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Abstract— Active multi-camera networks have a large and 

growing application base. On one end of the spectrum, active 
camera networks are being used to enhance the rendering or 
modeling of a single scene. Here, the many simultaneous views 
can be used to render a synthetic real time view even in a 
dynamically changing environment. The technical challenges 
include depth estimation within the scene, image correlation 
between multiple camera views, and manipulating the camera 
nodes in order to improve the rendered image. Active multi-
camera networks are also being used to enhance surveillance 
applications for which a large area needs to be monitored. In 
these systems, a primary focus is tracking objects both within a 
single video feed as well as throughout a collection of video feeds.  
Active components are used to monitor larger areas and provide 
more continuous coverage of moving targets. Regardless of the 
application, real time processing constraints and bandwidth 
limitations constitute a significant problem with large networked 
camera systems.  

 
This paper presents an overview of these two highly 

researched application areas in the context of active multi-
camera networks. For each, a breakdown of the typical 
approaches is presented along with a survey of real systems that 
implement them.  We conclude with a brief discussion of the 
major research areas and future application potential combining 
the two technologies. 
 

Index Terms—image-based rendering, multi-camera, 
Surveillance, active sensor networks 

I. INTRODUCTION 
Image based rendering (IBR) techniques implemented with 

video camera networks have recently become extremely 
popular in the entertainment industry. Special effects such as 
the slow motion panorama used in the movie The Matrix and 
the EyeVision system developed by CBS and CMU [1] which 
produced the unique 360 degree stop action replays during the 
National Football League’s championship game (Super Bowl 
XXXV) are both examples of IBR. In these systems, a 
network 
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of cameras simultaneously captures an event such that it can 
be reproduced from an arbitrary viewpoint with little or no 
knowledge of the scene geometry. Compared with geometric 
models that dominate the traditional 3D rendering pipelines, 
images are easier to obtain, simpler to handle, and more 
realistic to render. Moreover, since image processing is such a 
widely studied research topic in literature, IBR has attracted 
many researchers from different communities including 
graphics, vision, and signal processing. 

 
Video camera networks also constitute the heart of many 

surveillance systems today. Commercial off the shelf (COTS) 
video sensors are readily available and inexpensive, allowing 
for larger sensor networks. Commercial applications for 
networked video surveillance are extensive including the 
analysis of traffic flow, detection of accidents on the highway, 
compiling consumer demographics in shopping malls or 
amusement parks, and counting endangered species [2]. 
Military and security-based applications typically are 
associated with monitoring sensitive building perimeters or 
patrolling national borders. Video surveillance systems 
commonly provide live video feeds in which the system 
latency is low enough to allow for real-time monitoring 
decisions and control as well as a database capable of storing 
video and retrieving frames per camera for specific time 
intervals [3]. Historically, these systems often provided a 
common location (or control room) where all of the video data 
could be analyzed manually by a security officer or group of 
officers.  

Each of these applications utilizes camera networks and 
therefore shares many of the same technical challenges. Video 
processing for rendering and surveillance purposes touches on 
many leading research areas in computer vision, pattern 
analysis, and artificial intelligence. Depending on the 
surveillance task, the sensor type, and the number of sensors 
in the network, the processing of the raw camera data can be 
quite a daunting task. Distributing the processing of the meta-
level data to each of the sensing nodes in the network can 
dramatically reduce the bandwidth burden, allowing for larger 
and more capable networks. These independently operating 
nodes within a sensing network which provide a certain level 
of initial data filtering are often called “intelligent” or “smart” 
sensors. 

As smart sensors evolve and embedded computing becomes 
more capable, modern systems are now utilizing controls 
which allow the sensor to become active. Stationary video 
sensor nodes might offer pan, tilt, or zoom capabilities. In a 
mobile surveillance system, the video sensors are actually 
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attached to mobile platforms and can maneuver to a different 
spatial location or orientation (Figure 1). In either case, these 
active sensing nodes have the ability to reconfigure to obtain a 
better view of an area of interest, accumulate multiple views 
of an area of interest, or track a mobile target as it leaves the 
sensor field of view (FOV). In addition to providing better 
quality continuous video coverage of a target for surveillance 
purposes, actively manipulating the cameras in a network can 
also benefit IBR systems. In this context, the cameras can be 
moved so as to avoid occluded sections of the scene or 
improve the image quality of the synthesized image. 
 

 
Figure 1: Examples of active camera platforms (a) Unmanned aerial 

camera [33] (b) mobile ground robotic platform [36] (c) rail mounted 
sliding camera [25] 

  
This paper is divided as follows: First a discussion of active 

multi-camera IBR systems is presented including a brief 
survey of related work and a summary of the major challenges 
including geometry reconstruction (depth reconstruction),  
real-time rendering, and the use of active modules to improve 
rendering results. Section 3 treats the active multi-camera 
surveillance domain in the same way, discussing related work 
with respect to target detection/classification, motion tracking, 
data fusion, and planning and control optimization. We close 
by comparing and contrasting the two related applications and 
discussing potential future research areas including 
applications which make use of both technologies within a 
single system. 

II. ACTIVE MULTI-CAMERA IMAGE-BASED RENDERING 
Image based rendering has a rich history with many 

relevant surveys. Good reviews of the various image-based 
modeling techniques can be found in [4] and [5]. Utilizing a 
multi-camera array for IBR purposes can allow a system to 
render a higher quality image in real time due to the multiple 
simultaneous observations. Active camera components can be 
used to improve dynamically rendered scenes by maneuvering 

the cameras such that low quality areas of the scene are 
sampled at a higher resolution. The key tasks of an active 
multi-camera IBR system are discussed in the remainder of 
section 2. These include a brief review of scene depth and 
geometry reconstruction techniques, a survey of several multi-
camera IBR systems and limitations with regards to real-time 
constraints, and finally a survey of approaches to active 
camera manipulation to improve IBR results. 

