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Abstract

In this paper, we propose to capture image-based rendering scenes using a novel approach called active rearranged

capturing (ARC). Given the total number of available cameras, ARC moves them strategically on the camera plane

in order to minimize the sum of squared rendering errors for a given set of light rays to be rendered. Assuming the

scene changes slowly so that the optimized camera locations are valid in the next time instance, we formulate the

problem as a recursive weighted vector quantization problem, which can be solved efficiently. The ARC approach

is verified on both synthetic and real-world scenes. In particular, a large self-reconfigurable camera array is built to

demonstrate ARC’s performance on real-world scenes. The system renders virtual views at 5-10 frames per second

depending on the scene complexity on a moderately equipped computer. Given the virtual view point, the cameras

move on a set of rails to perform ARC and improve the rendering quality on the fly.
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Active Rearranged Capturing of Image-Based

Rendering Scenes — Theory and Practice

I. INTRODUCTION

Image-based rendering (IBR) has attracted much attention recently [1], [2]. By capturing a dense set of images

of a scene, IBR is capable of rendering 3D novel views with little or no scene geometry. Compared with traditional

model-based rendering methods, IBR bypasses the most difficult geometry reconstruction stage, and is easy to

capture and fast to render.

While geometric models are often considered the most compact representation for real-world scenes, images are

very redundant. In IBR, in order to synthesize novel views directly from light ray interpolation, thousands or millions

of images need to be taken from nearby view points, making them difficult to store and manage. The following

question thus becomes very important for IBR: How many images are necessary for rendering high-quality images

of an IBR scene? This problem is widely referred as the IBR sampling problem or plenoptic sampling problem, and

was addressed by work in [3], [4]. In short, the plenoptic sampling problem is a multi-dimensional signal sampling

problem. If the light rays are sampled uniformly in the space, the sampling rate in order to achieve interpolation

without aliasing is determined by the range of depths of the scene, the surface property of the scene objects, and

the occlusions between them [4]. The sampling rate is also related to the amount of information we know about

the scene geometry, and at what resolution the rendering will be carried out [3]. The plenoptic sampling theory is

deeply grounded on the multi-dimensional signal processing framework, and greatly enhances our understanding

of IBR from a signal processing point of view.

Unfortunately, the above plenoptic sampling theory does not provide a practical guidance for capturing IBR

scenes. In order to estimate the minimum sampling rate, one has to know the scene well, including its depth

variation, the object surface property, and occlusions between objects. These characteristics are often difficult to

measure before capturing. To overcome the limitation, Zhang and Chen [5] proposed to sample the scene with a

high sampling rate, and then throw away samples by analyzing the Fourier spectrum of the over-sampled data.

After the down-sampling process, the amount of data stored is minimized according to the sampling theory. The

drawback is that the oversampling stage is often too expensive to perform due to time or storage constraints.

One practical approach to capturing IBR scenes is through active sampling, more accurately, active incremental

sampling [6], [7]. The idea is to start with a sparse set of images of the scene, and gradually add more samples

or take more images of the scene from where the rendering quality is not good. Here the rendering quality is

estimated by measuring the local color consistency score [6], which has been proved to be a good indicator of the

final rendering quality. In active incremental sampling, we assume once an image is taken, it will not be discarded,

and as the sampling proceeds, potentially infinite number of images can be taken for the scene. Obviously, active

incremental sampling is useful for capturing static scenes.
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Recently there has been increasing interest in capturing dynamic scenes with IBR [8], [9]. As the scene is

changing, we can no longer use a single camera to capture it. Instead, tens or hundreds of cameras need to be

performing the capturing task simultaneously. This brings new challenges to the IBR sampling problem. Namely, if

the number of images one can take is limited, where shall we capture these images? In this paper, we will address

this problem with an approach we call active rearranged capturing (ARC). Based on what the cameras saw in the

previous instance and what views need to be synthesized, active rearranged capturing re-positions the cameras so

that the quality of a given set of rendered views is optimized. We formulate the problem as a recursive weighted

vector quantization (VQ) problem, which can be solved efficiently.

