender estimates over the estimates from the image-based

classifiers. For each person image, we manually labeled the age and the gender of the person

(without looking an any name information or tags associated with the image). Our image-based

age classifier has a mean absolute error of 10.0 years, and 28.6% of the genders are misclassified

by the image-based gender classifier. Our model is used to assign first names to people, and then

the age and the gender are re-estimated based on the first name assignments by inferring over

the model as described in Section 5.3. Both the age estimation and the gender classification are

improved through this process, as shown in Table 5.4. For example, using relative pose alone to

assign first names to faces (with an overall accuracy of 55.8%), the model can correctly classify

gender 78.5% of the time, and has a mean absolute age error of 9.78 years.

In the complete model, the gender classification error is reduced by 46% (28.6% to 15.3%)

compared to using only image-based classifiers. The age classification error reduction is modest

(10.0 years to 9.9 years error), likely due to the fact that most first names vary only slowly in

popularity over time so there is less potential for improvement. Although relative pose is use-

ful for identifying babies, the image-based age classifier generally already accurately identifies

them. In all cases, the model reduces the error from the appearance-based classifiers alone.

The model can be used to predict age and gender even when image-based appearance classifiers

are not used. For example, considering relative pose and first names provides a mean absolute

age error of 9.78 years and a gender misclassification of 21.5%, both improvements over the

corresponding image-based appearance classifiers (10.0 years and 28.6%).
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Set A Set B Set C Overall
Subject 1 79.2% 81.3% 65.7% 79.4%
Subject 2 78.2% 68.8% 61.0% 77.3%
Subject 3 79.5% 43.8% 54.3% 76.1%
Subject 4 69.1% 53.1% 41.9% 67.6%
Human Age+Gender 80.8% 93.8% 63.8% 82.0%

TABLE 5.5: Results for Humans. Four subjects perform the same name assignment task as does
our algorithm, and this table reports each subject’s accuracy for assigning names to faces. The
last row (“Human Age+Gender”) reports the results of using our model for name assignment,

but using manually labeled values for age and gender rather than image-based classifiers.

5.6.3 Human Performance

It is interesting to compare the results of our algorithm with the accuracy of a human attempting

the same task. A user interface was created to allow a human subject to easily assign each tagged

name to the person that the subject felt was most plausible. A total of four subjects repeated this

exercise for each of the 146 images in the test set. The results of this human experiment are

reported in Table 5.5. The values in this table can be compared directly with those for our

model, shown in Table 5.3.

Subjects 1 and 2 have the overall best performances and are U.S. born, while subjects 3 and 4

have each lived in the United States for about five years and have lower classification accuracy.

This supports our assertion that this image understanding problem requires an understanding of

cultural context. Although both subjects 3 and 4 speak fluent English, they have had less time

in the U.S. and less time to form this contextual prior, and therefore find the name assignment

task more challenging. In fact, by virtue of having a more complete contextual prior, our model

outperforms subjects 3 and 4 on the difficult Sets B and C. It is remarkable to note that overall,

subject 4 outperformed our social context model by less than 1% (66.7% for our model versus

67.6% for subject 4). Of course, all of the human subjects’ visual systems are far more capable

than the image-based age and gender classifiers employed by our model. However, the inad-

equacy of the image-based age and gender classifiers is compensated for in the probabilistic

model by using the social context of first name priors and relative pose.

We did an additional experiment to verify our model. Rather than relying on age and gender

estimates from the image-based classifiers, we manually labeled each person’s age and gen-

der, without any knowledge of the names associated with the image. Then the model is used

to produce name assignments using these manually derived estimates for p(y|fa) and p(g|fg).

The accuracy of this approach is reported in the “Human Age+Gender” row of Table 5.5. This
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method produces the highest overall name assignment accuracy compared to the four test sub-

jects, beating the best human subject by 2.6%. This success can be explained by considering that

the model has complete domain knowledge regarding first names in the United States, but each

human’s contextual knowledge of first names is incomplete to some degree. When the model

is given a human-level ability to classify gender and age, it is difficult for a human to achieve

greater accuracy at the first name assignment problem. From this experiment, we draw several

conclusions. First, we expect that improved gender and age predictors will improve the perfor-

mance of our model. Second, because the performances of the human subjects and the “Human

Age+Gender” method are similar, our model is validated and the independence assumptions that

we assert are shown to be reasonable.

5.7 Conclusion

In this chapter, a probabilistic model is introduced for integrating social context, appearance, and

identity for understanding images of people. Our model integrates the social context elements

of the first name prior and the relative pose between people in images. With this model, we infer

likely name assignments for images tagged with the first names of the people in a single image.

The model learns social context by using publicly available demographic data as well as image

data. Further, we show that the model’s estimates of age and gender are superior to those from

a classifier using solely image-based appearance features.

In a broader scope, this work is a case study emphasizing that images must be interpreted in the

context of the culture in which they are captured. We demonstrate learning our social context

model from large databases of publicly available demographic data (specifically, data regard-

ing the popularity of first names, and data describing the demographics of people in various

social relationships). We believe this chapter represents the first demonstration of using raw

demographic statistics as social context to significantly improve a computer vision task. A good

understanding of social context provides a strong prior for image understanding.
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FIGURE 5.16: Our model assigns names to people in images, and improves the performance
of gender and age classifiers. The left image in each triplet shows the estimated age and gender
directly from our image-based classifiers. (Green indicates correct, and red indicates incorrect.
Age classification results are not marked.) The middle image shows the assigned names for
each person, and the estimated age and gender from the first name model [50] of Section 5.3.2
and Fig. 5.6. The right image in the triplet shows the assigned names and estimated ages
and genders from the complete model with social context from first name and relative pose
as described in Section 5.3.3 and Fig. 5.8. Row 1 shows the model makes good guesses for
identity even when faces with two gender-ambiguous first names (“Chris” is usually male and
“Dana” is usually female). Rows 2-4 show examples where the additional context provided
by relative pose allowed the model to correctly identify people and improve age estimates (for
Cheryl and Debra). Row 5 illustrates that a rare pose (woman’s face higher in the image than
the man’s) does not confuse the result because the model considers all evidence when assigning
names to faces. For images where all people have similar age and gender (as in Row 6), the

model assignment is essentially random.



Chapter 6

Jointly Estimating Demographics and

Height with a Calibrated Camera

One important problem in computer vision is to provide a demographic description a person

from an image. In practice, many of the state-of-the-art methods use only an analysis of the

face to estimate the age and gender of a person of interest. We present a model that combines

two problems, height estimation and demographic classification, which allows each to serve

as context for the other. Our idea is to use a calibrated camera for measuring the height of

people in the scene. Height measurement is possible by jointly inferring across anthropometric

dimensions, age, and gender using publicly available statistics. The height estimate provides

context for recognizing the age and gender of the subject, and likewise the age and gender

conditions the distribution of the anthropometric features useful for estimating height.

The performance of our method is explored on a new database of 127 people captured with a

calibrated camera with recorded height, age, and gender. We show that estimating height leads

to improvements in age and gender classification, and vice versa. To the best of our knowledge,

our model produces the most accurate automatic height estimates reported, with the error having

a standard deviation of 26.7 mm.

The goal of this chapter is to describe a person’s height and demographics from an image. In

computer vision research, algorithms exist to identify the age and the gender of people. Broadly

speaking, these algorithms build statistical models for the image appearance of a person for

different demographic categories, and these models are employed to categorize the image of

a previously unseen face. With few exceptions, demographic recognition is performed solely

65
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FIGURE 6.1: Our approach for measuring human height with a calibrated camera. Calibration
provides the relationship between the image and world coordinate systems. Facial key points
fall on rays passing through the camera center and corresponding images of the points. An-
thropometric data, conditioned by the estimated age and gender, provides the distribution on
distances between key points so distance from subject to camera, height, age, and gender are

inferred.

based on facial appearance. In practice, however, facial appearance does not provide enough

information to solve this problem with the desired level of accuracy.

Similarly, several researchers have investigated the problem of estimating the height of a stand-

ing or walking human. In some cases, the problem has been addressed solely as a metrology

problem, using similar techniques than can be applied for measuring any other vertical object.

The goal of our chapter is to unite these two sub-problems (height measurement and demo-

graphic estimation) into a common framework employing a probabilistic model to allow evi-

dence gathered for each sub-problem to reduce the uncertainty about the other. Our approach is

to combine facial appearance with height estimation to improve our understanding of images of

people. To this end, we exploit the large volume of anthropometric measurements gathered by

the medical and health communities.

6.0.1 Related Work

A large amount of research is directed at understanding images of humans, addressing issues

such as recognizing an individual, recognizing age and gender from facial appearance, and

determining the structure of the human body. Most age and gender classification algorithms

construct feature vectors solely from the face region [8, 56, 58, 63]. In fact, the vast majority
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of classification work related to images of people treats each face as an independent problem

and relies solely on information gleaned from images from which classifiers are constructed.

However, there are some notable exceptions where information external to the image is used

as context for classification. In [13], names from news captions are associated with faces from

images or video in a mutually exclusive manner (each face can only be assigned one name).

Similar constraints are employed in research devoted to solving the face recognition problem

for consumer image collections. In [50], the popularity trends of first names provide context in

conjunction with facial appearance to infer age and gender.

Regarding height estimation, several researchers either estimate height, or use broad height

distributions with pedestrian detection to understand scenes. The position of people in an image

provides clues about the geometry of the scene. As shown in [81], camera calibration can be

achieved from a video of a walking human, under some reasonable assumptions (that the person

walks on the ground plane and head and feet are visible). In [70], the problem is reversed, and the

height of a person with visible feet and head is estimated from a calibrated camera. Criminisi et

al. [33], Hoiem et al. [66], and Lalonde et al. [74] describe the measurement of various objects

(including people) rooted on the ground plane. However, all of these papers require that the

intersection of the object (i.e. the feet) and the floor be visible. Multiple cameras are employed

in [7], turning the problem into an application of shape-from-motion. Our method relies on

anthropometric face measurements and requires instead that the face be visible.

Our work essentially uses information from the fields of anthropology and medicine as context

for demographic inference in computer vision. In anthropology, the relationships between var-

ious body measurements has been studied and exploited to estimate the height of an individual

from a single recovered bone [40]. Perhaps the closest work on human height measurement

from images is BenAbdelkader and Yacoob [12] where anthropometric data is used in combina-

tion with manually identified key points and apriori knowledge of age and gender. We build on

this work by automatically locating facial anthropometric features and introducing a model that

naturally incorporates the uncertainty over gender and age. As a result, gender, age and height

can also be inferred from our model.

Our contributions are the following: We propose a model for measuring the height of a person

while jointly estimating age, gender and facial feature points, based on a calibrated camera and

anthropometric data. We introduce the idea of combining height estimation with appearance fea-

tures for demographic recognition, and show that estimating height improves the recognition of
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demographic quantities. Further, by performing inference over age, gender, and height simulta-

neously with our model, we improve the accuracy of height estimation. Finally, we demonstrate

the effectiveness of our model on a test set of 127 individuals to achieve height estimates with

good accuracy.

In Section 2, we introduce human height estimation with a calibrated camera. In Section 3,

we describe data related to anthropometric features. Section 4 describes our model of the rela-

tionship between height, gender and age from anthropomorphic data. Finally, in Section 5 we

describe experiments that demonstrate the effectiveness of our approach.

6.1 Calibrated Camera Height Estimation

As is well known, a camera can be modeled as a projective pinhole [65] to map world points X

to image points x according to the following relationship:

x ≡ PX (6.1)

≡
[
A b

]
X (6.2)

where the calibration matrix P is composed of internal camera parameters K and extrinsic pa-

rameters including a coordinate rotation matrix R, and translation t as follows: P = K
[
R t

]
.

In the form shown in (6.2), the 3× 3 matrix A = KR, and the 3× 1 matrix b = Kt. The matrix P

essentially captures the relationship between image and scene points, and allows one to extract

metric information from image coordinates. Each point in the image corresponds with a world

line passing through the camera center.

6.1.1 Camera Calibration

We perform camera calibration using a checkerboard target according to the method of [146],

and shown in Figure 6.2. The checkerboard defines the world coordinate system. As such, we

ensure that for one image, the target is held perpendicular to the ground. Consequently, the world

coordinate system axes are aligned with the physical ground plane (the y-axis is perpendicular

to the ground plane, and the x- and z-axes are parallel to the ground plane). In addition, for this

image, the distance hy from the coordinate origin
[
0 0 0

]T
is measured by hand, as shown

in Figure 6.2. The floor has the equation y = −hy in the world coordinate frame.
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FIGURE 6.2: Left: During calibration, for one image a level is used to position the calibration
target to be perpendicular with the floor. The distance between the floor and the world coor-
dinate system origin is measured by hand. Right: Our camera is a standard web-camera with

VGA resolution.

6.1.2 Estimating Subject Distance and Height

Our key idea is illustrated by Figure 7.1: Multiple feature points on a face image correspond-

ing to pairwise anthropometric features define multiple rays in the world. The distribution of

possible distances between the camera and the subject is functionally related to the distribution

of the size of these anthropometric features. As the uncertainty in the anthropometric feature

distribution is reduced (e.g. by concluding that the subject is an adult male), a corresponding

reduction in the uncertainty of the distance to the camera is achieved. Furthermore, because

the camera is calibrated, an improvement in our confidence about the distance to the subject is

directly related to improvements in the determination of the height above the ground plane of

each facial feature point.