A. Geometry Reconstruction 
In IBR, when the number of captured images for a scene is 

limited, adding geometric information can significantly 
improve the rendering quality. In fact, there is a geometry 
image continuum which covers a wide range of IBR 
techniques, as is surveyed in [6]. In practice, accurate 
geometric models are often time consuming to generate. Many 
approaches in literature assume a known geometry, or acquire 
the geometry via manual assistance or a 3D scanner. Recently, 
there has been increasing interest in on-the-fly geometry 
reconstruction for IBR [7] [8] [9]. 

Depth from stereo is an attractive candidate for geometry 
reconstruction in real-time. Schirmacher et al. [7] built a 6-
camera system which was composed of 3 stereo pairs which 
recovered depth on-the-fly. Within this system, each stereo 
pair used a dedicated computer for the depth reconstruction. 
Naemura et al. [10] constructed a camera array system 
consisting of 16 cameras. A single depth map was 
reconstructed from 9 of the 16 images using a stereo matching 
PCI board. 

(a) (b) 

Matusik et al. [8] proposed image-based visual hull 
(IBVH), which rendered dynamic scenes in real-time from 4 
cameras. IBVH is a clever algorithm which computes and 
shades the visual hull of the scene without having an explicit 
visual hull model. The computational cost is low thanks to an 
efficient pixel traversing scheme, which can be implemented 
with software only. Another similar work is the polyhedral 
visual hull [11], which computes an exact polyhedral 
representation of the visual hull directly from the silhouettes. 
Lok [12] and Li et al. [13] reconstructed the visual hull on 
modern graphics hardware with volumetric and image-based 
representations. One common issue of visual hull based 
rendering algorithms is that they cannot handle concave 
objects, which makes some close-up views of concave objects 
unsatisfactory. 

(c) 

An improvement over the IBVH approach is the image 
based photo hull (IBPH) [14]. IBPH utilizes the color 
information of the images to identify scene geometry, which 
results in more accurately reconstructed geometry. Visibility 
was considered in IBPH by intersecting the visual hull 
geometry with the projected line segment of each light ray in a 
particular view. Similar to IBVH, IBPH requires the scene 
objects’ silhouettes to provide the initial geometric 
information; thus, it is not applicable to general scenes (where 
extracting the silhouettes could be difficult) or mobile 
cameras. Recently, Yang et al. [9] proposed a real-time 
consensus-based scene reconstruction method using 
commodity graphics hardware. Their algorithm utilized the 
Register Combiner for color consistency verification (CCV) 
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with a sum-of-square-difference (SSD) measure, and obtained 
a per-pixel depth map in real-time. Both concave and convex 
objects of general scenes could be rendered with their 
algorithm.  

As modern computer graphics hardware becomes more 
programmable and powerful, the migration to hardware 
geometry reconstruction (HGR) algorithms is foreseeable. 
However, at the current stage, HGR still has many limitations. 
For example, the hardware specification may limit the 
maximum number of input images during the rendering [13] 
[9]. Algorithms that can be used on hardware are constrained. 
For instance, it is not easy to change the CCV in [9] from SSD 
to more robust metrics such as pixel correlations. When the 
input images have severe lens distortions, the distortions must 
be corrected using dedicated computers before the images are 
sent to the graphics hardware.  
 

 
Figure 2: Locating the neighboring images for interpolation and depth 
reconstruction through plane sweeping. Here the cameras C2, C3, and C4 
have the shortest distances and would be selected as the 3 closest images 
[15] 
 

Zhang [15] reconstructs the scene depth of the light rays 
passing through the vertices of a 2D mesh using a plane 
sweeping method. Similar methods have been used in a 
number of previous algorithms [16] [17] [18], although they 
all reconstruct a dense depth map of the scene. As illustrated 
in Figure 2, the world space is divided into multiple testing 
depth planes. For each light ray, the scene is assumed to lie on 
a certain depth plane, and is projected into the nearby input 
images. If the assumed depth is correct, the colors are 
expected to be consistent among the projections. The plane 
sweeping method sweeps through all the testing depth planes, 
and obtains the scene depth as the one that gives the highest 
color consistency. 

B. Real-time Image Based Rendering 
Many existing IBR approaches are for static scenes. These 
approaches involve moving a camera around the scene and 
capturing many images. Novel views can then be synthesized 
from the captured images, with or without the scene geometry. 
In contrast, when the scene is dynamic, an array of cameras is 
needed. Recently there has been increasing interest in building 
such camera arrays for IBR. For instance, Matusik et al. [8] 
used 4 cameras for rendering using image-based visual hull 
(IBVH). Yang et al. [9] had a 5-camera system for real-time 

Schirmacher et al. [7] built a 6-camera system for on-the-fly 
processing of generalized Lumigraphs; Naemura et al. [10] 
constructed a system of 16 cameras for real-time rendering. 
These systems are illustrated in Figure 3. 
 

rendering with the help of modern graphics hardware; 

 
Figure 3: Ex les of small camera arrays (a) Sch her et al. [7] (b) 

Several large arrays consisting of tens of cameras have also 
be

 
Figure 4: Large camera arrays (a) Stanford m amera array [19] (b) 

 the above camera arrays, those with a small number of 
ca

(a) (b) 

(d) (c)
amp irmac

Yang et al. [9] (c) Matusik et al. [8] (d) Naemura et al. [10] 
 

en built, such as the Stanford multi-camera array [19], the 
MIT distributed light field camera [18], the CMU 3D room 
[20], and the Reconfigurable Camera Array [15]. These four 
systems have 128, 64, 49, and 48 cameras respectively and are 
represented in Figure 4. 

 

(d) (c) 

(b) (a) 

ulti-c
the MIT distributed light field camera [18] (c) CMU 3D room [20] (d) 
CMU Reconfigurable Camera Array [15] 

 
In
meras can usually achieve real-time rendering [8] [9]. On-

the-fly geometry reconstruction is widely adopted to 
compensate for the lack of cameras, and the viewpoint is often 
limited. Large camera arrays, despite their increased 
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viewpoint ranges, often have difficulty achieving satisfactory 
rendering speed due to the large amount of data to be handled. 
The Stanford system focused on grabbing synchronized video 
sequences onto hard drives. The CMU 3D room was able to 
generate good-quality novel views both spatially and 
temporarily [21]. It utilized the scene geometry reconstructed 
from a scene flow algorithm that took several minutes to run. 
While this is affordable for off-line processing, it cannot be 
used to render scenes on-the-fly. The MIT system did render 
live views at a high frame rate. However, this method assumes 
constant depth of the scene and can suffer from ghosting 
artifacts due to the lack of scene geometry. Such artifacts are 
unavoidable according to plenoptic sampling analysis [22] 
[23]. 