This paper goes beyond the theoretical analysis and also presents a self-reconfigurable camera array that verifies

the above ARC theory. The system is composed of 48 cameras mounted on mobile platforms. These cameras are

controlled by a single computer, which performs image decoding, camera calibration, lens distortion correction,

rough scene geometry reconstruction and novel view synthesis, all in real time (5-10 fps). More importantly, we

utilize a simplified ARC algorithm and demonstrate that by reconfiguring the camera locations on the platform, the

rendering quality of the virtual views can be significantly improved.

The paper is organized as follows. Related work is presented in Section II. The active rearranged sampling process

is described in Section III. Section IV shows our self-reconfigurable camera array and how the active rearranged

sampling theory is used in practice. Conclusions are given in Section V.

II. RELATED WORK

A. IBR Scene Capturing and Rendering

We first give a brief introduction on IBR scene capturing and rendering. Fig. 1 shows a typical IBR system. We

place a set of cameras around the object and shoot images. In the light field [10] setup, the cameras are uniformly

distributed on a plane (namely the camera plane), and point to the same direction. In the concentric mosaics [11],

the cameras are arranged along a circle. In the most general form, the cameras can be anywhere, which can still

be rendered through the unstructured Lumigraph rendering [12]. In this paper, we assume that the cameras are

constrained on a camera plane, but on that plane the distribution of the cameras can be non-uniform. The directions

of the cameras are assumed to be the same, although this requirement is not crucial to the proposed algorithm.

To render novel views from the captured images, we split them into many light rays and obtain their intensities

one by one. As shown in Fig. 1, consider one of the light rays being rendered. We first trace the light ray back to

the scene geometry, and obtain the crossing point O. Since the geometry is typically unknown for real-world scenes,

people usually assume a constant depth plane. We then project O to the neighboring captured images (circled by

an ellipse in Fig. 1) and obtain the light ray’s intensity through weighted interpolation of all the projected pixels.

The weights are usually determined by the angular differences between the rendered light ray and the projection

directions from O to the captured images, which are also used to select neighboring images. The smaller the angular

difference, the higher the weight to the associated image. Other factors such as resolution or field of view may also

affect the weights [12], however they are not considered in this paper.

September 7, 2006 DRAFT



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 3

Fig. 1. The capturing and rendering of IBR scenes.

Image-based rendering covers a huge research field, and we refer the reader to [1], [2] for a detailed survey on

this topic.

B. IBR Sampling

Early work on IBR sampling focused on the uniform sampling analysis of IBR. Work by Lin and Shum [13],

Chai et al. [3], as well as Zhang and Chen [4] all greatly enhanced the understanding of IBR from the signal

processing’s point of view. In this section, we review some of the nonuniform sampling work for IBR, as they are

more closely related to what we propose in this paper.

Fleishman et al. [14] proposed an automatic camera placement algorithm for IBR. A mesh model of the scene

is known. The goal is to place the cameras optimally such that the captured images can form the best texture

map for the mesh model. They found that such problem can be regarded as a 3D art gallery problem, which is

NP-hard [15]. They then proposed an approximation solution for the problem by testing a large set of camera

positions and selecting the ones with higher gain rank. The gain was defined based on the portion of the image that

can be used for the texture map. A similar approach was proposed in [16], where the set of reference views were

selected from a large image pool in order to minimize a certain target function. In [17], Namboori et al. developed

an adaptive sample reduction algorithm for layered depth image, which is another representation of IBR.

Schirmacher et al. [18] proposed an adaptive acquisition scheme for a light field setup. Assuming the scene

geometry is known, they added cameras recursively on the camera plane by predicting the potential improvement

in rendering quality when adding a certain view. This a-priori error estimator accounts for both visibility problems

and illumination effects such as specular highlights to some extent. A similar approach was proposed by Zhang
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and Chen for concentric mosaics setup in [7], where a real system was built to demonstrate the idea.