Estimating Subject Distance: We consider pairwise anthropometric features, defined as the

distance between two feature points on the human body. In world coordinates, the pairwise an-

thropometric feature F is described by a Gaussian distribution N(µF , σ2
F ) over a measurement

metric. Each feature F has a corresponding pair of image points f =
{
xi xj

}
.

A world line L passing through a particular image feature point xi has the equation:

Li = Ω + tωi (6.3)
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where the camera center is Ω = A−1b and the vector pointing from the camera center to the

feature point xi is ω:

ωi = A−1xi (6.4)

The angle φ between two feature lines Li and Lj is:

φ = cos−1

(
ωT

i ωj

|ωi||ωj |
)

(6.5)

and the distance d in world coordinates from the camera center Ω to the midpoint of two feature

points on the human body having separation distance dF is:

d = dF
1

2 tan(φ/2)
(6.6)

The distribution of the distance d is represented as a Gaussian N(µd, σ
2
d) where the parameters

are found by considering that (6.6) is a linear function of random variable F . Consequently,

µd = µF
1

2 tan(θ/2) and σd = σF
1

2 tan(θ/2) .

In summary, our knowledge about the distributions of pairwise anthropometric features is ex-

ploited to estimate the distance between the subject and the calibrated camera.

Estimating Subject Height: From a subject to camera distance estimate di, the feature point

can be approximately located (assuming the pair of feature points is parallel to the image plane)

in the world coordinate frame as:

X̂i = Ω + di
ωi

|ωi| (6.7)

Because our world coordinate frame is axis-aligned with the physical world (the xz-plane is

parallel with the ground), the height of a point hi above the ground is simply:

hi =
[
0 1 0

]
X̂i + hy (6.8)

The estimate for the subject’s stature is based on the pairwise anthropometric feature of the eye

centers Fe. The stature of a person is the height of the eyes above the ground, plus the distance

from the eyes to the top of the head Fv,en, as reported in [44]. Note that this dimension Fv,en

has a distribution over gender and age and in practice, the expected value of this distribution is
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used.

h =
[
0 1 0

]
X̂i + hy + Fv,en (6.9)

As with distance, the distribution of height h is represented with a Gaussian, where the parame-

ters are derived by considering h as a function of the random distribution over distance d.

6.2 Age, Gender, and Anthropomorphic Data

There exists a great amount of data describing the distribution of measurements of the human

body [44, 60, 92]. Our goal is to use pairwise anthropometric features to infer subject to camera

distance, height, age and gender. Ideal anthropometric features are those that markedly change

in size with age and gender. We have the additional practical requirement that the corresponding

image of each feature point can be reliably located in the image automatically with an Active

Shape Model [30].

In this chapter, we reason with two pairwise anthropometric features, illustrated in Figure 6.3.

The size distributions as functions of age and gender for each of these pairwise anthropometric

features is derived by smoothing data from [44]. The first feature F1 is the distance between eye

centers, and the second F2 is the distance between the mouth and the nasion (i.e. the intersection

of the nose and forehead). Our automatic detection of the associated feature points on several

images is shown in Figure 8.3.

6.3 An Anthropometric and Demographic Model

We would like to represent the relationships between a person’s age, gender, height and appear-

ance in the image. Of course, our degree of uncertainty about one attribute affects our belief

about others. For example, if we are confident that a subject is tall (e.g. 190 cm), then it is

more likely that the subject is an adult male than an adult female. However, it is intractable to

learn the relationship between all quantities simultaneously. Our model incorporates conditional

independence assumptions to make inference tractable and allows inference over all quantities

in a unified manner.
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(b) The distribution over age and gender.

(c) Nasion to Mouth
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(d) The distribution over age and gender.

(e) Height
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(f) Growth curves over age and gender.

FIGURE 6.3: The two pairwise anthropometric features we use in this work are the distance
between eye centers (Top), and the distance between the mouth and nasion (the point between
the eyes where the nose bridge meets the frontal bone of the skull) (Middle), which have known
distributions with respect to age and gender. The relationship between gender, age, and height

is also shown (Bottom). Error bars represent one standard deviation.

Figure 6.5 shows a graphical representation of our model. We represent the demographic and

anthropometric quantities as random variables in the model. Each subject has an age A, gender

G, height H , and distance from the camera D. The true value of the subject’s ith pairwise

anthropomorphic feature is denoted by the variable Fi and the set of all such features is F.

Observed evidence includes a set of image points for each pairwise anthropometric feature f ,



Chapter 6. Jointly Estimating Demographics and Height with a Calibrated Camera 73

FIGURE 6.4: Example images with automatically recovered key points corresponding to two
pairwise anthropometric features. The eye center distance is related to the distance between the

circles, and the mouth to nasion feature points are marked with the symbol ’+’.
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Features
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FIGURE 6.5: Our graphical model to infer over age A, gender G, height H , and camera to
subject distance D, based on the evidence that includes the camera parameters P, the extracted
feature points fi, the anthropometric feature distributions Fi and the appearance features Ta

and Tg related to age and gender respectively. Hidden variables are squares, with adjacent
squares representing joint variables, and observed variables are circles.

the camera calibration parameters P, and appearance features extracted from the pixel values

of the face region corresponding the age Ta and gender Tg. Our model includes simplifying

conditional independence assumptions. For example, we assume that once age and gender are

known, the facial appearance is independent of the height of the subject. Further, once the

subject height and pairwise anthropometric measurements are known, the calibration parameters

provide no further insight regarding the subject’s demographic information. The structure of the

Bayes Network is selected to exploit known relationships documented with publicly available

statistics as well as known relationships from perspective geometry.

The model represents P (A,G, H,F|P, f ,Ta,Tg) as a product of conditional probability terms.

Gaussians are used to represent the distributions over variables related to distance (D, H and
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F). Gender G is a binary variable G ∈ {male, female}. Age A is a discrete variable with a set

of 125 possible states corresponding to the ages 0 to 124 years. In the following sections, we

describe the terms of our model and inference with the model.

6.3.1 Estimating Age and Gender from Appearance

Our model employs appearance-based age and gender classifiers. These content-based classi-

fiers provide probability estimates P (G|Tg) and P (A|Ta) that the face has a particular gender

and age category, given the corresponding visual appearance features.

Our gender and age classifiers were motivated by the works of [56, 63] where a low dimension

manifold for the age data. An independent set of 4550 faces is used for training. The age and

gender of each person was labeled manually. To establish age ground truth, we labeled each face

as being in one of seven age categories: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+, roughly

corresponding to different life stages. Using cropped and scaled faces (61×49 pixels, with the

scaling so the eye centers are 24 pixels apart) from the age training set, two linear projections

(Wa for age and Wg for gender) are learned. Each column of Wa is a vector learned by finding

the projection that maximizes the ratio of interclass to intraclass variation (by linear discriminate

analysis) for each pair of age categories, resulting in 21 columns for Wa. A similar approach is

used to learn the gender subspace Wg. A set of seven projections is found by learning a single

projection that maximizes gender separability for each age range.

The distance dij between two faces is measured as:

dij = (Ti −Tj)WWT (Ti −Tj)T (6.10)

For classification for both age and gender, the nearest N training samples (we use N = 101) are

found in the space defined by Wa for age or Wg for gender. The class labels of the neighbors

are used to estimate P (A|Ta) and P (G|Tg) by MLE counts. One benefit to this approach is

that a common algorithm and training set are used for both tasks, only the class labels and the

discriminative projections are modified.
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FIGURE 6.6: Illustrations of P (A,G|H = h), the joint distributions over age and gender
given height, for several different heights h. Top Left: When h = 140 cm, the subject age
distribution is centered at 10 years with nearly equal likelihood of each gender. Top Right:
There are two reasonable explanations when height is h = 160 cm. Either the subject is an
adult female, or an adolescent male in the process of “growing through” that height. Bottom
Left: A person with a height h = 180 cm is most likely a male. Bottom Right: The marginal
distribution of gender given height. Note the peaks at heights common for adult women and

men.

6.3.2 Anthropometrics from Age and Gender

Our model requires the term P (A = a,G = g|Fi), the conditional distribution of age and gender

given a particular pairwise anthropometric feature Fi. This term is provided by the statistical

data of [44], illustrated in Figure 6.3 for the two anthropometric features we consider.

6.3.3 Distance and Height

The relationship between the camera parameters P, the pairwise demographic features F, the

corresponding features fi in the image, and distance to the subject D is a deterministic function

of random variables, described with Equations (6.3)-(6.6). Therefore, the term P (D|Fi, fi, p)

is simply a function of a random variable, where the distribution of Fi is related to the the

distribution of D. Likewise, the term P (H|D) is also a deterministic function of the random

variable distance D (6.7)-(6.9).

6.3.4 Height, Age, and Gender

Our model requires the term P (A,G|H = h), the conditional distribution of age and gender

given height. This term is provided by the statistical data of [92] and is illustrated in Figure

6.6. The conditional probability of age and gender given height is found with P (A,G|H) ∝
P (H|A,G)P (A)P (G), with the simplifying assumption that age and gender are independent.

The gender prior P (G) is assumed to be equal for each gender (P (G = male) = 0.5), and the

prior for age P (A) is based on life expectancy from a standard actuarial table [5].
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FIGURE 6.7: The distribution of the 127 subjects used in our study.

We make several observations. First, the conditional distribution P (A,G|H) is not well-modeled

with a Gaussian distribution because of the rapid growth in the adolescent years, justifying our

decision to represent age as a discrete variable. Second, we note that for adults aged 20 or

greater, 170 cm represents the optimal decision boundary to classify gender when height is the

only available information. Finally, we mention that our model does not consider the phenom-

ena of stature loss among the elderly, but this effect could be added if the relevant statistical data

are available.

6.3.5 Inference with Expectation Maximization

We perform inference on our model to consider all the evidence from an image of a subject cap-

tured with the calibrated camera, and find the distribution over age, gender, height and distance

to the camera. Final classifications are based on the maximum likelihood aposterior distribu-

tions for age â, gender ĝ, height ĥ, and distance d̂ from the camera. For each variable, our final

estimate is the assignment that maximizes its marginal distribution obtained by marginalizing

over all other variables.

For computational efficiency, we do not perform exact inference over the entire model. Instead,

similar to [122], we use Expectation Maximization to simplify inference. In the E-step, we fix

the distribution over Fi as a unidimensional Gaussian and perform inference on the model. In the

M-step, the distribution over each anthropometric feature Fi is updated using the winner-take-

all variant of EM [93] based on the most likely estimate of age a∗ and gender g∗ as P (Fi|A =

a∗, G = g∗). In our case, the winner-take-all variant has the advantage that, in inference, each

anthropometric distribution remains a Gaussian. After convergence, the most likely assignment

of each variable is found.
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FIGURE 6.8: A scatter plot of the estimated and actual height (cm) of subjects in our study.

Height Distance Age Gender
MAD STD MAD STD MAD STD Error

Height 30.5 40.9 182 201 - - -
Model+Ta,Tg - - - - 8.5 12.3 32.8%
Model+P, fi 24.1 26.7 142 167 7.0 10.6 35.3%
Full Model 24.1 26.7 136 171 5.4 9.7 28.1%

TABLE 6.1: By reasoning about gender, age and height with our full model we achieve the best
overall results for predicting age and gender. Errors (mean absolute and standard deviation)
are shown for height and distance. Age errors are in years, and gender classification error
rate is shown. Results are shown for height alone (no modeling of age or gender), using the
model but observing only appearance features, using the model but observing only height (no

appearance), and using the full model.

6.4 Experiments

Our model was tested on images of 127 subjects ranging in age from 2 to 56 with a total of 81

male and 46 female subjects. To sample from a wide variety of demographics, subjects were re-

cruited in several different venues (a science museum, a research laboratory, and an educational

institution) on four different occasions. The gender and age distribution of subjects is reported

in Figure 6.7. Most subjects are Caucasian, but a wide variety of ethnicities participated. Each

subject reported his or her age (binned into one of 14 bins) and gender, and a stadiometer was

used to measure each subject’s height. Subjects were photographed looking toward the camera.

The camera height is about 160 cm off the ground, but this varied at each session. Two pieces

of tape were placed on the floor at different distances from the camera, one at a near position

(ranging from 0.91 m to 1.63 m) and one at a far position (ranging from 1.80 m to 2.69 m).

Each subject was photographed at the two distances marked by the tape. The camera has VGA

resolution (480×640 pixels). The entire procedure requires about five minutes for each subject.

A total of 237 images are used in our experiments (two images for most subjects; 17 subjects

have only one image).
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Height Distance Age Gender
MAD STD MAD STD MAD STD Error

Multi-frame 22.4 22.1 - - 6.2 9.8 24.5%

TABLE 6.2: Additional accuracy improvements are achieved by using evidence from multiple
images. Compare with the last row of Table 1.

For detecting faces, we use a commercial package that implements a cascade face detector simi-

lar to [67]. After face detection, an active shape model [30] is applied to recognize key points on

the face, as illustrated in Figure 8.3. Finally, for each subject image, inference is performed with

our model in Figure 6.5 to obtain maximum likelihood aposterior estimates for age â, gender ĝ,

height ĥ, and distance d̂ from the camera.