C. Planning and Control 
cameras is a form of non-uniform 

sa

s that 
th

pendent non-uniform 
sa

Zhang et. al. uses error minimization techniques 
b

 
Figure 5: Scenes rendered by reconfiguring the cam rray [15] (a)

III. ACTIVE MULTI-CAMERA SURVEILLANCE 
pic for 

m

era network 
ra

erations 
h the rendered 

s

Self-reconfiguration of the 
mpling (or adaptive capturing) of IBR scenes. In [24], 

Zhang and Chen proposed a general non-uniform sampling 
framework called the Position-Interval-Error (PIE) function. 
The PIE function led to two practical algorithms for capturing 
IBR scenes: progressive capturing (PCAP) and rearranged 
capturing (RCAP). PCAP captures the scene by progressively 
adding cameras at the places where the PIE values are 
maximal. RCAP, on the other hand, assumes that the overall 
number of cameras is fixed and tries to rearrange the cameras 
such that the rendering quality estimated through the PIE 
function is minimized. A small scale system was developed in 
[25] to demonstrate the PCAP approach. The work by 
Schirmacher et al. [26] shared similar ideas with PCAP. 

One limitation concerning the above mentioned work i
e adaptive capturing process tries to minimize the rendering 

error everywhere as a whole. Therefore for a specific virtual 
viewpoint, the above work does not guarantee better rendering 
quality. Furthermore, since different viewpoints may require 
different camera configurations to achieve the best rendering 
quality, the final arrangement of the cameras is a tradeoff of 
all the possible virtual viewpoints, and the improvement over 
uniform sampling was not easy to show. 

Zhang et al. [23] proposed the view-de
mpling of IBR scenes. Given a set of virtual views, the 

positions of the capturing cameras are rearranged to obtain the 
optimal rendering quality. The problem is formulated as a 
recursive weighted vector quantization problem, which can be 
solved efficiently. In that work it is assumed that all the 
capturing cameras can move freely on the camera plane. Such 
assumptions are very difficult to implement in practical 
systems.  

In [15], 
orrowed from stereo vision literature [27] [28] to maneuver a 

set of rail mounted cameras to improve a synthesized IBR 
image. Here the pixels within the synthesized view are back-
projected onto the camera array plane. A CCV score is used 
which is calculated for each pixel to decide which cameras on 
the array should move. If two cameras have a pixel with a 
high CCV score which is back-projected into the space 
between them, they will be moved closer together so as to 
provide a denser sampling of that particular area. This process 

is shown to improve the overall quality of the synthesized 
view as seen in Figure 5. The major limitation of this system 
is that it is generally slow and is not suited for dynamically 
reconfiguring for a scene with motion.   
 

(a) (b) 
era a  

when cameras are evenly spaced (b) when cameras are self-reconfigured 
(note corrections near object edges) 

Visual surveillance has been a popular research to
any years with recent focused efforts sponsored by DARPA 

in the United States, and sponsored by ESPRIT in Europe. 
Stimulated by the increased national interest, several good 
surveys and workshops have been conducted which explore 
the state-of-the-art in video surveillance [2] [29] [30]. In any 
active automated surveillance system, there are several key 
tasks that need to be performed. At the core, the system must 
be able to detect and classify targets within a video frame. 
Once the targets have been identified, they must be tracked as 
they move within the video sequence. In a multi-camera 
system, it is not only important to track targets within a single 
video feed, but also to track targets as they move in and out of 
each video camera FOV within the system. Lastly, automated 
active camera systems require a planning scheme in which 
they utilize the additional camera controls (pan/tilt/zoom/etc) 
to improve the system surveillance performance.  

As with IBR systems, the utilization of a cam
ises similar challenges involving processing limitations, 

network limitations, data fusion between sensing nodes, and 
collaborative control algorithms. In the remainder of section 3, 
we will present a brief survey of how each of these challenges 
is addressed within the context of several multi-camera 
surveillance systems which are currently being used for both 
commercial and research purposes. 

A. Single Sensor Surveillance Op
Unlike many IBR applications, in whic

ynthetic scene is typically the desired output, a critical 
component to most automated surveillance systems is the 
detection of moving targets for which classical approaches 
include temporal differencing, optical flow, and background 
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subtraction. In each sensor frame, targets must be identified. 
For video sensors, this involves identifying a subset of the 
pixels within a frame as a single distinguishable target. In 
many cases, it is useful to categorize the target into a specific 
object class such as a human or automobile.  

The Knight surveillance system [31] developed at the 
U

 
Figure 6: background subtrac ithin Knight (a) raw video (b

ou

The Knight system can classify people and vehicles using 
re

ingle frame, an 
a

gets are detected 
usi

tive camera surveillance system, the 
m

 
Figure 7: Unmanned Aerial Vehicle (left) and motion compensated image 

In many cases [31][32][35], the computational and network 
lo

niversity of Central Florida, performs object detection by 
using a background subtraction scheme which uses both color 
and gradient features to reduce sensitivity to daily variations 
in illumination. Subtraction is first performed at the pixel level 
to determine whether the pixel is considered to be part of the 
background or foreground. Foreground pixels are then 
segmented into groups within the image. These groups are 
then filtered depending on whether the pixels along the 
perimeter have high gradient changes based on the 
observation that interesting objects within images typically 
have well-defined boundaries. The resulting binary image is 
shown in Figure 6. 
 

tion w ) 
tput of background subtraction [31] 

 

current motion images (RMIs) of each target. These images 
have high values for pixels which undergo repeated motion, 
and lower values for areas of the target that remain constant. 
Targets with high valued RMIs can be considered human due 
to the repeated motion associated with walking or running; 
whereas automobiles tend to have a more consistent 
appearance as they move across the image. Target 
classification within the Video Surveillance and Monitoring 
(VSAM) system developed by Carnegie Mellon University 
and DARPA [32] uses two methods: a neural network 
classifier used to broadly categorize targets (such as human, 
human group, vehicle, or clutter) and a linear discriminant 
analysis variant used to distinguish between different types of 
automobiles. The latter method uses feature vectors that are 
generated from training examples to classify clusters of points 
that correspond to different automobile types. 