The previous approaches mentioned above are examples of sample reduction or active incremental sampling.

The active rearranged capturing concept is new, and was only very briefly mentioned in our previous paper [19]

with very preliminary results. In this paper, we will re-formulate the problem in a more rigorous way, propose a

weighted vector quantization based algorithm to solve the problem, and show the effectiveness of the algorithm

with a self-reconfigurable camera array.

C. Existing Camera Arrays

In recent years there has been increasing interest in building camera arrays. For instance, Schirmacher et al. [18]

built a 6-camera system which was composed of 3 stereo pairs and claimed that the depth could be recovered

on-the-fly. The novel views are then synthesized using these depth maps. Naemura et al. [20] constructed a camera

array system consisting of 16 cameras. A single depth map was reconstructed from 9 of the 16 images using a

stereo matching PCI board, and was then used for rendering. Matusik et al. [21] used 4 cameras for IBR using

the image-based visual hull (IBVH) technique. The IBVH algorithm was later extended to image based photo hull

in [22], which also used a 4-camera array. More recently, Yang et al. [23] built a 5-camera system for real-time

rendering with the help of modern graphics hardware.

Several large arrays consisting of tens of cameras have also been built, such as the Stanford multi-camera array [8],

the MIT distributed light field camera [9] and the CMU 3D room [24]. These three systems have 128, 64 and 49

cameras, respectively. The Stanford system focused on grabbing synchronized video sequences onto hard drives.

They also explored various applications of such a camera array, such as high dynamic video, high speed video,

hybrid aperture photography, etc [25]. The CMU 3D room was able to generate good-quality novel views both

spatially and temporarily [26]. It utilized the scene geometry reconstructed from a scene flow algorithm that took

several minutes to run. While this is affordable for off-line processing, it cannot be used to render scenes on-the-fly.

The MIT system did render live views at a high frame rate. Their method assumed constant depth of the scene,

however, and suffered from severe ghosting artifacts due to the lack of scene geometry. Such artifacts are expected

according to the plenoptic sampling analysis [3], [4].

In this paper we will present a self-reconfigurable camera array that consists of 48 cameras. Compared with

the previous camera arrays, a unique characteristic of our camera array is that the cameras are mobile. A central

computer controls where the cameras should move, based on our active rearranged capturing theory, in order to

render the best quality images.

III. ACTIVE REARRANGED CAPTURING

A. Problem Statement

Assume we have N cameras to capture a static or slowly-moving scene. The cameras can move freely on the

camera plane, and point to the same direction. The field of view of each camera is assumed to be wide enough

to cover the interested objects. During the capturing, we also have P viewers who are watching the scene. These
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Fig. 2. The formulation of the problem.

P views are rendered through the method mentioned in Section II-A from the N captured images. The goal is to

arrange these N cameras such that the P views can be rendered at their best quality. Here both N and P are finite.

Formally, as shown in Fig. 2, let the cameras’ positions on the camera plane be cj , j = 1, 2, · · · , N . Since during

the rendering, each rendered view will be split into a set of light rays, we combine the P virtual views into L

light rays in total. Denote them as li, i = 1, 2, · · · , L. For a number of reasons such as insufficient sampling and

inaccurate geometric modeling, the rendered light rays are not perfect. Denote the rendering errors of the light

rays as ei, i = 1, 2, · · · , L, or, in vector form, e. In our application, the rendering error can be considered as the

difference between the rendered light ray and the actual light ray intensity, although other definitions are possible.