6.4.1 Height and Distance Accuracy

Table 6.1 reports the accuracy of the model on our test set for height, distance to the subject,

age, and gender. We compare height estimation with the baseline approach where age and

gender are not in the model, and the anthropometric distributions are from the entire population,

marginalizing over age and gender. Overall, the complete model estimates human height with

an accuracy of 26.7 mm in standard deviation, reducing the error of the baseline approach by

34.7% (from 40.9 mm). Figure 6.8 shows a scatter plot of the true and estimated statures of the

subjects.

This result is believed to be the most accurate automatic result achieved for this task on a large

dataset. In [12], estimation error of about 50 mm in standard deviation is reported on a test set of

27 adults, where the model has full knowledge of gender and feature points are manually labeled.

In [32], a reference length from the scene is required, and the result on a single subject is within

2 cm. Finally, in [70], height is estimated by a calibrated camera detecting the full silhouette of

the subject. On three subjects, this achieves an estimation error with standard deviation of 43

mm.

We estimate the distance between the subject and the camera with an accuracy of 171 mm in

standard deviation. This represents the distribution of the distance estimates differences from

the two tape marks on the floor that each subject was asked to stand on. In reporting this result,

it is noted that the distance to the subject is somewhat variable as each subject’s interpretation

of “standing on the tape” varied. Therefore, we expect that our reported results represents an

upper (i.e. pessimistic) bound on the achievable distance accuracy.
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Stature Distance Age Gender
MAD STD MAD STD MAD STD Error

Children(0-16) 22.4 22.3 106 116 0.5 0.9 29.6%
Adults(17+) 22.3 22.9 120 130 11.6 11.9 19.6%

TABLE 6.3: Age classification is an easier problem for children, and gender classification is
easier for adults. Height estimation performs well across age. These results include using

evidence from two images of the same subject, when available.

6.4.2 Combining Multiple Observations

Evidence from multiple observations is combined to estimate the age, gender, and height of a

person using a Naı̈ve Bayes model with an assumed uniform prior over the variable in question.

For example, when estimating height from multiple images:

P (H|e1, . . . , eN ) =
N∏

n=1

P (H|en) (6.11)

where en represents all the available evidence associated with the nth image capture.

Table 6.2 reports the result of consolidating evidence from multiple frames (both the near and

far image captures) for each subject. Overall, more accurate height estimates and gender classi-

fications are achieved, but the age estimation suffered.

6.4.3 Gender and Age Accuracy

By using our model to infer gender and age using both appearance and height, we achieve

better accuracy than using either one alone, as reported in Table 6.1. Our appearance classifier

achieves 67.2% gender accuracy by itself. This is lower than the results reported for this task

using facial appearance (e.g. [8]), but our test set includes a large number of children who have

yet to develop gender-specific facial features. Combining height with appearance by our model

improves the gender classification accuracy to 71.9%.

Each subject self-reported his or her age as belonging to one of 14 age bins. Using our model,

we find the most likely aposterior age â, and compare this with the ground truth age bin for the

subject. When â falls within the bounds of the age bin, the age error is zero, otherwise the age

error is the number of years between the estimated age â and the closest bound on the true age

bin. Again, by inferring age with combined appearance and height features, we achieve better

age estimation than using either feature type alone.
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(a) Height (b) Appearance (c) Full Model (d) Height (e) Appearance (f) Full Model

(g) Height (h) Appearance (i) Full Model (j) Height (k) Appearance (l) Full Model

FIGURE 6.9: Height, age, and gender classification improve through our model that reasons
over variables related to appearance, height, demographics and pairwise anthropometric fea-
tures. In each group of images, the model outputs are shown when height is observed (no
appearance features), appearance is considered (height is not estimated), and the full model
is used. Accurate results are shown in green text and poor results are in red text. The facial
appearance in (b) allows the mistaken gender from height alone (a) to be corrected in the full
model (c). In (d), the subject’s height is similar to an adult woman, but appearance recognized
the subject as a young male (e), and the full model finds the most probable explanation is that
the subject is an adolescent male (f). The incorrect age classification from appearance alone
(h) is corrected by height estimation in (g) to produce the reasonable estimates in (i). A failure
is shown in (j)-(l). The subject is a tall female, and the correct gender from appearance (k) is
not strong enough to override the fact that few females are 179 cm in height from (j), and in
the final result (l), the demographic classification is worse than from appearance only (k). Best

viewed electronically.

More insight is gleaned by examining the performance on children (ages 0-16) and adults (17+).

Table 6.3 shows that age is easier to estimate for children, and gender classification is more

accurate in adults. This result is explained by considering our pairwise anthropometric features,

as shown in Figure 6.3. For age estimation, the gradient of each feature with respect to age

is greatest during childhood. However, the greatest separation between the genders for the

distributions for any of the anthropometric features given age occurs when adulthood is reached.

Figure 6.9 discusses the height, age, and gender estimates for several images from our dataset.

6.5 Conclusion

In this chapter, we introduce a model to unify inference over demographic quantities and anthro-

pometric features using a calibrated camera. Instead of considering demographic classification

and height estimation as separate problems to be solved independently, our model merges these

problems and allows influence to flow throughout the variables.
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We provide evidence of the effectiveness of our model by testing on images from 127 subjects

spanning a wide age range to achieve an automatic height estimation error of 26.7 mm in stan-

dard deviation. We show that when height provides context and is considered along with facial

appearance, the age and gender estimates improve versus using appearance alone. Likewise,

height estimation improves with our model which reasons about age and gender as hidden vari-

ables. Our model is extensible in that additional pairwise demographic features can easily be

added, assuming the corresponding feature points can be located in the image.



Chapter 7

Clothing Cosegmentation for

Recognizing People

In collections of consumer images, it is a worthwhile task to label each face with its proper iden-

tity. In this application, the collection generally comprises hundreds or thousands of images, and

the people in the collection often appear many times. The remaining chapters of this disserta-

tion are directed at understanding the role of context in recognizing people in consumer image

collections. In this chapter, we examine the role of clothing as context. In Chapter 8 we explore

the role of the group prior, a learned prior over specific groups of people in the collection. In

Chapter 9, multiple contextual features are integrated into a single model. In all of these chap-

ters, we address the problem in the scenario where some portion of the image collection faces

are labeled, and the model is used to infer the identity of the remaining faces. The question of

choosing the most informative subset of faces to label is addressed in Appendix A.

To overcome the limitations of face recognition in consumer images, features other than faces

need to be considered. Reseachers have verified that clothing provides information about the

identity of the individual. To extract features from the clothing, the clothing region first must be

localized or segmented in the image. At the same time, given multiple images of the same person

wearing the same clothing, we expect to improve the effectiveness of clothing segmentation.

Therefore, the identity recognition and clothing segmentation problems are inter-twined; a good

solution for one aides in the solution for the other.

In this chapter, we build on this idea by analyzing the mutual information between pixel loca-

tions near the face and the identity of the person to learn a global clothing mask. We segment

82
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FIGURE 7.1: It is extremely difficult even for humans to determine how many different in-
dividuals are shown and which images are of the same individuals from only the faces (top).
However, when the faces are embedded in the context of clothing, it is much easier to distin-

guish the three individuals (bottom).

the clothing region in each image using graph cuts based on a clothing model learned from

one or multiple images believed to be the same person wearing the same clothing. We use fa-

cial features and clothing features to recognize individuals in other images. The results show

that clothing segmentation provides a significant improvement in recognition accuracy for large

image collections, and useful clothing masks are simultaneously produced.

A further significant contribution is that we introduce a publicly available consumer image col-

lection where each individual is identified. We hope this dataset allows the vision community to

more easily compare results for tasks related to recognizing people in consumer image collec-

tions.

Figure 7.1 illustrates the limitations of using only facial features for recognizing people. When

only six faces (cropped and scaled in the same fashion as images from the PIE [113] database

often are) from an image collection are shown, it is difficult to determine how many different

individuals are present. Even if it is known that there are only three different individuals, the

problem is not much easier. In fact, the three are sisters of similar age. When the faces are

shown in context with their clothing, it becomes almost trivial to recognize which images are of

the same person.

To quantify the role clothing plays when humans recognize people, the following experiment

was performed: 7 subjects were given a page showing 54 labeled faces of 10 individuals from
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the image collection and asked to identify a set of faces from the same collection. The experi-

ment was repeated using images that included a portion of the clothing (as shown in Figure 7.1).

The average correct recognition rate (on this admittedly difficult family album) jumped from

58% when only faces were used, to 88% when faces and clothing were visible. This demon-

strates the potential of person recognition using features in addition to the face for distinguishing

individuals in family albums.

When extracting clothing features from the image, it is important to know where the clothing

is located. We describe the use of graph cuts for segmenting clothing in a person image. We

show that using multiple images of the same person from the same event allows a better model

of the clothing to be constructed, resulting in superior clothing segmentation. We also describe

the benefits of accurate clothing segmentation for recognizing people in a consumer image col-

lection.

7.1 Related Work

Clothing for identification has received much recent research attention. When attempting to

identify a person from the same day as the training data for applications such as teleconferencing

and surveillance, clothing is an important cue [29, 71, 91]. In these video-based applications,

good figure segmentation is achieved from the static environment.

In applications related to consumer image collections [3, 119, 124, 144, 145], clothing color

features have been characterized by the correlogram of the colors in a rectangular region sur-

rounding a detected face. For assisted tagging of all faces in the collection, combining face

with body features provides a 3-5% improvement over using just body features. However, seg-

menting the clothing region continues to be a challenge; all of the methods above simply extract

clothing features from a box located beneath the face, although Song and Leung [119] adjust the

box position based on other recognized faces and attempt to exclude flesh.

Some reseachers have trained models to essentially learn the characteristics of the human form

[25, 86, 104, 120]. Broadly speaking, these methods search for body parts (e.g. legs, arms, or

trunk), and use a pre-defined model to find the most sensible human body amongst the detected

parts. While a model-based approach is certainly justified for the problem, we wonder what can

be learned from the data itself. Given many images of people, is it possible for the computer to
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Set 1 Set 2 Set 3 Set 4
Total images 401 1065 2099 227
Images with faces 180 589 962 161
No. faces 278 931 1364 436
Detected faces 152 709 969 294
Images with multiple people 77 220 282 110
Time span (days) 28 233 385 10
No. days images captured 21 50 82 9
Unique individuals 12 32 40 10

TABLE 7.1: A summary of the four image collections.

learn the shape of a human without imposing a physical human model on its interpretation of

the images?

Regarding segmenting objects of interest, researchers have attemped to combine the recogni-

tion of component object parts with segmentation [140], and to recognize objects among many

images by first computing multiple segmentations for each image [108]. Further, Rother et

al. extend their GrabCut [106] graph-cutting object extraction algorithm to operate on simulta-

neously on pairs of images [107], and along the same lines, Liu and Chen [80] use PLSA to

initialize the GrabCut, replacing the manual interface. We extend this problem into the domain

of recognizing people from clothing and faces. We apply graph cuts simultaneously to a group

of images of the same person to produce improved clothing segmentation.

This chapter is organized as follows: First, we analyze the information content in pixels sur-

rounding the face to discover a global clothing mask (Section 4). Then, on each image, we use

graph-cutting techniques to refine the clothing mask, where our clothing model is developed

from one or multiple images believed to contain the same individual (Section 5). In contrast to

some previous work, we do not use any model of the human body. We build a texture and color

visual word library from features extracted in putative clothing regions of people images and use

both facial and clothing features to recognize people. We show these improved clothing masks

lead to better recognition (Section 7).

7.2 Images and Features for Clothing Analysis

Four consumer image collections are used in this work. Each collection owner labeled the de-

tected faces in each image, and could add faces missed by the face detector [67]. The four



Chapter 7. Clothing Cosegmentation for Recognizing People 86

FIGURE 7.2: Person images at resolution 81×49 and the corresponding superpixel segmenta-
tions.

collections, summarized in Table 1, contain a total of 3009 person images of 94 unique indi-

viduals. We experiment on each collection separately (rather than merging the collections), to

simulate working with a single person’s image collection.

Features are extracted from the faces and clothing of people. Our implementation of a face detec-

tion algorithm [67] detects faces, and also estimates the eye positions. Each face is normalized

in scale (61×49 pixels) and projected onto a set of Fisherfaces [11], representing each face as a

37-dimensional vector. These features are not the state-of-the-art features for recognizing faces,

but are sufficient to demonstrate our approach.

For extracting features to represent the clothing region, the body of the person is resampled to

81×49 pixels, such that the distance between the eyes (from the face detector) is 8 pixels. The

crop window is always axis-aligned with the image. Clothing comes in many patterns and a

vast pallette of colors, so both texture and color features are extracted. A 5-dimensional feature

vector of low-level features is found at each pixel location in the resized person image. This

dense description of the clothing region is used based on the work of [77, 79] as it is necessary to

capture the information present even in uniform color areas of clothing. The three color features

are a linear transformation of RGB color values of each pixel to a luminance-chrominance space

(LCC). The two texture features are the responses to a horizontal and vertical edge detector.