Once targets have been detected within a s
utomated surveillance system needs to be able to correlate 

subsequent observations such that an object moving across the 
FOV, such as an automobile, is represented within the system 
as a single object rather than multiple discrete objects within 
each frame. This temporal correlation, or motion tracking, also 
enables a surveillance system to estimate motion parameters 
of each target such as velocity and heading.  

Within the VSAM system [32], moving tar
ng an adaptive background subtraction variation which 

utilizes both pixel-based and region-based processes. Here, 
individual pixels are observed for intensity fluctuations which 
are typical of a moving target as it passes through them. 
Groups of pixels which are similarly classified as moving or 
non-moving in space and time are divided up into layers 
within the image. Moving layers are associated between 
successive frames by performing image correlation matching. 
Estimates of the moving layer velocity and heading are 
collected by looking at the layer position over time. 
Additionally, multiple match hypothesis methods are used to 
decide when a layer exits a frame or overlaps with another 
layer within the FOV.  

Of course, in an ac
otion of the camera itself may need to be compensated for in 

order to extract an accurate measurement of other moving 
targets. The COCOA system [33] is a surveillance system 
implemented on small unmanned aerial vehicles (UAV). In 
order to detect motion, the video feeds first undergo ego-
motion compensation. Here, a Harris corner detector is used to 
find features in the image, which are then matched to adjacent 
frames using RANSAC to determine the features with the best 
geometric correspondence. Once these features have been 
matched within adjacent frames, the images can be aligned to 
compensate for the UAV’s motion as illustrated in Figure 7. 
 

(a) 

(b) 

(right) [33] 
 

ad associated with detection, classification, and intra-camera 
tracking is mitigated by distributing these single sensor 
procedures to a network of smart sensors comprised of an 
imaging sensor and an accompanying processor board. In each 
case, target detection, classification and tracking is performed 
directly on the smart sensor which reduces the processing 
burden at the system layer. Additionally, network load is 
significantly reduced by only transmitting target level meta-
data instead of raw image data. In the case where raw image 
data is desired for logging or direct observation, the pixels 
associated with specific targets can be transmitted at a higher 
frequency than the pixels associated with the background of 
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the image. The Kingston University Experimental 
Surveillance system (KUES) [35] performs this type of raw 
pixel filtering by only transmitting foreground pixels over the 
network.  
 

B. Data Fusion (Tracking Between Cameras) 
t is possible, 

a

uring the 
co

 detection 
m

l unit 
p

In a network of active surveillance cameras i
nd often desirable, to observe a target from more than one 

camera FOV in the same way that a multi-camera IBR system 
does. Historically in surveillance applications, the goal has not 
been to generate synthetic views of the target, but rather to 
maintain a single cohesive system level description of the 
target as it moves within the coverage area. This can happen 
asynchronously, if the target leaves the FOV of one camera 
and then enters the FOV of another camera, or simultaneously 
if the target is being observed by more than one camera at the 
same time. [34] refers to these redundant observation 
scenarios as spatio-temporal overlap, in which some 
representation of a specific object overlaps in space-time with 
another independent representation of the same object. 
Accurately fusing target observations together can allow for a 
less congested user interface, increased accuracy in target state 
estimation, and more efficient planning and control. 

KUES [35] learns inter-camera geometry by meas
rrelation between tracked targets exiting one camera FOV 

and entering another camera FOV.  Here, large amounts of 
training data are used to establish probabilistic models for 
entrance and exit zone correlations between cameras. Targets 
can be successfully tracked between cameras if they match the 
expected temporal delay and appearance histogram as 
predicted by the transition model. A multi-view tracking 
server is used to analyze the stored database data and generate 
tracking metadata including entry/exit/stop zones, camera 
topology, and major traffic routes. This metadata is used to 
support faster and more intuitive queries by a user. 

For [31], each target generated by the object
odule is evaluated against previously observed targets in the 

system. During each system cycle, every pixel within each 
target region votes for a particular known target in the system. 
A target in the current frame is said to be associated with a 
previously known target in the system if a percentage of all 
the pixels vote for that previously known target. Linear 
velocity is measured for persistent targets in the system and is 
used to maintain an estimate of where the target is -- even 
when completely occluded by other objects in the scene. 
Targets are tracked between frames by learning the 
relationships between common entrance and exit points from 
each camera’s FOV. A non-parametric Parzen window 
technique is used to estimate the space and time between each 
pair of cameras in the system. By measuring the position and 
velocity of a target moving out of view of one camera, the 
probability of that same target entering the FOV of an 
adjacent camera at a specific time can be approximated. 

Collins et al. [32] uses a single central operator contro
rocess which maintains a database of known targets that have 

been observed by one or more of the networked cameras. 
Each target in the database is identified by its location in the 
global coordinate frame, its categorization, and its color. 

Redundant location data is fused using a propagation of 2D 
Gaussian covariances. At each discrete time point, a 
hypothesis for the location of each target is estimated using a 
linear velocity model. This hypothesis is then merged with 
measurements, taking into account the uncertainty covariance 
of each to produce a single combined “best guess” of the 
actual location of the object. The classification of a target at 
the system level is simply the most frequent classification 
given to that target by all observations, and the color of the 
target is set to be the most recent color observation of the 
target by a camera. Figure 8 shows two cameras operating 
cooperatively. A target is discovered within one camera’s 
FOV and its trajectory is measured. A second camera is then 
able to pan to the correct location to visually track the target. 
 