Obviously, e depends on the camera locations cj . The camera rearrangement problem is stated as:

Definition 3.1: Given light rays li, i = 1, 2, · · · , L to be rendered, find the optimal camera locations ĉj , j =

1, 2, · · · , N , such that a function Ψ(e) over the rendering errors is minimized. That is:

ĉj = arg
cj

minΨ(e) (1)

The definition of function Ψ(e) depends on the particular application. In this paper, we focus on the widely adopted

squared error criterion, namely:

Ψ(e) =
L∑

i=1

e2
i ; (2)

We will show, in the next subsections, that such an error function leads to a weighted vector quantization solution

for active rearranged capturing, which can be solved efficiently using a modified LBG-VQ algorithm [27].

Note the above camera rearrangement problem is trivial if all the P virtual views are on the camera plane, and

P ≤ N, because one may simply move the cameras to the virtual view positions and capture the scene at those

September 7, 2006 DRAFT



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 6

places directly, leading to zero error for the rendered light rays. However, the problem is non-trivial as long as one

of the virtual viewpoints are out of the camera plane (even if P = 1), or P > N, because any out of plane view

will have to be synthesized from multiple images, which can be potentially improved by rearranging the capturing

cameras.

B. Formulation Based on the Angular Difference

In Fig. 2, denote the intersection of the light rays and the camera plane as xi, i = 1, 2, · · · , L. Consider a certain

light ray li, which crosses the scene geometry at O, and one of its neighboring camera cj . Denote the distance

between cj and xi as dij = ‖xi − cj‖ and the angular difference as θij . Let the distance between O and xi be

ri, which is known during the rendering. From the figure, we know that when the scene depth ri À dij (which is

almost always true), we have:

θij ≈ dij cos αi

ri
= wi‖xi − cj‖ (3)

where αi is the angle between the light ray li and the normal of the camera plane, and wi = cos αi

ri
. Let

θ̃i = min
j=1,··· ,N

θij (4)

be the minimum angular difference between light ray li and all the capturing cameras. Intuitively, if the minimum

angle θ̃i is very small, the rendered light ray will be almost aligned with a captured light ray, hence the rendering

quality should be high, even if the scene geometry is inaccurate or the scene surface is non-Lambertian. The

relationship between the rendering error ei and θ̃i, however, is very complex for practical scenes due to various

factors such as geometry accuracy and scene surface property. As a very coarse approximation, we assume:

ei = εi(θ̃i) ≈ kiθ̃i, (5)

where ki is a scaling factor. The right side of Equ. 5 is indeed a linear approximation of εi(θ̃i), which is valid

when θ̃i is very small. The scaling factor ki, however, differs from light ray to light ray, and is generally unknown.

Active rearranged capturing then minimizes the summation of squared errors as:

ĉj = arg
cj

min Ψ(e) = arg
cj

min
L∑

i=1

e2
i

≈ arg
cj

min
L∑

i=1

(kiθ̃i)2

= arg
cj

min
L∑

i=1

γi min
j=1,··· ,N

‖xi − cj‖2, (6)

where γi = w2
i k2

i . Note the last equality is due to Equ. 3 and 4. The above formulation is a standard weighted

vector quantization problem, and can be easily solved if the weights γi are known. Unfortunately, as mentioned

earlier, ki depends on the geometry accuracy and scene surface property, which is generally unknown.

Although Equ. 6 cannot be solved directly, it has some nice properties. For instance, if a certain light ray has

a large scaling factor ki, which means it tends to have a large rendering error, the weight γi becomes large. The
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Fig. 3. The flow chart of our proposed active rearranged capturing algorithm for static or slowly-moving scenes.

vector quantization process will then reduce more on min
j=1,··· ,N

‖xi− cj‖2, effectively moving the capturing cameras

closer to that light ray. Therefore, if the weights γi can be adjusted according to the rendering quality, the same

weighted VQ algorithm can still be used to achieve the best rendering quality. These observations make it clear

that we need an iterative solution for active rearranged capturing, which adjusts the weights γi according to some

estimation of the final rendering quality.