To provide some robustness to translation and movement of the person, the feature values are

accumulated across regions in one of two ways. In the first (superpixel) representation, the

person image is segmented into superpixels using normalized cuts [111], shown for example in

Figure 7.2. For each superpixel, the histogram over each of the five features is computed. In
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Same day mutual information maps Different day mutual information maps

Global Clothing Masks Mean GT

FIGURE 7.3: Top Left: The clothing region carries information about identity. Maps of mutual
information between Sij and 〈si(x,y), sj(x,y)〉s for four image sets all yield a map with the same
qualitative appearance. In Set 3, the mutual information reaches 0.17, while the entropy of Sij

is only 0.19. Top Right: The mutual information maps for person images captured on different
days. The overall magnitude is only about 7% the same-day mutual information maps, but
the clothing region (and the hair region) still carry information about the identity of the person.
Bottom Left: The clothing masks created from the mutual information masks all have the same
general appearance, though Set 1’s mask is noisy probably due to the relatively small number
of people in this set. Bottom Right: The average of 714 hand-labeled clothing masks appears

similar to the mutual information masks.

turn, each pixel’s features are the five histograms associated with its corresponding superpixel.

This representation provides localization (over each superpixel) and maintains some robustness

to translation and scaling. The notation sp refers to the feature histograms associated with the

pth superpixel. Likewise, the notation s(x,y) refers to the feature histograms associated with the

superpixel that corresponds to position (x, y).

In the second (visual word) representation, the low-level feature vector at each pixel is quantized

to the index of the closest visual word [116], where there is a separate visual word dictionary

for color features and for texture features (each with 350 visual words). The clothing region is

represented by the histogram of the color visual words and the histogram of the texture visual

words within the clothing mask region (described in Section 4). Of course, this clothing mask is

the putative region of clothing for the face; the actual clothing in a particular person image may

be occluded by another object. The visual word clothing features are represented as v.
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7.3 Finding the Global Clothing Mask

In previous recognition work using clothing, either a rectangular region below the face is as-

sumed to be clothing, or the clothing region is modeled using operator-labeled clothing from

many images [117]. We take the approach of learning the clothing region automatically, using

only the identity of faces (from labeled ground-truth) and no other input from the user. Intu-

itively, the region associated with clothing carries information about the identity of the face.

For example, in a sporting event, athletes wear numbers on their uniforms so the referees can

easily distinguish them. Similarly, in a consumer image collection, when two people in different

images wear the same clothing, the probability increases that they might be the same individual.

We discover the clothing region by finding pixel locations that carry information about facial

identity. Let pi = pj be the event Sij that the pair of person images pi and pj share an iden-

tity, and 〈si(x,y), sj(x,y)〉s be the distance between corresponding superpixel features si(x,y) and

sj(x,y) at pixel position (x, y). The distance is the sum of χ2 distances between the five feature

histograms:

〈si(x,y), sj(x,y)〉s =
∑

u

χ2(su
i(x,y), s

u
j(x,y)) (7.1)

where u is an index over each of the five feature types (three for color and two for texture).

In the region surrounding the face, we compute the mutual information I(Sij , 〈si(x,y), sj(x,y)〉s)
between the distance between corresponding superpixels, and Sij at each (x, y) position in the

person image. Maps of the mutual information are shown in Figure 7.3. For each image col-

lection, two mutual information maps are found, one where pi and pj are captured on the same

day, and one otherwise.

Areas of the image associated with clothing contain a great deal of information regarding

whether two people are the same, given the images are captured on the same day. Even for

images captured on different days, the clothing region carries some information about identity

similarity, due to the fact that clothes are re-worn, or that a particular individual prefers a specific

clothing style or color.

In three image Sets (1, 2, and 4), the features of the face region itself carry little information

about identity. (Remember, these features are local histograms of color and texture features not

meant for recognizing faces). These collections have little ethnic diversity so the tone of the
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(A) (B) (C) (D) (E) (F)

FIGURE 7.4: Using graph cuts to segment the clothing from a person image. The automatically
learned global clothing mask (B) is used to create a clothing model (C, top) and a background
model (C, bottom) that each describe the five feature types from the person image (A). Each
superpixel is a node in a graph, and the data cost of assigning each superpixel to the clothing
and background are shown (D, top) and (D, bottom), respectively, with light shades indicating
high cost. The smoothness cost is shown in (E), with thicker, yellower edges indicating higher

cost. The graph cut solution for the clothing is shown in (F).

facial skin is not an indicator of identity. However, Set 3 is ethnically more diverse, and the skin

tone of the facial region carries some information related to identity.

This mutual information analysis allows us to create a mask of the most informative pixels

associated with a face that we call the global clothing mask. The same-day mutual information

maps are reflected (symmetry is assumed), summed, and thresholded (by a value constant across

the image collections) to yield clothing masks that appear remarkably similar across collections.

We emphasize again that our global clothing mask is learned without using any manually labeled

clothing regions; simply examining the image data and the person labels reveals that the region

corresponding roughly to the torso contains information relevant to identity.

7.4 Graph Cuts for Clothing Segmentation

Single Image: The global clothing mask shows the location of clothing on average, but on any

given image, the pose of the body or occlusion can make the clothing in that image difficult

to localize. We use graph cuts to extract an image-specific clothing mask. Using the idea of

GrabCut [106], we define a graph over the superpixels that comprise the image, where each

edge in the graph corresponds to the cost of cutting the edge. We seek the binary labeling f

over the superpixels that minimizes the energy of the cut. We use the standard graph cutting

algorithms [6, 18, 19, 72] for solving for the minimum energy cut. Using the notation in [72],

the energy is:
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E(f) =
∑

p∈P
Dp(fp) +

∑

p,q∈N
Vp,q(fp, fq) (7.2)

where E(f) is the energy of a particular labeling f , p and q are indexes over the superpixels,

Dp(fp) is the data cost of assigning the pth superpixel to label fp, and Vp,q(fp, fq) represents

the smoothness cost of assigning superpixels p and q in a neighborhood N to respective labels

fp and fq.

Possible labels for each superpixel are fp ∈ {0, 1} where the index 0 corresponds to foreground

(i.e. the clothing region that is useful for recognition) and 1 corresponds to background. The

clothing model M0 is formed by computing the histogram over each of the five features over the

region of the person image corresponding to clothing in the global clothing mask. In a similar

manner, the background model M1 is formed using the feature values of pixels from regions

corresponding to the inverse of the clothing mask. Then, the data cost term in Eq. (7.2) is

defined:

Dp(fp) = exp(−α〈sp,Mfp〉) (7.3)

where again the distance is the sum of the χ2 distances for each of the corresponding five feature

histograms. The smoothness cost term is defined as:

Vp,q(fp, fq) = (fp − fq)2 exp(−β〈sp, sq〉) (7.4)

Experimentally, we found parameter values of α = 1 and β = 0.01 work well, though the

results are not particularly sensitive to the chosen parameter values. The lower value of β is

explained by considering that clothing is often occluded by other image objects, and is often

not contiguous in the image. Figure 7.4 illustrates the graph cutting process for segmenting the

clothing region. Except for the selection of a few constants, the algorithm essentially learned to

segment clothing first by finding a global clothing mask describing regions of the image with

high mutual information with identity, then performing a segmentation to refine the clothing

mask on any particular image.

Multiple Images: When multiple images of the same person with the same clothing are avail-

able, there is an opportunity to learn a better model for the clothing. We use the idea from [107]

that the background model for each image is independent, but the foreground model is constant
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across the multiple images. Then, the clothing model is computed with contribution from each

of the images:

M0 =
∑

i

M0i (7.5)

This global clothing model M0 is the sum for each feature type of the corresponding feature

histograms for each image’s individual clothing model. However, each image i has its own

individual background model M1i, formed from the feature values of the inverse global clothing

mask. Conceptually, the clothing is expected to remain the same across many images, but the

background can change drastically.

When applying graph cuts, a graph is created for each person image. The smoothness cost is

defined as before in Eq. (7.4), but the data cost for person image i becomes:

Dpi(fpi) =





exp(−α〈spi,M0〉) if fpi =0

exp(−α〈spi,M1i〉) if fpi =1
(7.6)

Figure 7.5 shows several examples of graph cuts for clothing segmentation by either treating

each image independently, or exploiting the consistency of the clothing appearance across mul-

tiple images for segmenting each image in the group.

7.5 Recognizing people

For searching and browsing images in a consumer image collection, we describe the following

scenario. At first, none of the people in the image collection are labeled, though we do make

the simplifying assumption that the number of individuals is known. A user provides the labels

for a randomly selected subset of the people images in the collection. The task is to recognize

all the remaining people, and the performance measure is the number of correctly recognized

people. This measure corresponds to the usefulness of the algorithm in allowing a user to search

and browse the image collection after investing the time to label a portion of the people. We use

an example-based nearest neighbor classifier for recognizing people in this scenario.

Given an unlabeled person p, P (p = n|f) where f = {ff ,v} includes the facial features ff and

the clothing features v, the probability that the name assigned to person p is n is estimated using
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(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 7.5: See Section 5. For each group of person images, the top row shows the resized
person images, the middle row shows the result of applying graph cuts to segment clothing on
each person image individually, and the bottom row shows the result of segmenting the clothing
using the entire group of images. Often times, the group graph cut learns a better model for the
clothing, and is able to segment out occlusions (A, C, F, H) and adapt to difficult poses (E, G).

We do not explicitly exclude flesh, so some flesh remains in the clothing masks (B, G, H).

nearest neighbors. In our notation, name set N comprises the names of the U unique individuals

in the image collection. An element nk ∈ N is a particular name in the set. The K nearest

labeled neighbors of a person pi are selected from the collection using facial similarity and

clothing similarity. When finding the nearest neighbors to a query person with features f , both

the facial and clothing features are considered using the measure Pij , the posterior probability

that two person images pi and pj are the same individual. We propose the measure of similarity

Pij between two person images, where:

Pij = P (Sij |fi, fj , ti, tj) (7.7)

≈ max [P v
ij , P

f
ij ] (7.8)

The posterior probability P v
ij = P (Sij |〈vi,vj〉v, |ti − tj |) that two person images pi and pj are

the same individual is dependent both on the distance between the clothing features 〈vi,vj〉v
using the visual word representation, and also on the time difference |ti− tj | between the image

captures. The distance between the clothing features 〈vi,vj〉v for two person images pi and pj
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is simply the sum of the χ2 distances between the texture and the color visual word histograms,

similar to the superpixel distance in Eq. (7.1). The probability P v
ij is approximated as a function

of the distance 〈vi,vj〉v, learned from a non-test image collection for same-day and different-

day pairs of person images with the same identity, and pairs with different identities. Figure 7.9

shows the maximum likelihood estimate of P v
ij . The posterior is fit with a decaying exponential,

one model for person images captured on the same day, and one model for person images cap-

tured on different days. Similarly, the probability P f
ij , the probability that faces i and j are the

same person, is modeled using a decaying exponential.

We justify the similarity metric Pij based on our observations of how humans perform recog-

nition by combining multi-modal features to judge the similarity between faces. If we see two

person images with identical clothing from the same day, we think they are likely the same per-

son, even if the images have such different facial expression facial expressions that a judgement

on the faces is difficult. Likewise, if we have high confidence that the faces are similar, we are

not dissuaded by seeing that the clothing is different (the person may have put on a sweater, we

reason). An example of this phenomena is shown in Figure 7.10.

Using the metric Pij , a nearest neighbor is one that is similar in either facial appearance or

in clothing appearance. These K nearest neighbors are used to estimate P (p = n|f) using a

weighted density estimate, which can in turn be used to recognize the face according to:

pMAP = arg max
n∈N

P (p = n|f) (7.9)

When multiple people are in an image, there is an additional constraint, called the unique object

constraint, that no person can appear more than once in an image [13, 117]. We seek the

assignment of names to people that maximizes P (p = n|F), the posterior of the names for all

people in the image, assuming that any group of persons is equally likely. The set of M people

in the image is denoted p, F is the set of all the features f for all people in the image, and n

is a subset of N with M elements and is a particular assignment of a name to each person in

p. Although there are
(

U
M

)
combinations of names to people, this problem is solved in O(M3)

time using Munkres algorithm [87].
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FIGURE 7.6: A demonstration of clothing retrieval. For each row, the image on the left is
the query image. The remaining seven images are the closest people, based on the clothing

distance, in the image collection.

FIGURE 7.7: Combining color and texture for clothing representation improves the results. For
each row, the query image is on the left. Top Row: Clothing retrieval using color features only.
Middle Row: Clothing retrieval using texture only. Bottom Row: Clothing retrieval with both

color and texture provides the best result.

7.6 Retrieval

The clothing distance d(f c
i , f c

j ) can be used for the task of clothing retrieval, where the goal

is to sort all of the person images based on the similarity of the clothing region associated

with a detected face. Figure 7.6 shows several examples of clothing retrieval, which is a useful
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FIGURE 7.8: The performance of clothing retrieval on a set of 715 labeled people with 50
different clothing items. Nearly 80% of the time the best match has the same clothing as the

query.
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FIGURE 7.9: Left: The probability that two person images share a common identity given the
distance between the clothing features and the time interval between the images. Right: In
a similar fashion, the probability of two person images sharing a common identity given the

distance between faces ff
i and ff

j .

application in its own right. For example, a fashion editor may use such a system to discover two

celebrities wearing the same outfit to an event. In Figure 7.7 the advantage of using both color

and texture visual words for retrieval is demonstrated with an example. As an experiment, each

of the 715 labeled clothing items in turn is considered as the query, and the closest 15 people

images from the entire image collection are returned. The retrieval performance, as a function

of position in the search results, is shown in Figure 7.8. As expected, using both the color and

texture visual words for retrieval is better than using either color or texture visual words alone.