 
Figure 8: VSAM [32] tracking between cameras. (a) target identified i

on

The Robot-based Imaging Test-bed (RIT) [36] includes a 
ne

era poses, as measured by the 
lo

een tracked objects observed 
by

n 
e camera (b) a camera with a better view is maneuvered to intercept 

the estimated target trajectory 
 

twork of wireless cameras mounted on small differential 
drive robotic platforms. The RIT contains a single localization 
server process which receives pose measurements of robotic 
cameras from each of the localization sources within the 
system. Two sources of robot localization exist: (a) an 
overhead camera which can identify the various robotic 
cameras in the system using colored tags mounted on top of 
each robot and (b) each robotic camera can identify its own 
location by comparing its current observation with a large set 
of stored database images.  

Each of the robotic cam
calization sources (either overhead camera or self-

localization), contain a measure of the 2D pose (x,y,θ) as well 
as a standard deviation for each dimension (σx,σy,σθ). A 
partial extended Kalman filter (EKF) is used to provide a 
combined system-level pose for each robotic camera which 
uses a simple kinematics-based robot motion model and takes 
into account independent pose measurements as well as the 
statistical uncertainty for each.  

In [34], correspondences betw
 multiple cameras are used to generate a combined mosaic 

map from each of the camera video feeds. In order to do this, 
a planar surface area is assumed allowing registration of the 
tracked object paths within each camera view. Once the object 
trajectories are registered into a common coordinate frame, a 
mosaic of the video sequences can be generated by rotating 
the individual image sequences appropriately. In Figure 9, 
image (a) illustrates the combined mosaic, (b) shows the 
correspondence of the tracked objects between each of the 
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three cameras, and (c) shows the final correspondence 
between the objects.   
 

 
Figure 9: Generating a mosaic image by tracking targets using 

m

C. Planning and Control 
ning of camera actions and 

c

ning is presented by 
B

 
sy

ed by allowing a user to 
de

ultiple cameras [34] 
 

This last step, the plan
ommanding motion or state changes, can occur at the sensor 

level or at the network level. In the former case, smart sensors 
can perform simple actions to improve the relevance of the 
metadata they provide to the network such as [37] and [32]. 
Examples such as panning to follow a moving target or 
zooming in on an area of interest to achieve higher resolution 
data would help to provide more continuous and detailed 
information to the system. Network level planning enables the 
system to collaborate between each camera within the network 
to best accomplish system-level goals.   

A good example of network level plan
ramberger et. al [49] in which in which each smart camera in 

a multi-camera system stores a migration region consisting of 
the geometric region associated with the camera FOV, motion 
vectors representing target motion in the scene, and the next 
smart camera associated with each motion vector. The 
tracking task of a single target is passed from sensor to sensor 
along the predefined motion vectors as the target moves 
through the system thereby reducing the overall system 
processing so that other surveillance tasks can be performed. 

Introducing mobility controls within a mobile surveillance
stem raises a number of new challenges. A video sensor on 

a mobile platform cannot rely on pre-calibrated localization. 
As the sensor is repositioned, the system must be able to 
actively recalibrate its location and orientation relative to the 
other sensing nodes in the system. Planning and control 
strategies need to be implemented such that the network of 
active sensors work together to service all of the necessary 
surveillance tasks optimally.  

In [36], task arbitration is handl
fine observation targets that represent an area which should 

be observed by one or more mobile camera nodes. Each 
observation target consists of a 2D position within the global 
coordinate frame and a user-defined priority. Higher priority 
translates to more robots congregating around the target 
yielding more simultaneous observations. Once the number of 
camera observers is decided for each target, specific cameras 
can be allocated to each target. Here, a greedy algorithm is 
used in which all of the robots claim their closest (linear 
distance) observation point. This allocation step can be 
continuously computed to adjust for dynamic changes in the 
environment or target allocation. 
 

 
Figure 10: An example application in which target robot nodes 

(d

his planning system is illustrated in Figure 10. In this 
e

IV. DISCUSSION 
This pape two application areas 

re

th processor and network limitations 
di

esignated by white arrows) are observed by the other robots in the 
system [36] 

 
T

xample application, target nodes (designated by the white 
arrows) are observed by the other camera nodes in the system. 
In (a), the camera nodes are initially patrolling the four 
corners of an arena (designated by black tape). As the first 
target robot is introduced to the system, three of the cameras 
are allocated to the new target while one camera continues to 
patrol the parameter (b). When a second target is introduced 
into the system (c), the planning server divvies up the 
available resources such that two camera nodes are allocated 
to each target. The cameras continue to follow the target 
nodes as they move around the arena (d). 

r has presented a survey of 
levant to active networked multi-camera systems. IBR 

systems utilize networks of cameras to allow for the rendering 
of synthetic views of dynamically changing scenes. Here, the 
multiple simultaneously captured images are combined to 
reconstruct the virtual viewpoint in real time. Active camera 
components can be used to improve the synthetic image by 
maneuvering to view areas of the scene with poor rendering 
quality. Surveillance systems, on the other hand, have 
historically used camera networks to efficiently observe large 
areas simultaneously and in many cases, provide redundant 
views of a single target improving target feature estimation 
and reducing occlusion. Active components allow a 
surveillance system to track targets outside of a static FOV. In 
both cases, the use of an active multi-camera network raises 
key challenges associated with processing limitations, network 
bandwidth limitations, system level data fusion, and 
collaborative planning.  

Each system deals wi
fferently based on the data necessary at the network level. 

For IBR, raw pixel data is needed from multiple cameras to 
form the synthetic images. Several techniques such as 
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intelligently selecting the most optimal cameras in the 
network, only transmitting the region of interest within each 
image [15] and assuming constant scene depth [16][17][18] 
help to mitigate these limitations. Even with these 
optimizations, there is still much to be done to further 
distribute IBR processes. Surveillance applications are 
typically more concerned with higher level meta-data (such as 
a targets position and trajectory) and therefore lend 
themselves to distributed processing via smart sensors. Similar 
tactics such as only transmitting video pixels associated with 
the target [35] and calculating target metadata such as 
position, color, or velocity [32] also help to alleviate network 
load. Network load requirements also impose hardware 
requirements in terms of the network medium 
(wireless/cabled) and the transmission protocol. Lin et. al. 
[48] provides tradeoff analysis of a multi-camera server-less 
system with regards to power and communication. Here, it is 
mentioned that camera placement is a driving design decision 
affecting the transmission power requirements and peak traffic 
over the network. 