C. A Recursive Algorithm for Active Rearranged Capturing

Fig. 3 shows the flow chart of the proposed recursive active rearranged capturing algorithm applicable for static

or slowly-moving scenes. Given a set of newly captured images, we first estimate the rendering errors of all the light

rays. If the viewers have moved (which can cause significant changes to the set of to-be-rendered light rays), the

weights γi in Equ. 6 will be reinitialized. Afterwards, the weights γi are updated based on the estimated rendering

quality. Weighted VQ is performed as Equ. 6, and the cameras are moved to capture the next set of images.

Two problems need to be addressed in the above flow chart, i.e., how to estimate the rendering quality given a

set of captured images, and how to update the weights γi.

We propose to use the local color consistency as an estimation of the rendering quality. The local color consistency

was first proposed in [19] for measuring the PIE functions. It states that a good rendering quality can be expected if

the projected pixels used to interpolate a given light ray share the same intensity. Therefore, an easy implementation

of the local color consistency is to use the variance of the projections. Take the light ray li in Fig. 2 as an example.

The local color consistency Ci of li can be calculated as:

Ci =
1
σi

(7)

where σi is the variance of the projections of O to the K nearest neighboring images. Usually K is small, e.g.,

K = 4. In [19] it has been shown that such measurement is indeed a good estimate of the rendering quality. In the
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follow discussions, we simply use ei ≈ σi to model the rendering errors that we want to minimize in Equ. 6.

Now that the rendering quality has been estimated, we shall adjust the weights γi in Equ. 6 to find better locations

for the capturing cameras. In the following, we present two weight updating mechanisms we experimented.

The first algorithm is based on the observation that if the weight associated with a certain light ray is increased,

the weighted VQ algorithm that follows will tend to move the capturing cameras closer to the light ray. To improve

the low quality light rays, we first define:

si = log σi (8)

as the score for each light ray. Let smin and smax be the minimum and maximum value of si, i = 1, · · · , L. s be

the average value of si. The weight γt+1
i at time instance t + 1 is updated from those γt

i at time instance t as:

γt+1
i =





γt
i ∗ (1 + (ξ − 1) s−si

s−smin
), si ≤ s;

γt
i ∗ (1 + (ζ − 1) si−s

smax−s ), si > s.
(9)

where ξ and ζ are the minimum and maximum weight scaling factor. They are set as 0.5 and 4 respectively in the

current implementation. As illustrated in Fig. 4, Equ. 9 says that if the variance of the projected pixels for a light

ray is greater than the average (thus the local color consistency is bad), its weight will be increased. During the

weighted VQ, the cameras will then move closer to that light ray. Otherwise, the cameras will move away. Note

that after the weight update with Equ. 9, one should normalize the new weights such that
∑L

i=1 γt+1
i = 1.

Equ. 9 requires initial values of γ0
i to start the iteration. We find in practice the following initialization works

well:

γ0
i ∝ min

j=1,··· ,N
‖xi − cj‖, (10)

which gives higher weights to light rays that are far from any capturing cameras.

The second weight updating algorithm is based on the linear approximation between the rendering error and the

minimum angular difference in Equ. 5, it is straightforward that:

γi = w2
i k2

i

≈ e2
i

min
j=1,··· ,N

‖xi − cj‖2

≈ σ2
i

min
j=1,··· ,N

‖xi − cj‖2 (11)

Since the rendering errors ei are estimated from the local color consistency, the second weight updating algorithm

does not require initial values of γi. That is, even if the viewers keep moving around, the weight reinitialization

step in Fig. 3 can be skipped, making it more adaptable for viewer changes and dynamic scenes.

The recursive active rearranged capturing algorithm is thus summarized in Fig. 5.

D. Discussions

If we adopt the second weight updating algorithm in the previous section, the proposed recursive ARC algorithm is

guaranteed to converge if all the assumptions made in the paper are correct. This can be seen as follows. The weight
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Fig. 4. Scaling factor for updating the auxiliary weights.

update step in Equ. 11 will not change the error function, while the weighted VQ that follows will guarantee to

reduce the error function. Hence after each iteration the error function will be reduced, until it converges1. However,

one may argue that although moving cameras closer to a rendered light ray may increase the rendering quality, the

relationship may not be linear, hence Equ. 5 may not hold. Subsequently, after weighted VQ the rendering error

may increase. In addition, although the local color consistency works well, it may not reflect the exact rendering

error a light ray has.