Recall that this clothing retrieval is accomplished based only on the automatic detection of face

position; the user never circumscribes or otherwise indicates which areas of the query image

contain clothing.
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A B C

FIGURE 7.10: Three images of the same baby as a justification for the measure of similar-
ity Pij . Persons A and B (captured on the same day) have high clothing similarity, yet the
differences in facial pose and expression result in low facial similarity. We trust the clothing
similarity for this pair. Likewise, persons B and C have low clothing similarity, but high facial
similarity (both faces have the same pose and similar open-mouth smile. The low clothing score
does not affect our belief that person B and C are the same, based on the facial similarity. A
and C are dissimilar in both facial measurements and clothing. Yet, by transitivity, we conclude

A and C are likely to be the same individual.

7.7 Discovering Clusters of People

The pairwise posterior probabilities of people having the same identities given clothing features

P c
ij or facial features P f

ij = P (Sij |d(ff
i , ff

j )) can be thought of as edge weights on a complete

graph, where each person is a vertex. People images in an image collection can be automatically

grouped to discover clusters using graph segmentation algorithms such as normalized cut [111],

as for example has been demonstrated to find actors in movies [46] using facial similarity.

When the edge weights are formed by P cf
ij , clusters of people emerge containing people with

similarities in face and clothing, but not necessarily both simultaneously. Normalized cut seeks

to maximize the association within clusters, and minimize the cut between clusters. Intuitively,

each person in a cluster is not necessarily similar to all the other persons in the cluster, but

has similarity (in face or clothing) with one or more other persons in the cluster. In practice,

the clusters often have a semantic meaning that is easy to recognize, provided an appropriate

number of clusters are used. Figure 7.11-7.13 shows some example clusters that emerge.For

this example, we use 20 clusters for faces, 40 for clothing, and 80 for the combination of face

and clothing.

7.8 Experiments

Better Recognition Improves Clothing Segmentation: The following experiment was per-

formed to evaluate the performance of the graph-cut clothing segmentation. In our Sets 1 and 4,
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FIGURE 7.11: Three clusters of people with facial similarity.

every superpixel of every person image was manually labeled as either clothing or not clothing.

This task was difficult, not just due to the sheer number of superpixels (35700 superpixels), but

because of the inherent ambiguity of the problem. For our person images, we labeled as clothing

any covering of the torso and legs. Uncovered arms were not considered to be clothing, and head

coverings such as hats and glasses were also excluded.

We apply our clothing segmentation to each person image in both collections. Table 2 reports

the accuracy of the clothing segmentation. We compare the graph cut segmentation against the

prior (roughly 70% of the superpixels are not clothing). A naı̈ve segmentation is to find the mean

value of the clothing mask corresponding to the region covered by each superpixel, then classify

as clothing if this value surpasses a threshold. The threshold was selected by minimizing the

equal error rate. This method considers only the position of each superpixel and not its feature

values. In both collections, using the graph cut clothing segmentation provides a substantial

improvement over the naı̈ve approach.
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FIGURE 7.12: Five clusters of people with clothing similarity.

Set 1 Set 4
Prior 70.7% 68.2%
Naı̈ve 77.2% 84.2%
GC Individual 87.6% 88.5%
GC Group 88.5% 90.3%

TABLE 7.2: Graph cuts provides effective clothing recognition. For each of two image col-
lections, the accuracy of classifying superpixels as either clothing or non-clothing with four
different algorithms is shown. Using Graph Cuts for groups of images proves to be the most

effective method.

Further improvement is achieved when the person images are considered in groups. For this

experiment, we assume the ground truth for identity is known, and a group includes all instances

of an individual appearance within a 20 minutes time window, nearly ensuring the clothing has

not been changed for each individual.

Better Clothing Recognition Improves Recognition: The following experiment is performed

to simulate the effect on recognition of labeling faces in an image collection. People images are

labeled according to a random order and the identity of all remaining unlabeled faces is inferred

by the nearest-neighbor classifier from Section 6. Each classification is compared against the

true label to determine the recognition accuracy. We use nine nearest neighbors and repeat
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FIGURE 7.13: Six clusters of people using an affinity matrix constructed with entries P cf
ij .
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FIGURE 7.14: Combining facial and clothing features results in better recognition accuracy
than using either feature independently.

the random labeling procedure 50 times to find the average performance. The goal of these

experiments is to show the influence of clothing segmentation on recognition.

Figure 7.14 shows the results of the person recognition experiments. The combination of face

and clothing features improves recognition in all of our test sets. If only a single feature type

is to be used, the preferred feature depends on the image collection. For this experiment, the

clothing features are extracted from the clothing mask determined by graph cuts on each image

individually.

Figure 7.15 compares the performance of recognizing people using only clothing features. For

all of our collections, the graph cut clothing masks outperform using only a box (shown in

Figure 7.16). Also, for each collection, the clothing masks are generated by segmenting using
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FIGURE 7.15: Using graph cuts for the extraction of clothing features improves the accuracy of
recognizing people over using a simple box region. Further improvement is attained by using
multiple person images when performing clothing segmentation. Sets 1 and 4 demonstrate
even more room for improvement when ground-truth clothing segmention is used for feature

extraction.

group segmentation, and these segmentations unanimously lead to better recognition perfor-

mance. Finally, we show in collection Sets 1 and 4, where ground-truth labeled clothing masks

exist, that the best performance is achieved using the ground truth clothing masks. This repre-

sents the maximum possible recognition accuracy that our system could achieve if the clothing

segmentation is perfect.

To summarize, these experiments show that:

• Multiple images of the same person improve clothing segmentation.

• Person recognition improves with improvements to the clothing segmentation.

Ongoing work includes merging the recognition and clothing segmentation into a single frame-

work where each assists the other in the following fashion: based on a labeled subset of people,

the other people in the collection are recognized. Then, based on these putative identities, new

clothing masks are found using multiple images of the same person within a given time window.

7.9 Publically Available Dataset

One persistant problem for researchers dealing with personal image collections is that there is a

lack of standard datasets. As a result, each research group uses their own datasets, and results

are difficult to compare. We have made our image Set 2 of 931 labeled people available to

the research community [47]. The dataset is described in Table 1, and contains original JPEG

captures with all associated EXIF information, as well as text files containing the identity of all

labeled individuals. We hope this dataset provides a valuable common ground for the research

community.



Chapter 7. Clothing Cosegmentation for Recognizing People 101

FIGURE 7.16: Given an image (left), using the clothing features from a graph cut clothing
mask (right) results in superior recognition to using a box (middle).

7.10 Conclusion

In this chapter, we describe the advantages of performing clothing segmentation with graph cuts

in a consumer image collection. We showed a data-driven (rather than driven by a human model)

approach for finding a global clothing mask that shows the typical location of clothing in person

images. Using this global clothing mask, a clothing mask for each person image is found using

graph cuts. Further clothing segmentation improvement is attained using multiple images of the

same person which allows us to construct a better clothing model.

This work can be viewed as a case study for the merits of combining segmentation and recog-

nition. Improvements in clothing segmentation improve person recognition in consumer image

collections. Likewise, using multiple images of the same person improves the results of clothing

segmentation.



Chapter 8

Using Group Prior to Identify People

in Consumer Images

While face recognition techniques have rapidly advanced in the last few years, most of the work

is in the domain of security applications. For consumer imaging applications, person recognition

is an important tool that is useful for searching and retrieving images from a personal image

collection. It has been shown that when recognizing a single person in an image, a maximum

likelihood classifier requires the prior probability for each candidate individual. In this paper,

we extend this idea and describe the benefits of using a group prior for identifying people in

consumer images with multiple people. The group prior describes the probability of a group of

individuals appearing together in an image.

In our application, we have a subset of ambiguously labeled images for a consumer image col-

lection, where we seek to identify all of the people in the collection. We describe a simple

algorithm for resolving the ambiguous labels. We show that despite errors in resolving ambigu-

ous labels, useful classifiers can be trained with the resolved labels. Recognition performance

is further improved with a group prior learned from the ambiguous labels. In summary, by

modeling the relationships between the people with the group prior, we improve classification

performance.

Figure 8.1 shows a few example images containing people from a single image collection. Be-

cause each person is a unique individual, we immediately have a powerful constraint that affects

the design and selection of a classifier. Within an image, an individual can appear at most one

time, and each person in an image can be only one individual [13]. (We ignore the rare images

102
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Holly Tommy Jen                                 Bob Tommy       Holly Tommy

FIGURE 8.1: Example of a few images from an image collection. Ambiguous labels provide
the information about who is in each image and are used to estimate the group prior.

containing a face and its mirror reflection, or images containing other images, etc.) This intuitive

constraint provides a foundation for determining the identities of people from consumer images.

We call this constraint the unique object constraint.

When multiple people are in an image, there is usually a relationship between the people in the

image. For example, the people could be friends, co-workers, siblings, or relatives. By learning

the prior probability of different individuals appearing together in an image, classification can

be improved. This prior probability of certain groups of people appearing in an image is called

the group prior. The group prior implicitly incorporates the unique object constraint, because

the probability of any person appearing more than once in an image is zero.

Ambiguous labels are sometimes supplied with a set of images containing people. An ambigu-

ous label provides a label for a unique object that appears in an image, without indicating which

object is associated with which label. Figure 8.1 shows the ambiguous labels associated with

several images. Ambiguous labels for individuals’ names in images occur naturally in several

situations. First, many software packages (e.g. www.flickr.com) allow the user to tag images

with any keyword related to the image. Second, many people annotate their images with cap-

tions such as “George and Martha in their canoe” which conveys that Martha and George are in

the image but does not indicate which is George and which is Martha. We seek to resolve the

ambiguous labels by assigning each label to a specific face in the image. In addition, ambiguous

labels provide exactly the information we need to estimate the group prior, which can be used

to improve classification performance.

In this paper, we present algorithms that incorporate the group prior to model the relationships

between people in the images. In Section 2, we review the related work. We describe a database
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for recognizing people in consumer images in Section 3. We then describe an algorithm to

resolve ambiguous labels (Section 4). Finally, in Section 5, we show how labeling a small image

set with ambiguous labels can be used to learn group prior information and train classifiers

that recognize faces in previously unseen and unlabeled images for the purpose of automatic

annotation or retrieval.

8.1 Related Work

Certainly, there are many techniques for recognizing faces, or for comparing the similarity of

two faces [147]. However, there are many significant differences between the problem of face

recognition in general and the problem of recognizing people in consumer images. The field

of face recognition emphasizes the development of features that are useful for recognition, and

generally ignores issues related to prior probabilities (of an individual or specific group of indi-

viduals appearing in an image.)

With regard to capitalizing on problem-specific constraints, several classification and cluster-

ing algorithms have been developed that either implicitly or explicitly examine constraints to

improve the performance of the classifier. In unsupervised clustering, Wagstaff et al. [130],

describe an algorithm that uses known constraints between example points. The “must-link”

constraint requires that two examples be in the same cluster while the “cannot-link” constraint

requires that the two points cannot be in the same cluster. Constraints have also been added to

clustering algorithms such as normalized cut [94, 111]. The constraints can relate to lane seg-

mentation [130], image segmentation [141], or inferring web page relationships [111]. When

considering faces from many images, all faces from a single image are all mutually “cannot-link”

due to the unique object constraint and there are no “must-link” constraints. These approaches

do consider the problem constraints, but they do not incorporate labeled data and are not suitable

for our application.

Computer vision researchers have worked with ambiguously labeled data. Satoh and Kanade

[109] developed the ”Name-It” system to identify faces in news video from the transcripts and

video captions. Berg et al. [13] extract names from captions of news photos and associate the

names with faces in the images. Both these applications involve noisy labels (i.e. a detected

name may not be someone who appears in the image) and are difficult problems. Berg handles

this noise by initializing the name-face assigment algorithm using those images containing only
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FIGURE 8.2: Left: A histogram of the number of people per image from a set of four image
collections of over 3500 consumer images.

a single face with only one name in the caption, then uses expectation maximization to assign

names to faces. Our ambiguously labeled images are related to this work, but we assume that

a human is actively providing the ambiguous labels for each image’s detected faces. Thus, we

expect that a name provided by the human will appear in the image, and therefore avoid the

noisy label problem.

In an example of using weakly labeled data, Zhang et al. [145] describe a photo organizing

system where a user indicates a set of images that contain a certain person, and the system selects

one face from each of the images that maximize the overall similarity between the selected faces.

Our work builds on these techniques by improving the recognition performance using a group

prior. The group prior serves as the context for the classification problem, akin to performing

object detection by setting the context of the scene [126]. The cooccurance of individuals in

images has been considered by Naaman et al. [90] for an interactive image labeling application

that uses only image context (like the image capture time and place, and other people in the

image) to suggest the next most likely label name for an image. We build on the work of

Naaman et al. by finding the prior for any group or people (rather than single person) in the

image, and combining that prior with facial features. Our work extends that of Zhang et al.

by simultaneously handling multiple person names to disambiguate the ambiguous labels. Our

ambiguous label resolution algorithm handles a simpler problem than either [13, 109] yet it does

not need to be initialized with faces having known labels. In summary, classification is improved

by considering the features of all people in the image along with the group prior.
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8.2 Images and Features

Much of the work described in this paper takes advantage of constraints that naturally occur

when multiple persons appear in a single image. Therefore, it is important to understand the

distribution of people in images.