Data fusion is a straight forward, albeit difficult, challenge 
in

ion planning for active 
no

 it seems 
re

erved to highlight many of the application 
po

REFERENCES 
[1] CBS Broadcasting Inc. h . [Online]  

e. R. T. Collins, 

 IBR. Here, correlation algorithms are used to associate the 
pixels of each image such that an accurate estimation of a 
synthetic camera view can be generated. This can require a 
considerable amount of processing if the number of imaging 
sensors is large. CCV methods are used to perform this 
correlation and can be accelerated if knowledge of scene 
geometry is available. Hardware implementations of scene 
geometry calculations (HGR) may also help to offload the 
computational burden. However, expandability issues will 
need to be addressed if hardware solutions are to fuse a 
dynamically changing number of input images [13]. 
Surveillance applications need a combined representation of 
targets within the system. Several approaches including the a 
priori knowledge or online learning of camera FOV lines (or 
entrance and exit zones) can be used to associate targets 
traveling from one camera FOV to another. Probabilistic 
models such as Kalman filter variants [32][34] combined with 
trajectory modeling [36] are used when fusing simultaneous 
representations of a single target. In these cases, the standard 
challenge of accurately estimating the feature covariance 
matrix will determine the accuracy of the system level target 
description as well as the ability to accurately associate 
redundant measures of a single target.  

As with data fusion, the goal for mot
des is straightforward. Here, the system maneuvers the 

cameras to optimize the IBR calculation by cutting down on 
occlusion within the scene and obtaining redundant views 
which maximize the CCV rating of the synthetically generated 
view. In [15] this is accomplished by back-projecting CCV 
scores onto a camera plane. Cameras are then maneuvered to 
locations where the CCV score is sub-optimal to obtain a 
denser sampling in that location. This solution assumed that 
the cameras were mounted and maneuvered on a plane and 
does not adjust in real-time for dynamically changing scenes. 
Optimizing camera pose for IBR in full 3D in real time 
remains an open research topic. Surveillance applications, 
conversely, may want to “hand off” the task of tracking an 
object from one camera to another so that redundant 

observations are minimized and the monitored area is 
maximized [49]. Using smart sensors, single video feed 
planning operations such as intra-camera tracking can be 
offloaded to distributed microcontrollers which are bundled 
with each camera [32][36][37]. This simultaneously eases the 
processing burden of a centralized planning processor and 
cuts down on network utilization by control signals. At the 
network layer, planning and control for active surveillance 
networks is largely application driven. Sensors can be 
maneuvered to intercept motion trajectories of known targets 
[32] or allocated to track and follow an individual target 
specifically [36].  Active camera networks could also be used 
to maintain minimum communication links or optimize an ad-
hoc network in terms of power or signal strength.  

As these two application domains mature,
asonable to speculate as to how they can be combined to 

form a more capable system. At this time, the quality of an 
IBR synthetic view generated by an active multi-camera 
system is limited in terms of mobility, processing capability, 
or both. By implementing an IBR system on a UAV or a 
mobile ground platform, it is possible to generate higher 
quality images. These new mobility degrees of freedom 
require more complicated algorithms for planning and control 
and increase the difficulty in determining accurate position 
and orientation estimates for the camera. Distributed target 
tracking as implemented on automated surveillance systems 
[31][32][35] could be used to select more relevant regions of 
interest for synthetic image generation. Furthermore, by using 
trajectory analysis and active camera nodes such as the ones 
presented in [32], an IBR system could seek to actively 
reconfigure itself to intercept and render a moving target as it 
moves through multiple camera FOVs. Surveillance systems 
could likewise benefit from IBR synthetic views. Novel views 
of an intruder could be rendered, providing additional 
intuition regarding the shape and depth of the scene. 
Additionally, IBR techniques could be used to allow many 
users to view a single scene simultaneously from different 
angles providing an effective way to evaluate multiple video 
feeds at one time.  

This paper has s
ssibilities which exist for both IBR and surveillance within 

multi-camera networks. Given the collaborative benefits of 
each technology, it is likely that these systems will begin to 
merge as network bandwidth and processing limitations are 
alleviated by advances in hardware. As this occurs, the 
application specific architectural approaches of both IBR and 
surveillance to standard multi-camera network challenges will 
need to merge such that both tasks can be performed well. 

ttp://www.cbs.com
[2] Introduction to the Special Section on Video Surveillanc

A. J. Lipton, T. Kanade. 2000, IEEE, Transactions on Pattern Analysis 
and Machine Intelligence, pp. 745-746. 

[3] Scalable Video Requirements for Surveillance Applications. A. May, J. 
The, P. Hobson, F. Ziliani, J. Reichel. 2004, IEE, pp. 17-20. 

[4] Image-based geometrically-correct photorealistic scene /object 
modeling (IBPhM): a review. Zhang, Z. Y. Hong Kong : Asian 
Conference on Computer Vision (ACCV), 1998. 



 9

[5] Image-Based Modeling and Rendering Techniques: A Survey. Oliveira, 
M. RITA - Revista de Informatica Teorica e Aplicada, 2002, Vol. IX, pp. 
37-66. 

[6] Survey of image-based representations and compression techniques. H. 
Y. Shum, S. B. Kang, S. C. Chan.: IEEE Transaction on Circuit, SYstem 
on Video Technology, 2003. pp. 1020-1037. 

[7] On-the-fly processing of generalized lumigraphs. H. Schirmacher, M. Li, 
H. P. Seidel: Eurographics, 2001. 

[8] Image-based Visual Hulls. W. Matusik, C. Buehler, R. Raskar, S. J. 
Gortler, L. McMillan: ACM Press /ACM SIGGRAPH, 2000. 
Proceedings of SIGGRAPH, Computer Graphics Proceedings. pp. 369-
374. 

[9] Real-time consensus-based scene reconstruction using commodity 
graphics hardware. R. Yang, G. Welch, G. Bishop: Pacific Graphics, 
2002. 