In practice, we find both updating algorithm converges well for the sequences we tested. In fact, as shown in the

next subsection, we always notice significant improvements after the first iteration. Further iterations only increase

the rendering quality slightly. This characteristic surprises us but is good for active rearranged capturing, because it

allows the algorithm to track viewer movements and dynamic scenes almost instantaneously, as long as the camera

can move fast enough.

E. Synthetic experimental results

We verify the effectiveness of the proposed view-dependent active rearranged capturing algorithm with three

synthetic scenes, namely, teapot, vase and wineglass (Fig. 7), all rendered from POV-Ray [28], which creates

3D photo-realistic images using ray tracing. The scenes contain complex textures, occlusions, semi-reflection,

transparency, etc. In all cases, we use 64 cameras on the camera plane to capture the scene, as shown in Fig. 6.

The initial camera locations are uniformly distributed on the camera plane. The virtual viewpoints can be anywhere

1Although weighed VQ guarantees convergence, it does not guarantee to converge to the global minimum. The same problem will exist in

our algorithm.
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for light field rendering, but for experimental purpose we place them on a plane in front of the camera plane, at a

distance z0, where z0 roughly equals to the distance between neighboring initial camera locations d0. The virtual

viewpoints are assumed to be on a rectangular grid, indexed from 1 to 9, as shown in Fig. 6. The distance between

neighboring virtual viewpoints is d.

We first consider the case where a single virtual view is rendered from the viewpoint indexed as 1 in Fig. 6. We use

a constant depth plane as the geometric model. Fig. 8 shows the peak signal to noise ratio (PSNR) of the rendered

image with respect to the number of iterations ARC performs. The improvement from no ARC (iteration number =

0) to ARC is very significant. Another interesting phenomenon is that the PSNRs improve dramatically when ARC

was first applied (iteration number = 1), but then they improve very slowly when the number of iterations increases.

This was unexpected but very useful for applying ARC to dynamic scenes and adapting to viewer movements.

Both weight updating algorithms work well and achieve similar performance. On the teapot scene, the second

updating algorithm performs slightly better. This can be explained by Fig. 7, where we show some of the rendering

results before and after ARC. The red dots in Fig. 7(c)(e)(g)· · · shows the projection of the camera locations to

the virtual imaging plane of the rendering camera. It is interesting to observe that in teapot, many cameras are

stuck in the pure black background when Equ. 9 is used to update the weights. In contrast, they immediately move

to the foreground object when using Equ. 11. This is because although Equ. 9 adjust the weights up or down

exponentially, it cannot directly set the weights of those background pixels to zero like Equ. 11 will do. Hence the

convergence of ARC with Equ. 9 as the updating mechanism is slower. On the other hand, after 10 iterations, the

first updating algorithm achieves slightly better PSNR on vase and wineglass. This is because the second algorithm

relies on a linear approximation in Equ. 5, which is less flexible than the first algorithm in adjusting the weights.

We next examine the performance of ARC when multiple views are rendered. In Fig. 9, we show PSNR curves

of teapot and vase with respect to the number of virtual viewpoints and their relative distances d (Fig. 6). In Fig. 9,

if the number of viewpoints is P , we use all viewpoints whose indexes are less than or equal to P in Fig. 6.

The weight updating algorithm in Equ. 11 is adopted in this comparison, with 3 iterations of ARC. Note in all

cases, capturing with ARC produces significantly higher PSNR than if no ARC is performed. On the other hand,

the improvement drops when the number of viewpoints increases. This is expected because when the number of

viewpoints increases, ARC needs to seek balance between multiple views in order to achieve the best average

rendering quality. Similarly, when the virtual views are more and more far apart, the to-be-rendered light rays have

less overlap, which increases the difficulty for ARC to find camera locations that can render all the light rays well.