Four image collections were acquired, containing a total of 1084 images with people. Each

collection owner labeled the people in each image. The database includes 1924 labeled instances

of 114 unique people. Analysis of the collected face identities provides a rich set of information

for recognition algorithm development. Figure 8.2 shows a histogram of the number of people

in an image in images with people. About 50% of the images containes one or more people,

and of these many contain more than one person. Each image collection has a small number of

people that appear very often. These popular people are the ones we would like to be able to

recognize, as they are obviously important to the photographer. In our image collections, the

number of popular people ranges from five to eleven.

A face detection algorithm [67] is used to detect faces in each image. Facial features based on

facial geometry are robust to some variation in pose and illumination that is typically encoun-

tered in consumer photography [147]. An active shape model [30] is used to locate the positions

of 82 key points for each face, and each face is represented as a 5-dimensional feature vector. An

example face having the automatically determined key points is shown in Figure 8.3. These fea-

tures are not the state-of-the-art features for recognizing faces, but are sufficient to demonstrate

our approach.

The feature vectors associated with faces from an image collection can be visualized by plotting

each face according to the first two dimensions of the feature space, as shown in Figure 8.4. Each

individual’s feature vectors are plotted with a different symbol. We are interested in studying the

group prior with images containing more than one of the popular unique individuals. The four

image collections contain 61, 204, 420, and 455 faces with at least two faces per image, and 5,

5, 5 and 11 popular unique individuals respectively. In Figure 8.4, a line is drawn between faces

that appear in the same image. This corresponds with the unique object constraint that since an

individual can only appear once in an image, any two faces joined by a line must be different

individuals. The image collections have 44, 237, 288, and 360 total constraints, respectively.

Each constraint is related to a unique pair of faces in an image. Table 1 summarizes these

datasets which are used throughout this paper.
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FIGURE 8.3: Left: An image with 82 key points automatically identified. Right: PCA is used
to represent each face with a 5-dimensional feature vector, corresponding to eigenvectors that
relate to differences in individual appearance. The visualization of the first four eigenvectors
of the key points is shown. The top row corresponds to the average face plus the eigenvector,
and in the bottom row the eigenvector is subtracted from the average face. The first and third
eigenvectors relate to facial pose and are ignored. The second and fourth eigenvectors relate to

differences in individual appearance and are preserved.

Set 1 Set 2 Set 3 Set 4
Total images 300 300 1197 2099
Images with multiple people 26 67 188 191
No. faces from these images 61 204 420 455
Constraints 44 237 288 360
Popular unique individuals 5 5 5 11

TABLE 8.1: Information about the four datasets.

8.3 Resolving Ambiguous Labels

An ambiguously labeled image has associated individual names but the labels do not indicate

which person is which individual. The caption of Figure 8.1 gives an example of ambiguous

labels for three images. Once the ambiguous labels have been resolved, we have a collection of

labeled faces. A classifier can be trained with these labels so that faces from completely unla-

beled images from the same collection can be recognized. Figure 8.5 illustrates the proposed

system.

We resolve the ambiguous labels by assigning each label to a person in an image. The objective

function is the sum of squared distances between each face and the associated cluster center

for its label. Certainly, minimizing this objective function by computing it for every possible

assignment of labels is out of the question for all but the smallest number of faces and images.

Given a set of J ambiguously labeled images, the goal is to assign each face to a cluster Ck

corresponding to one of K label names in the name set N (where K is the number of unique
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FIGURE 8.4: The four test image collections. Each data point represents a face (projected to
the first two feature dimensions). Each unique symbol represents a different individual in that

image collections. Lines connect faces that appear in the same image.

names among the ambiguous labels.) Let fmj represent the features for the mth face from the

jth image. Mj is the number of faces in the jth image. Every image with more than one face

has a unique object constraint that fmj and fnj cannot belong to the same cluster Ck, ∀m 6= n.

An element nk ∈ N is a particular name in the set. The notation nk
m indicates that the name nk

is associated with person m from an image. In addition to the unique object constraint, we have

an additional constraint that each image’s faces can only be assigned to a subset of the possible

labels N (the ambiguous labels for that image). For image j, the ambiguous labels are Ψj ⊆ N.

An algorithm for resolving ambiguous labels is ALR:

ALR: Ambiguous Label Resolution Algorithm

1. For each image j, randomly assign faces fmj to ambiguous labels Ψj .

2. Compute the parameters of each label’s cluster from the faces assigned to that label.
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FIGURE 8.5: A system diagram. An image collection with ambiguous labels first has the
ambiguous labels resolved. Then, a classifier is trained for each individual and the group prior

is learned. Finally, faces in unlabeled images are classified.

3. For each image j, assign faces fmj to labels Ψj in a manner that respects the unique

object constraints and minimizes the overall squared distance Ej for the image, using the

Hungarian algorithm [87].

4. Iterate between 2 and 3 until convergence.

5. Return the final assignments of faces to clusters.

Step 3 requires further explanation. For each image j, we assign all faces from that image to

ambiguous labels Ψj such that the sum of squared distances between each face and the cor-

responding cluster center Ck is minimized. We construct the matrix D, having elements dmk

where dmk is the squared distance from the mth face to the kth cluster center, and k ∈ Ψj .

Then, the Hungarian algorithm is used to find the optimal assignment of faces to clusters (in

polynomial time) that minimizes the overall squared distance Ej for the image. The residual

error for the jth image is Ej =
∑Mj

m,k zmkdmk, where zmk is an indicator variable that is 1 when

face m is assigned to cluster k and 0 otherwise. As an alternative to representing each cluster

by its centroid, each cluster can be described as a Gaussian, but for our data, the resolved labels

were not significantly different. The key is not necessarilary how we represent each distribution,

but how each face is assigned to a cluster.
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FIGURE 8.6: Performance of Ambiguous Label Resolution. The graphs show the median, 25%
and 75% performances from 150 trials on each of four image collections as a function of the

portion of the image collection that was ambiguously labeled.

8.3.1 Evaluation

The ambigous label resolution algorithm was applied to four consumer image collections. A

portion of the images are randomly selected to be ambiguously labeled. Figure 8.12 shows an

example of the resolved ambiguous labels for a set of images. The performance of the algorithm

is quantified by finding the fraction of the number of all faces that are assigned the correct

labels, and the results of a set of 150 trials with random initialization are shown in Figure 8.6.

As expected, the performance of the algorithm improves as the number of ambiguously labeled

images increases. It should be noted that the ALR algorithm, like k-means, is sensitive to the

initial starting condition. In practice, multiple restarts are used and the start which converges

to the minimum objective function is returned [89]. With our data ALR always converged,

generally in fewer than 20 iterations.

8.4 Classifying with Resolved Labels

Using the resolved labels, a classifier is trained for recognizing the individuals in the image

collection. Of course, the resolved ambiguous labels contain some errors, so we must determine

whether an effective classifier can be designed in the face of these erroneously labeled samples.

We make the assumption that the people in the unlabeled images are in the set N of the unique

individuals.
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FIGURE 8.7: A graphical model that represents the features f and the people p in an image.
Each person pm has an undirected connection to all other people.

8.4.1 Images with one face

When an unlabeled image contains only a single face, the label for the face with features f is

found according to Bayes rule:

pMAP = arg max
n∈N

P (n|f) (8.1)

= arg max
n∈N

P (f |n)P (n) (8.2)

The distribution P (f |n) is modeled with a Gaussian. When the computed covariance matrix is

ill-conditioned, a generic covariance matrix, derived from many individuals, is substituted as the

covariance matrix for that label. We have only ambiguously labeled images, so the Gaussians

are computed using the resolved ambiguous labels.

The estimate of the prior probability P (n) is derived from the ambiguous labels by counting the

number of images containing a specific individual, according to:

P (n) =

∑
j ynj∑

u

∑
j yuj

(8.3)

where

ynj =





1 n ∈ Ψj

0 otherwise
(8.4)
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8.4.2 Images with multiple faces

The identities of multiple people in an image are not independent. There are two intuitive

reasons for this. First, according to the unique object constraint, each individual can only appear

once in the image. Second, multiple people in a consumer image generally have some kind

of personal relationship. The group prior represents both the unique object constraint and the

relationship between individuals that makes one group more likely to appear together in an

image than another. For example, if we believe that Jen is in the image, then our belief that

her brother Tommy is also in the image might increase. Thus, the classification of face identity

should consider the features associated with all faces in the image.

Figure 8.7 graphically models the relationship between the identities of the people in the image

and the observed features. The set of M people in the image is denoted p, the set of all features

is f , and n is a subset of N with M elements and is a particular assignment of a name to each

person in p. A particular person in the image is pm, the associated features are fm, and the

name assigned to person pm is nm. The joint probability P (p = n|f) of all the M people in a

particular image, given the set of features is written:

P (p = n|f) =
P (f |p = n)P (p = n)

P (f)
(8.5)

∝ P (p = n)
∏
m

P (fm|pm = nm) (8.6)

Consistent with the model, we proceed from (8.5) to (8.6) by recognizing that the appearance of

a particular person fm is independent of all other individuals in the image once the identity of

the individual pm is known to be nm. Tommy looks like Tommy regardless of who else is in the

image.

Because we have access to a set of ambiguously labeled images, we can estimate the group prior

P (p = n) or equivalently P (n), the prior probability that a particular set n of M individuals

would appear together in an image. First, we consider the case of estimating the group prior for

any combination of two individuals:

P (nu, nv) =

∑
j ynuj ynvj + α(u, v)∑

g,h∈N

∑
j yngj ynhj + α(g, h)

(8.7)
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where

α(u, v) =





β u 6= v

0 otherwise
(8.8)

The function α(u, v) with a small non-zero β ensures that any two people have a non-zero prob-

ability of appearing together and at the same time respects the unique object constraint. The

prior is estimated by counting the number of images that the pair nu and nv appear in together,

divided by the total number of pairs of people in all images. One beautiful aspect is that this es-

timate is independent of the outcome of the ambiguous label resolution algorithm, so P (nu, nv)

is the maximum likelihood estimate of the group prior. The size of P (n) grows exponentially

with the number of elements in n, yet Figure 8.2 shows that images with increasing numbers of

people are more rare. Instead of attempting to learn P (n) for large M (i.e. M > 2) from the

data, we estimate it from P (nu, nv):

P (n) =

∏
u,v∈n P (nu, nv)∑

q⊆N

∏
u,v∈q P (nu, nv)

(8.9)

where q has M elements. Equation (8.9) represents the group prior for any number of partic-

ular people appearing together in an image as a fully connected pairwise Markov model, again

consistent with the model of Figure 8.7.

For a particular image with M people in an image collection of K unique individuals, there can

be Vals(n) different assignments of names to the people in the image.

Vals(n) =
(

K

M

)
M ! (8.10)

Vals(N) grows exponentially with both K and M , so we are relieved that both tend to be small

so we can explicitly solve for P (p = n|f). For example, when K = 7 and M = 5, Vals(N) =

2520.

Once P (p = n|f) is found, there are many different inference questions that can be answered

by marginalizing the joint distribution.
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8.4.2.1 Most Probable Explanation (MPE)

In MPE, the goal is to find the most probable labeling of all faces in the image. This assignment

corresponds to the mode of P (p = n|f):

pMPE = arg max
n∈N

P (p = n|p) (8.11)

8.4.2.2 Maximum Apriori Probability (MAP)

In MAP, the goal is to find the most probable identity of the mth particular individual in the

image. Therefore we marginalize over the name assignments of the other M − 1 people in the

image.

pmMAP = arg max
nk

m∈N

∑

pi,i6=m

P (p = n|f) (8.12)

8.4.2.3 Ambiguously Labeling

Inference can provide ambiguous labels for an unlabeled image. We desire to name the individ-

uals in the image, but we do not specify which face is associated with which name. This would

be particularly useful for auto-captioning the image.

pAMB = arg max
n∈N

∑

P(n)

P (p = n|f) (8.13)

where P(n) denotes all permutations of the set n.

8.4.2.4 Retrieval Based on Identity

Perhaps the most important query that could be posed is: Given the observed features f , what is

the probability that a particular person nq is in this image? This query has obvious applications

for image retrieval based on whom the image contains. A query for images of a particular

person can return images ranked according to P (nq|f). To satisfy this query, we simply sum

P (p = n|f) over all sets of n where one pm is assigned to nq
m.

P (nq|f) =
∑

n,nq⊂n
P (p = n|f) (8.14)
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8.4.3 Evaluation

Classification with the group prior was applied to the four image collections. Facial geometry

features were extracted as described. One image is selected as the test image. A portion of the

remaining images are ambiguously labeled and input to ALR. The group prior P (n) is estimated

from the ambiguous labels and each individual’s feature distribution is represented by a Gaus-

sian, using the resolved labels. For the test image, the joint probability P (p = n|f) is estimated

using the features f. Inference is performed on the test image to determine an MPE assignment

for all faces in the image, a MAP assignment for each face, an assignment of ambiguous labels,

and the probability that each individual from that image collection is present in the image. It

should be stressed that in this evaluation, each ambiguously labeled image contains at least two

people, so the entire system works without a single face ever being positively identified by a

user. The goal is to show classification is improved with the group prior.