[10] Real-time video-based modeling and rendering of 3d scenes. T. 
Naemura, J. Tago, H. Harashima: IEEE Computer Graphics and 
ASpplications, 2002, pp. 66-73. 

[11] Polyhedral visual hulls for real-time rendering. W. Matusik, C. Buehler, 
L. McMillan: Proceedings of Eurographics Workshop on Rendering, 
2001. 

[12] Online model reconstruction for interactive visual environments. Lok, 
B.: Proc. Symposium on Interactive 3D Graphics 2001, 2001. 

[13] Hardware accelerated visual hull reconstruction and rendering. M. Li, 
M. Magnor, H. P. Seidel: Proc. of Graphics Interface, 2003. 

[14] Image-based photo hulls. G. G. Slabaugh, R. W. Schafer, M. C. Hans. 
2002. 

[15]  Zhang, C. On Sampling of Image-based Rendering Data. Pittsburgh : 
Dept. of Electrical and Computer Engineering, Carnegie Mellon 
University, 2004. PhD Thesis. 

[16] A space-sweep approach to true multi-image matching. Collins, R. T.: 
Proc. of CVPR, 1996. 

[17] Photorealistic scene reconstruction by voxel coloring. S. M. Seitz, C. R. 
Dyer: Proc. of CVPR, 1997. 

[18] A real-time distributed light field camera. J. C. Yang, M. Everett, C. 
Buehler, L. McMillan: Eurographics Workshop on Rendering, 2002, pp. 
1-10. 

[19] The light field video camera. B. Wilburn, M. Smulski, H. H. K. Lee, M. 
Horowitz: SPIE Electronic Imaging, 2002. Proceedings of Media 
Processors. 

[20] The 3d room: Digitizing time-varying 3d events by synchronized 
multiple video streams. T. Kanade, H. Saito, S. Vedula: Technical 
Report, CMU-RI-TR-98-34, 1998. 

[21] Vedula, S. Image Based Spatio-Temporal Modeling and View 
Interpolation of Dynamic Events: Carnegie Mellon University, 2001. 
PhD Thesis. 

[22] Plenoptic Sampling. J. X. Chai, S. C. Chan, H. Y. Shum, X. Tong: ACM 
Press /ACM SIGGRAPH, 2000. Proceedings of SIGGRAPH, Computer 
Graphics Proceedings, Annual Conference Series. pp. 307-318. 

[23] Spectral analysis for sampling image-based rendering data. C. Zhang, 
T. Chen: IEEE Transaction on Circuit, System on Video Technology, 
2003, pp. 1038-1050. 

[24] Non-uniform sampling of image-based rendering data with the position-
interval error (pie) function. C. Zhang, T. Chen: Visual Communication 
and Image Processing, 2003. 

[25] A system for active image-based rendering. C. Zhang, T. Chen: IEEE 
Int. Conf. on Multimedia and Expo (ICME), 2004. 

[26] Adaptive acquisition of lumigraphs from synthetic scenes. H. 
Schirmacher, W. Heidrich, H. P. Seidel: EUROGRAPHICS, 1999. 

[27] A stereo matching algorithm with an adaptive window: Theory and 
experiment. T. Kanade, M. Okutomi: IEEE Transaction on Pattern 
Analysis and Machine Intelligence, 1994, pp. 920-932. 

[28] Handling occlusions in dense multi-view stereo. S. B. Kang, R. Szeliski, 
J. Chai: Proc. CVPR, 2001. 

[29] Intelligent distributed surveillance systems: a review. M. Valera, S.A. 
Velastin. 2: Vision, Image and Signal Processing, IEE Proceedings, 
2005, Vol. 152. 

[30] IEEE Workshops on Visual Surveillance IEEE, 1998, 1999, 2000. 
[31] Automated Visual Surveillance in Realistic Scenarios. M. Shah, O. 

Javed, K. Shafique: IEEE Computer Society, 2007, IEEE Computer 
Society, pp. 30-39. 

[32] Algorithms for Cooperative Multisensor Surveillance. R. T. Collins, A. 
J. Lipton, H. Fujiyoshi, T. Kanade. 2001, Proceedings of the IEEE, pp. 
1456-1477. 

[33] Detection and Tracking of Objects from Multiple Airborne Cameras. M. 
Shah, A. Hakeem, A. Basharat. 2006, SPIE. 

[34] Object Tracking Across Multiple Independently Moving Airborne 
Cameras. Y. Sheikh, M. Shah. 2005, IEEE International Conference on 
Computer Vision. 

[35]  Wide Area Surveillance with a Multi Camera Network. J. Black, T.J. 
Ellis, D. Makris. 2004, IEE, pp. 21-25. 

[36] Stancil, B. A Movile Robot Infrastructure for Vision-Based Planning and 
Control: Carnegie Mellon University, 2007. MS Thesis. 

[37] Robust Detection and Tracking of Human Faces with an Active Camera. 
D. Comaniciu, V. Ramesh: IEEE, 2000. 

[38] Into the Woods: Visual Surveillance of Noncooperative and 
Camouflaged Targets in Complex Outdoor Settings. T. E. Boult, R. J. 
Micheals, X. Gao, M. Eckmann. 2001, Proceedings of the IEEE, pp. 
1382-1402. 

[39] Sensor Fusion for Mobile Robot Dead-reckoning with a precision-
calibrated Fiber Optic Gyroscope. H. Chung, L. Ojeda, J. Borenstein: 
Robotics and Automation, 2001, IEEE International Conference on 
Robotics and Automation, pp. 3588 - 3593 . 

[40] Extended Kalman Filter based Mobile Robot Pose Tracking using 
Occupancy Grid Maps. E. Ivanjko, I. Petrovic. Dubrovnik, Croatia : 
IEEE MELECON, 2004, IEEE Melecon, pp. 311-314. 

[41] Navigating Mobile Robots: Systems and Techniques. J. Borenstein, B. 
Everett, and L. Feng. Wellesley : A. K. Peters, Ltd., 1996. 