Note the above conclusions are not definite (e.g. the vase scene), because different viewpoints may see completely

different scene objects.

IV. A SELF-RECONFIGURABLE CAMERA ARRAY

In this section, we present a self-reconfigurable camera array that makes use of the above developed ARC

algorithm and adjusts the camera locations automatically based on the virtual views to be rendered. To the best of

the authors’ knowledge, this is the world’s first camera array at such scale that can perform self-reconfiguration for
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the purpose of image-based rendering.

A. System Overview

The system is composed of inexpensive off-the-shelf components. As shown in Fig. 10, there are 48 (8×6)

Axis 205 network cameras placed on 6 linear guides. The linear guides are 1600 mm in length, thus the average

distance between cameras is about 200 mm. Vertically the cameras are 150 mm apart. The cameras can capture

up to 640×480 pixel images at maximally 30 fps. They have built-in HTTP servers, which send motion JPEG

sequences upon request. The JPEG image quality is controllable. The cameras are connected to a central computer

through 100Mbps Ethernet cables.

Each camera is mounted on a mobile platform (see Fig. 11), and is fastened to a pan servo capable of rotating

through 90 degrees. They are mounted on a platform, which is equipped with another sidestep servo. The sidestep

servo has been modified to rotate continuously. A gear wheel is attached to the sidestep servo, which allows the

platform to move horizontally with respect to the linear guide. The gear rack is added to avoid slippery during the

motion. The two servos on each camera unit allow the camera to have two degrees of freedom—pan and sidestep.

However, the 12 cameras at the leftmost and rightmost columns have fixed positions and can only pan.

The servos are controlled by the Mini SSC II servo controller [29]. Each controller is in charge of up to 8

servos (either standard servos or modified ones). Multiple controllers can be chained, thus up to 255 servos can be

controlled simultaneously through a single serial connection to a computer. In the current system, we use 11 Mini

SSC II controllers to control 84 servos (48 pan servos, 36 sidestep servos).

Unlike any of the existing camera array systems mentioned in Section II-C, our whole system uses only a single

computer. The computer is an Intel Xeon 2.4 GHz dual processor machine with 1GB of memory and a 32 MB

NVIDIA Quadro2 EX graphics card. We developed a rendering algorithm that is very efficient and can perform

region of interest identification, JPEG image decompression and camera lens distortion correction in real time (5-10

fps) [30].

Fig. 12(a) shows a set of images about a static scene captured by our camera array. The images are acquired

at 320×240 resolution. The JPEG compression quality is set to be 30 (0 being the best quality and 100 being the

worst quality). Each compressed image is about 12-18 Kbytes. In a 100 Mbps Ethernet connection, 48 cameras can

send such JPEG image sequences to the computer simultaneously at 15-20 fps, which is satisfactory.

B. Software Architecture

The system software runs as two processes, one for capturing and the other for rendering. The capturing process is

responsible for sending requests to and receiving data from the cameras. The received images (in JPEG compressed

format) are directly copied to some shared memory that both processes can access. The capturing process is often

lightly loaded, consuming about 20% of one processor in the computer. When the cameras start to move, their

external calibration parameters need to be re-calculated in real-time. Camera calibration is also performed by the

September 7, 2006 DRAFT



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 12

capturing process. As will be described in the next section, calibration of the external parameters generally runs

fast (150–180 fps).

The rendering process runs on the other processor. It is responsible for ROI identification, JPEG decoding, lens

distortion correction, scene geometry reconstruction and novel view synthesis. Due to page limits, we will not

discuss the real-time rendering aspect of the system. Interested readers are referred to [30] for more details.