The results are shown in Figures 8.8 - 8.11. Figure 8.8 shows the results for MPE, where

the performance is the percentage of test images that all faces were correctly identified as a

function of the amount of ambiguously labeled data. Set 2 proves to be the most difficult because

individuals from this image collection have a large amount of overlap in the feature space. Figure

8.9 shows the results for MAP, where the classification rate is the percentage of faces that were

correctly classified. Figure 8.10 shows the results for ambiguously labeling the test images,

where the classification rate is the number of images that are assigned the correct ambiguous

labels. Four different priors were used in each experiment. The group prior is the full model

that includes both the unique object constraint and the prior for specific groups of individuals.

The UOC prior enforces the unique object constraint, but assumes that each group of individuals

has equal probability of appearing in an image (we use PUOC(nu, nv) ∝ α(u, v), from (8.8)).

The individual prior (“Indiv”) considers only the prior probability of an individual appearing in

an image, and finally no prior at all is used (“none”). When using the individual prior or no

prior, each face is classified as if it were the only face in an image, according to (8.2). Inference

using the group prior and the UOC prior considers the features of all faces in an image for

inference. By representing the social relationships between individuals with the group prior, the

performance is nearly always improved over the UOC prior, sometimes by as much as 10-15%.

Figure 8.11 shows the accuracy of using the system to produce the score P (nq|f) that would

be useful for an image retrieval system. The performance using the resolved ambiguous labels
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FIGURE 8.8: MPE performance on four consumer image collections using four different priors,
as a function of the portion of the image collection with ambiguous labels.
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FIGURE 8.9: MAP performance on the four image collections.
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FIGURE 8.10: Performance of ambiguous labeling on the four image collections.
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FIGURE 8.11: Retrieval performance on the four consumer image collections. In both cases
the group prior is used. Training with resolved labels, which contain some mistakes, hurts the

performance but the results are still very good.

is compared against using the actual ground truth labels, which is the upper bound for the per-

formance of the ALR algorithm. The score P (nq|f) is produced for each test image for each

individual in the set N. Precision-recall curves are generated by varying a threshold on P (nq|f).
All images except the randomly selected test image are ambiguously labeled. Mistakes made in

resolving the ambiguous labels hurt the performance, but the recognition rates are surprisingly

good, again considering that not a single face was explicitly labeled with the correct name.
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FIGURE 8.12: An example of automatically resolved ambiguous labels for 15 images. Only
two images contain mistakes, the last image of the first row, and the fourth image in the second

row.

8.5 Discussion

We have introduced the problem of ambiguously labeled images in the context of labeling people

in consumer image collections. We described an algorithm for resolving the ambiguous labels.

Using the ambiguous labels, we learn a group prior for classification of people in unlabeled

images. The group prior enforces the unique object constraint that an individual can appear at

most one time in an image and indicates the probability of specific groups of people appearing

together in an image. We demonstrated that despite errors in resolving ambiguous labels, useful

classifiers can be trained with the resolved labels. By modeling the relationships between people

in an image with the group prior, classification performance is significantly improved in all of

our test sets.



Chapter 9

Multiple Contextual Features

In the preceding two chapters, we described several contextual features for identifying people

in consumer images. In this chapter, we propose additional contextual features and describe

a general framework for merging multiple contextual features in consumer image collections.

While the number of possible contextual features that could be used is bounded only by our

imagination, we are inspired by the contextual features that studies show are used by humans

performing the same recognition tasks (see Chapter 2.4).

We model the instances of the faces in an image with a probabilistic graphical model, where

each face is a node having a value from the set of all individuals in the image collection. A

random subset of the images are labeled, and the model for appearance and context is learned

from this subset. After learning, the model is applied to infer the identities of unknown faces

in the collection. In this chapter, we show the results of using multiple contextual features in a

unified model for several image collections.

The main contribution of this chapter is the unified model for merging context from any num-

ber of sources. In Chapter 2, a review of other approaches for incorporating context in the

recognition of people is provided. Perhaps the most thorough exploration of multiple contextual

features in person recognition is performed by O’Hare [97], where context (including clothing

and geo-location) is incorporated with a hierarchical weighting of context and content features.

However, this model does not maximize the likelihood of an assignment of identities to multiple

people in an image, making it possible that multiple people in one image are all believed to be

the same person. Our goal is to perform an assignment for the names of all faces in the image

that considers all of the content and context with our model.

118
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Person’s

Name

Pose

Appearance and Contextual Features

FIGURE 9.1: A factor graph representation of the model to combine appearance and contextual
features for recognizing the identities of the M people in an image. Observed variables are
shown with a circle, and hidden variables with a square. A solid square represents a factor
in the model comprised of the variables that are connected to it. Features are assumed to be

independent given the identity of the individual.

9.1 A Unified Contextual Model for Inferring Identity

In this section, we introduce the variables and the model that represents the identities and fea-

tures in an image. The set of M people in the image is denoted p, the set of all features is f , and

n is a subset of N (the set of all individual identities in an image collection) with M elements

and is a particular assignment of a name to each person in p. A particular person in the image

is pm, the associated features are fm, and the name assigned to person pm is nm. Each person

in the image has associated with it as set of c features. The feature fmτ is the τmathttth feature

vector for the mmathttth person in the image. The variable k represents the spatial arrangement

of the faces in the image.

Without making any assumptions, the conditional distribution that the people p in an image have

the identities n can be written:

P (p = n|f ,k) =
P (p = n|k)P (f ,k|p = n)

P (f ,k)
(9.1)

The terms of this model are:

P (p = n|k) is the pose-dependent group prior. Given a particular arrangement of faces k in

an image, this term is the belief that a particular explanation for all of their identities p = n is

likely. Note that this term contains all the information of the group prior from Chapter 8.

P (f ,k|p = n) is the probability of observing the features and pose given a particular set of

people are in the image, and P (f ,k) is the probability of observing a particular set of evidence.



Chapter 9. Multiple Contextual Features 120

Name Type Dimension Comment Reference
Face fa Appearance 61×49→37 Fisherface appearance feature Chapter 7.2
Individual Prior Social Context 1 Prior of individual appearance
Clothing fc Pixel Context 2×350 Bag of color and texture words Chapter 7.2
Time ft Capture Context 1 Used with clothing features Chapter 7.5
Location gi Capture Context 2 Latitude and Longitude Chapter 9.3.3
Birthday bi Social Context 1 Birthday of individual Chapter 9.3.1
Group Prior P (p = n) Social Context

(
K
M

)
M ! Potentially Large Chapter 8

Pose k Pixel Context 2 x− and y− face position Chapter 9.3.5

TABLE 9.1: A summary of the features considered by the unified model. Facial appearance
(content) and contextual features and considered when determining a likely assignment for the

faces in an image. For each feature, the feature dimension is noted.

FIGURE 9.2: After a face is resized to the standard 61 × 49 pixel size, it is projected into a
subspace defined by 37 Faces learned from a separate training collection.

Figure 9.1 shows a factor graph representation of our unified model that represents the relation-

ships between the identities of the people in the image and the observed content and contextual

features. According to this model, the joint probability P (p = n|f) of all the M people in a

particular image, given the set of features {f ,k} is written:

P (p = n|f ,k) =
1
Z

Φ(p,k)
∏
m,τ

Ψm,τ (fm,τ , pm) (9.2)

The first term, Φ(p,k), is the pose dependent group prior. The second term Ψm,τ (fm,τ , pm)

comprises the unary terms (one for each contextual feature for each person in the image). Each

of these unary factors is of size N × 1, where the ith value relates to the relative likelihood that

person m in the image has the ith identity. Consistent with the model, the conditional distribu-

tion of the identities of people in the image is the product of the pose dependent group prior and

factors related to each feature observation for each person in the image. The model incorporates

several conditional independence assumptions that simplify the representation of the distribu-

tion. First, it is assumed that each person’s appearance depends only on the identity of that

person. The content and contextual features for a person do not change based on other people

who are in the image. Second, the features associated with a particular person are conditionally

independent given the identity of the person. This assumption is commonly made (i.e. the Naı̈ve

Bayes assumption) to simplify otherwise complicated distributions.
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FIGURE 9.3: After projecting to a Fisher subspace, the nearest neighbors to a face of unknown
identity (the leftmost image in each row) are found. Neighbors are underlined in green if
their identity matches that of the query face and red if the identity does not match. From the

neighbors, an estimate of P (p = n|ff ) is produced.

9.2 Appearance Features

As in Chapter 7, features are extracted from the faces and clothing of people. Our implementa-

tion of a face detection algorithm [67] detects faces, and also estimates the eye positions. Each

face is normalized in scale (61×49 pixels) and projected onto a set of Fisherfaces [11], rep-

resenting each face as a 37-dimensional vector. Figure 9.2 shows a representation of the 37

Fisherfaces used in the projection.

The appearance term of the model Ψf (ff , p) = P (p = n|ff ) is the probability that a face p

with the observes appearance belongs to a particular person n. This term is estimated with a

Kernel Density estimate from the nearest neighbors. For a given face p, its nearest neighbors

(in these experiments 9 nearest neighbors are used) from the set of labeled faces are found,

where the distance is computed in the Fisher space. The term P (p = n|fc) is then estimated

based on Maximal Likelihood Estimation using pseudocounts of the identities of the nearest

neighbors. Figure 9.3 shows the nearest neighbors found for several faces from two different

image collections.
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Year

2002 2003 2004 2005 2006 2007 2008

Timmy Josh
Grace

FIGURE 9.4: The lifespan of a person provides useful context for recognition. The timeline
shows a histogram of images captured in one test collection between the years 2002 and 2008.
During this span, three prevalent individuals in the collection are born. The people in an image

from early 2002 cannot be either Timmy, Josh, or Grace.

9.3 Contextual Features

The model incorporates factors related to contextual features. The facial appearance and contex-

tual features are described in Table 9.1. The following sections describe the features and factors

from the model in more detail. When clothing and facial features are considered by the model,

the fusion is performed at the feature level (a single factor ψfc(ffc, p) represents the joint rela-

tionship between contextual clothing features, facial appearance and identity. For other features

(e.g. geo-location), a separate factor incorporates the information provided by the feature.

9.3.1 Birthday as a Feature

By simply knowing the birthdates of persons in the image collections as context, the recognition

performance is improved as follows: Let the birthday of individual ni of the set of identities

be bi. As described in Section 9.2, the nearest neighbors in the labeled training set are selected

based on facial appearance (or, as shown in Section 9.3.2, a combination of clothing and facial

appearance) are selected to estimate ψf (ff , p). When the birthday bi of person is known, the

nearest neighbors for an image of a query person are restricted to those from the set of all

those training images having a birthday prior to the date that the image of the query person was

captured.

In terms of the model, the factor Ψ(bi, t, p) depends on the birthdays of the persons in the set N

as follows:

Ψ(bi, t, p) =





1, bi ≤ t

0, bi > t

(9.3)
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where t is the time associated with the image capture time. Figure 9.4 illustrates the use of this

contextual feature. In a similar fashion, the complete lifespans of the individuals in an image

collection can be used as context.

9.3.2 Clothing Feature

Chapter 7 describes the clothing segmentation and clothing features in detail. To summarize,

graph cuts are used to identify the clothing region of the image. Then, histograms of color and

texture features are found to represent the clothing appearance as two histograms of 350 bins.

Clothing similarity is found using the sum of χ2 distances between the color and texture fea-

ture vectors. The clothing similarity is found considering the fact that people generally wear

the same clothing throughout the duration of an event and is dependent on the time difference

between the images. The appearance term of the model Ψc(fc, p) = P (p = n|fc) is estimated

using the identities of the nearest neighbors in a similar fashion to when the nearest neighbors

are found from facial features.

When both clothing and face similarity are both considered by the model, the similarity be-

tween two persons is assumed to be based on facial similarity or clothing similarity, based on

whichever feature provides the most similarity. Thus, the factor incorporating clothing context

and facial appearance is expressed as:

Ψfc(ffc, p) = P (p = n|ffc) (9.4)

The justification for combining face (content) and clothing (context) into a single factor of the

model is that when either of these features presents strong evidence of similarity, it should be

believed.

9.3.3 Geo-location

As observed by [35, 97], the location of an image is an important clue for inferring the identities

of the people in the image. Intuitively, the people that are in the images captured by a pho-

tographer are somehow associated with a particular geographic location. For example, images
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FIGURE 9.5: Red marks indicate the locations in the northeastern United States of images in
the collection of 2990 geo-tagged consumer images. At four specific locations (roughly cor-
responding to Erie, Rochester, New York City, and Pittsburgh), the distribution over the 54
individuals in the collection is shown where light shades indicate higher likelihood of appear-

ance.

captured at a friend’s home are perhaps more likely to include that friend than others. The model

contains a factor that captures the relationship between identity and geo-location.