[42] Negenborn, R. Robot Localization and Kalman Filters: Institue of 
Information and Computing Sciences, Utrecht University, 2003. PhD 
Thesis. 

[43] A Multi-Sensor Surveillance System for Active-Vision Based Object 
Localization. A. Bakhtari, M. Eskandari, M. D. Naish, B. Benhabib: 
IEEE, 2003. 

[44] Fast and accurate vision-based pattern detection and identification. J. 
Bruce, M. Veloso. Pittsburgh : Dept. of Computer Science, Carnegie 
Mellon Univ. 

[45] Rendering with concentric mosaics. H. Y. Shum, L. W. He: ACM Press / 
ACM SIGGRAPH, 1999. Proceedings of SIGGRAPH, Computer 
Graphics Proceedings, Annual Conference Series. pp. 299-306. 

[46] A survey on image-based rendering - representation, sampling and 
compression. C. Zhang, T. Chen: EURASIP Signal Processing: Image 
COmmunication, 2004, pp. 1-28. 

[47] A survey of image-based rendering techniques. Kang, S. B.: SPIE , 
1999, VideoMetrics, Vol. 3641, pp. 2-16. 

[48] Design and Implementation of Ubiquitous Smart Cameras. C. H. Lin, 
W. Wlf, A. Dixon, X. Koutsoukos, J. Sztipanovits: 2006, Proceedings of 
the IEEE International Conference on Sensor Networks, pp. 32-39. 

[49] Integrating Multi-Camera Tracking into a Dynamic Task Allocation 
System for Smart Cameras. M. Bramberger, M. Quaritsch, T. Winkler, 
B. Rinner, H. Schwabach: 2005, IEEE, pp. 474-479. 

 
 
 
 
 



 10

 
 

Brian A. Stancil is currently a senior engineer at Applied Perception Inc, a 
division of Foster-Miller. He received his B.S. degree in computer science 
from Virginia Tech University (Blacksburg, VA) in 2002 and his M.S. degree 
in electrical and computer engineering from Carnegie Mellon University 
(Pittsburgh, PA) in 2007. Prior to working at Applied Perception, he worked 
at the National Robotics and Engineering Center at Carnegie Mellon 
University from 2002 to 2007. His current research interests focus on machine 
vision specifically with regards to object detection and classification.  

He has worked on several autonomous land systems including the 
“Spinner” and “Crusher” platforms at the National Robotics and Engineering 
Center at Carnegie Mellon University under contract with DARPA, the 
Autonomous Navigation Systems program under the Future Combat Systems 
contract with the United States Army, and the Talon and LAGR platforms at 
Applied Perception in Pittsburgh, PA. 
 

 
 

Dr. Cha Zhang is currently a Researcher in the Communication and 
Collaboration Systems Group at Microsoft Research, Redmond. He received 
the B.S. and M.S. degrees from Tsinghua University, Beijing, China in 1998 
and 2000, respectively, both in Electronic Engineering, and the Ph.D. degree 
in Electrical and Computer Engineering from Carnegie Mellon University, in 
2004. His current research focuses on applying various machine learning and 
computer vision techniques to multimedia applications, in particular, 
multimedia teleconferencing. He has worked on various multimedia related 
projects including sampling and compression of image-based rendering data, 
3D model database retrieval and active learning for database annotation, peer-
to-peer networking, etc. 

Dr. Zhang has published more than 30 technical papers and holds 
numerous U.S. patents. He won the best paper award at ICME 2007. He co-
authored a book titled Light Field Sampling, published by Morgan and 
Claypool in 2006. 

Dr. Zhang has been actively involved in various professional activities. He 
was the Publicity Chair for International Packet Video Workshop in 2002, and 
the Program Co-Chair for the first Immersive Telecommunication Conference 

in 2007. He served as Technical Program Committee members for numerous 
conferences such as ACM Multimedia, CVPR, ICCV, ECCV, ICME, ICPR, 
ICWL, etc. He is an Associate Editor for Journal of Distance Education 
Technologies. He was a Guest Editor for the Advances in Multimedia Journal, 
special issue on Multimedia Immersive Technologies and Networking. 
 

 
 

Dr. Tsuhan Chen has been with the Department of Electrical and 
Computer Engineering, Carnegie Mellon University, Pittsburgh, 
Pennsylvania, since October 1997, where he is currently a Professor and 
Associate Department Head.  From August 1993 to October 1997, he worked 
at AT&T Bell Laboratories, Holmdel, New Jersey.  He received the M.S. and 
Ph.D. degrees in electrical engineering from the California Institute of 
Technology, Pasadena, California, in 1990 and 1993, respectively. 
He received the B.S. degree in electrical engineering from the National 
Taiwan University in 1987. 

Tsuhan served as the Editor-in-Chief for IEEE Transactions on Multimedia 
in 2002-2004.  He also served in the Editorial Board of IEEE Signal 
Processing Magazine and as Associate Editor for IEEE Trans. on Circuits and 
Systems for Video Technology, IEEE Trans. on Image Processing, IEEE 
Trans. on Signal Processing, and IEEE Trans. on Multimedia.  He co-edited a 
book titled Multimedia Systems, Standards, and Networks. 

Tsuhan received the Charles Wilts Prize at the California Institute of 
Technology in 1993.  He was a recipient of the National Science Foundation 
CAREER Award, from 2000 to 2003.  He received the Benjamin Richard 
Teare Teaching Award in 2006, and the Eta Kappa Nu Award for Outstanding 
Faculty Teaching in 2007.  He is elected to the Board of Governors, IEEE 
Signal Processing Society, 2007-2009.  He is a member of the Phi Tau Phi 
Scholastic Honor Society.  He is Fellow of IEEE, and a Distinguished 
Lecturer of the Signal Processing Society. 
 
 
 
 


	I. INTRODUCTION
	II. Active Multi-Camera Image-Based Rendering
	A. Geometry Reconstruction
	B. Real-time Image Based Rendering
	C. Planning and Control

	III. Active Multi-Camera Surveillance
	A. Single Sensor Surveillance Operations
	B. Data Fusion (Tracking Between Cameras)
	C. Planning and Control

	IV. Discussion