An image is geo-tagged by either manually dropping images onto a map interface, or by us-

ing a bluetooth GPS device that communicates with a digital camera. Figure 9.5 shows the

geo-locations of images in the geo-tagged image collection containing 2990 geo-tagged image

where the images are captured in the Northeast of the United States, and a representation of the

distributions of different individuals appearance at four specific locations.

In terms of the model, the factor Ψ(g, p) is expressed as:

Ψ(g, p) =
[
P (p = n|g)
P (p = n)

]αg

(9.5)

where g represents the geo-location associated with the image. The distributions P (p = n|g)

and P (p = n) are learned from empirical counts of the labeled portion of the image collection

using a weak Dirichlet prior equal to the marginal prior distribution of an individual appearing

in the collection as follows:

P (p = n|g) ∝ βP (p = n)
∑

j

γj (9.6)

where β is a small constant, and

γj =





1, ifnj = nand〈gj , g〉 < Dg

0, else

(9.7)
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The distance between the geo-locations of the image in question (g) and the location of the jth

person from the labeled portion of the image collection is 〈gj , g〉 and is measured in kilometers.

In (9.7), the distance threshold that is used is Dg = 1 kilometer.

The exponent αg in (9.5) weights the influences of this factor relative to the other contextual

features. In all our experiments, a training set is used to establish αg = 0.4, though we find that

the results are not especially sensitive to this parameter, and this value is used for all collections

in the test.

9.3.4 Group Prior and Position

The model includes the factor Φ(p,k), a term that describes the relationship between the specific

people in an image and their spatial relationships k. This factor encompasses both the group

prior from Chapter 8, as well as the spatial positions of the people in the image (first introduced

in Chapter 3.

When the spatial position of people in the image is ignored, the factor becomes the group prior:

Φ(p) =
P (p)∏

m P (pm)
(9.8)

This factor represents the likelihood of any particular assignment of identities n to the people in

the image. In Chapter 8, the group prior is represented as a product of pairwise potentials. As

noted in 8, the complexity of the pairwise model grows exponentially with the number of people

in the collection. For example, for an image with 6 people from an image collection with 54

distinct individuals, more than 18 billion assignments of names to faces need to be evaluated.

In this unified model, we take a slightly different approach in order to simplify issues related

to performing inference. This approach is at worst linear in the number of images in the image

collection.

Instead of using a pairwise model, the labeled subset of the image collection is used to learn

P (p = n). This term represents the distribution over all distict groups of people that are

represented in the labeled portion of the image collection. The distribution has at most only

j non-zero terms, where j is the number of images in the labeled training set. However, in

practice, the number of non-zero terms is far fewer than that because many images capture the

same group of people (either multiple images at the same event, or images of the same group at
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Number People 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number Images 2323 852 179 52 21 6 3 0 0 0 2 2 2 4 2
Unique Groups 41 94 58 23 8 4 3 0 0 0 2 2 2 2 1

TABLE 9.2: In a collection of 3448 images containing 5092 instances of 54 unique people,
there are 240 distinct groups. When inference is performed to determine an assignment of
identities to faces in the image, this subset of groups (instead of every possible assignment) is

examined.

FIGURE 9.6: Because of the way they position themselves relative to others in the image,
people appear at different positions in an image frame. Here, the distributions of P (km|pm =
nm) are illustrated for three different individuals in an image collection. The person represented
on the left is the mother of the two children whose distributions are in the middle and on the

right.

different events such a family portrait). Table 9.2 reports a summary of the distribution from an

image collection of 3448 images, where there are only 240 distinct groups of people that appear

in an image. Therefore, at inference, only sets n that are group subsets found from the labeled

training subset are examined by the model. Although this approximation has no guarantees of

finding global optima, the computational savings are a significant advantage.

9.3.5 Position as Context

In Chapters 3 and 5, the relative positions between people is a feature that provides information

about the age, gender, and the relationship of the persons in the image. Here, we use the positions

of faces as a feature that contains information about identity. It may seem counter-intuitive

that considering facial positions can contribute to recognition. However, both physical and

social factors result in non-random juxtapositions between people in an image. For example, a

particular husband and wife may be photographed more often with the husband on the right and

the wife on the left, although for another couple, the relative positions may be the opposite.
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The positions of the faces of the people in an image are represented as k. When position k is

considered by the model, the group factor becomes:

Φ(p,k) =
P (k|p)P (p)∏

m P (pm)
(9.9)

where P (k|p) is the probability of a particular spatial arrangement given an assignment of

identities to the M people in the image, P (p) is the group group that represents the likelihood

of a specific group of people appearing in an image, and P (pm) is the prior probability of person

m appearing in a image.

Clearly, the more difficult term to deal with is the position-dependent group prior P (k|p). Just

how can pose be represented so that this term can be represented? Even representing the distri-

bution over k, the positions of all the people in the image, is non-trivial especially when there are

many (e.g. more than 2) people in the image. Even if a pairwise model is implemented to learn

the relative pose between each pair of individuals in the image collection, the amount of training

data is often insufficient. Some people appear in the collection only a limited number of times,

and learning the high-dimensional pairwise model from limited data is difficult. Furthermore,

even if the pairwise model is known, performing inference with it is difficult. Message-passing

algorithms such as loopy belief propagation [84] can be used, but have no performance guaran-

tees. In experiments, models that incorporated these more complex distributions for Φ(p,k) are

outperformed by the simplified representation we introduce next.

In our approach, we use a simplification of the position term k by learning the distribution over

position in the image of each individual in the collection independently. While this simplification

sacrifices some of possible benefits of learning a more complex model of position, it enables a

simpler approach to learning and performing inference with guarantees. Consequently, the factor

Φ(p,k) becomes:

Φ(p,k) =
∏

m P (km|pm)P (p)∏
m P (pm)

(9.10)

where P (pm|km) is the probability of a particular assignment of identity to the mth person in

the image, given that person’s spatial position in the image, P (p) is the group prior, and P (pm)

is the prior probability of person m appearing in a image.

The distribution P (km|pm) is learned from the subset of an image collection that is labeled by

counting for each individual in the collection, the location of each face in a quantized (10× 10)
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representation of the image coordinates. Each appearance is assumed to be a sample with noise,

so the distribution of the “true” location of the face is assumed to be a Gaussian with standard

deviation of 1.0. Figure 9.6 shows the learned distributions of P (km|pm) for a few individuals

from the image collections, and the ratio of P (km|pm). In the next section, we show how this

representation for the positions of faces in the image simplifies inference, so that finding the

global optimum assignments can be found (under some assumptions).

9.4 Inference

Using the model that incorporates the context and the appearance features, the goal is to find the

assignment of identities to the people in an image that maximizes the likelihood of observing

the features. When only one person is in the image, this is a trivial task. Each possible identity

assignment is evaluated, and the assignment that maximizes (9.2) is the inferred assignment n1

for the person p1.

When multiple people are present in an image, the situation is more complicated but the goal

remains the same; to find the optimal assignment of names n to people in the image.

argmax
n

P (p = n|f ,k) = argmax
n

Φ(p,k)
∏
m,τ

Ψm,τ (fm,τ , pm) (9.11)

= argmin
n

− log Φ(p,k)−
∑
m,τ

log Ψm,τ (fm,τ , pm) (9.12)

Equation (9.12) indicates that the optimal assignment of identities to people in the image is the

one the minimizes a cost function, where the costs are related to the log of the factors of the

model. Fortunately, an efficient method exists to find the optimal assignment of identities to

people in the image n, under the assumption that the image contains a group of people that has

been seen in the training set. Borrowing from the insight used to infer with the group prior, we

evaluate the model only for all the groups that are observed in the training set.

For each unique group of people in the training set, we find the optimal assignment for n as

follows. Given a set of people in the image, we are searching for the permutation of the identities

contained in n that optimizes (9.12). Because the term P (P) is fixed for all assignments that

are a permutation of the same set n, this term can be ignored. Then, the assignment is the one

that minimizes the sum of all the costs induced by all the feature observations for all the people
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Set 1 Set 2 Set 3
Total images 1065 5754 5359
Images with people 589 3448 2570
Number faces 931 5092 4502
Time span (days) 233 2361 1909
Unique individuals 32 54 34
Birthday? No Yes Yes
Number Geo-tagged 0 2990 0

TABLE 9.3: A summary of the image collections used in the experiments.

in the image−∑
m,τ log Ψm,τ (fm,τ , pm). This problem is the well-known assignment problem

that is solved by Munkres algorithm [87].

To summarize, the optimal assignment of identities to the persons in an image is found by

establishing the best possible assignment of labels to people for each unique group observed in

the training set. For that optimal group, Equation (9.12) is evaluated. This process is repeated for

all groups, and the group with the optimal value of Equation (9.12) is the optimal assignment,

given the model parameters and the assumption that the image must be labeled with a group

that has been observed in the training set rather than a novel group of identities. At worst, the

complexity of the inference is O(m3j) where m is the number of people in the image and j is

the number of images in the (training) collection.

9.5 Experiments

To explore the performance of the model, experiments were performed on three image collec-

tions. Table 9.3 reports on the characteristics of the image collections. The image collections

represent typical family photography, where the core family members appear most often in the

collection although a set of friends and relatives are present though not as frequent.

The testing procedure is as follows, independently on each image collection. A random subset

of the images are selected and the true identities of the people in these images are provided for

learning the factors of the model. The identities of all people in the non-selected images are

inferred using the model, using some subset of the available contextual and appearance features.

The inferred results are then compared with the actual identities to determine the accuracy of the

model. This is repeated multiple times (at least 20) to generate a single point on the performance

curve.
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(c) Set 3

FIGURE 9.7: Context improves recognition in three consumer image collections, each row
shows the performance of the model on a different collection. Left: The performance of in-
dividual features such as face, clothing, or geo-location. Middle: When individual contextual
features are combined with facial appearance, the performance of the model improves. Right:
As more contextual features are added to the model, the performance continues to improve,

with the best performance being achieved when all context is considered.

Figure 9.7 shows the results of applying our model on several image collections. By using the

unified model, recognition is improved as context is added. Each performance curve represents

between 200,000 and 500,000 individual recognition events, and as a result the confidence in-

terval on the curves is small, about 0.5%. The benefit of the contextual features is not equal

across the collections. In these test collections, adding clothing features generally produces a

large benefit, but adding geo-location results in only a modest improvement. In all the collec-

tions, the group prior provides an additional improvement, but considering the relative position

of the faces in addition results in only a modest benefit (about 1% versus using the group prior
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without position information). Set 3 shows the clear benefit of considering the birthday of the in-

dividuals in the collection. The important observation is that by considering as much contextual

information as possible, the recognition of people in new images is improved.

9.6 Conclusions

In this chapter, we introduce a unified model for combining multiple contextual features with fa-

cial appearance for recognizing people in consumer image collections. In addition, we introduce

several new contextual features. By considering the birthdays of those in the training set, we can

prevent assigning inconsistent names when inferring the identity of people in an image. Further,

we extend the group prior (a prior that expresses the association between groups of people) by

considering the positions of people within the image. Due to physical and social factors, the

position of people within the frame of an image is not completely random; but instead provides

information about their identities.



Chapter 10

Conclusion

In this dissertation, novel contextual features are exploited to improve our understanding of

images of people. Throughout the work on this dissertation, it became clear that there were

many more related avenues to explore. In this chapter, we discuss future extensions of the work

as well as a summary.

10.1 Future Direction

The majority of consumer images contain faces or people, and it is clear that understanding

images of people will remain a primary goal of computer visionists for years to come. The

remaining work is almost limitless. Modern computer vision can only answer questions about

an image that are narrow in scope. Currently, most consumer image collections span only a few

years to a decade (when digital camera quality began to rival that of traditional film systems).

However, for many babies being born today, their entire lives will be captured digitally with

cameras that record the time and place of the image capture. Throughout their livespan, they

will each be the subject of tens or hundreds of thousands of images and videos. Managing and

inferring the changing appearances and relationships that occur at this time scale will be a huge

challenge.

Technically, many challenges remain to completely understanding images. Even when a face

has been found, performing a good segmentation of the body of the person remains an open

problem, though good progress has been achieved [78, 86, 104]. Then, the pose and body

shape, size and proportions of the individual can be properly considered when making inferences

132
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about identity, age, gender, and other demographic factors. Similarly, a complete system would

incorporate content from features such as voice, gait, and person-specific facial expressions, and

the contextual cues from 3D scene geometry.

Using context for the benefit of computer vision is the primary focus of this thesis. However,

one could as easily reverse the question: How can computer vision be used to advance what we

know about humans and their interactions? In one example of this idea, we showed in Chapter

3 that people stand, on average 306 mm from the closest neighbor in an image. As more and

more images document nearly every moment of our lives, it becomes possible to use algorithms

to answer such questions as: How close do people stand to one another in various social settings

for various societies? How often do people socialize in mixed-gender versus single-gender

groups? What percent of pairs of friends on social network sites actually spent time in the same

physical location at some point in the past year?

10.2 Closing Summary

In this work, we extend the current knowledge in computer vision for images of people by

showing unique contextual features for understanding images of people whether each image is

part of a collection or exists as a single image. Perhaps the most important contribution of the

thesis is the idea and corresponding evidence that the research results from the social sciences

can be applied directly as social context to improve image understanding of images of people.

The broad and intuitive idea is that the more we learn about people, the better we can interpret

images of people.
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