C. Camera Calibration

Since our cameras are designed to be self-reconfigurable, calibration must be performed in real-time. Fortunately,

the internal parameters of the cameras do not change during their motion, and can be calibrated offline. We use a

large planar calibration pattern for the calibration process (Fig. 12). Bouguet’s calibration toolbox [31] is used to

obtain the internal camera parameters.

To calibrate the external parameters, we first need to extract the features on the checkerboard. We assume that

the top two rows of feature points will never be blocked by the foreground objects. The checkerboard boundary is

located by searching for the red strips of the board in the top region of the image. The pan servos are used here

to make sure that the checkerboard is always centered in the captured images. Once the left and right boundaries

are identified (as shown in Fig. 13), we locate the top two rows of corner features through linear filtering [30].

The feature positions are then refined to sub-pixel accuracy by finding the saddle points, as in [31]. The corners

below the second row are extracted row by row. At each row, we predict the feature locations based on the previous

two rows of features. The accurate positions of the features are then found through the same approach above. The

results of such feature extraction are shown in Fig. 13. Note that if the corner detector cannot find a feature along

a column for a certain row due to various reasons such as occlusions, it will stop finding features below that row

in that column.

Finally, to obtain the 6 external parameters (3 for rotation and 3 for translation) of the cameras, we use the

algorithm proposed by Zhang [32]. The Levenberg-Marquardt method implemented in MinPack [33] is adopted

for the nonlinear optimization. The above calibration process runs very fast on our processor (150–180 fps at full

speed). As long as there are not too many cameras moving around simultaneously, we can perform calibration

on-the-fly during the camera movement. In the current implementation, we constrain movement to one camera per

row at any time instance. After a camera has sidestepped, it will pan if necessary in order to keep the calibration

board in the middle of the captured image.

D. Real-Time Rendering

We developed a real-time rendering algorithm that takes the 48 captured frames at any instance and renders

virtual views at arbitrary viewpoints for dynamic scenes. Briefly speaking, the algorithm reconstructs a mesh model

of the scene on the fly, and renders the virtual views with unstructured Lumigraph rendering [12]. The algorithm

achieves 5-10 frames per second rendering speed on a moderate computer. The rendering software is downloadable

from:
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http://amp.ece.cmu.edu/projects/MobileCamArray/.

A thorough explanation of the rendering algorithm is out of the scope of this paper, and we refer the interested

reader to [30].

E. Self-Reconfiguration of the Cameras

In Section III we presented an active rearranged capturing algorithm. There we assumed that all the capturing

cameras can move freely on the camera plane. Such assumption is very difficult to implement in practical systems.

In this section, we present a local rearrangement algorithm for the self-reconfiguration of the cameras, given that

they are constrained on the linear guides.

Fig. 14 shows two real-world examples rendered from our camera array. Fig. 14(i-c) and (iii-c) shows the score

as defined in Equ. 8 obtained during the rendering process. Note most errors are located around object boundaries

and complex texture regions. The goal is again to move the cameras around to enhance the quality of the rendered

light rays.

Our revised ARC algorithm contains the following steps:

1. Locate the camera plane and the linear guides (as line segments on the camera plane). The camera positions in

the world coordinate are obtained through the calibration process. Although they are not strictly on the same plane,

we use an approximated one which is parallel to the checkerboard. The linear guides are located by averaging the

vertical positions of each row of cameras on the camera plane. As shown in Fig. 15, denote the vertical coordinates

of the linear guides on the camera plane as Yj , j = 1, · · · , 6.

2. Back-project the rendered light rays to the camera plane. In Fig. 15, one such light ray was back-projected

as (xi, yi) on the camera plane. Note the light rays can be sub-sampled to save computation.

3. Collect score for each pair of neighboring cameras on the linear guides. The capturing cameras on each linear

guide naturally divide the guide into 7 segments. Let them be Bjk, where j is the row index of the linear guide,

k is the index of bins on that guide, 1 ≤ j ≤ 6, 1 ≤ k ≤ 7. If a back-projected vertex (xi, yi) satisfies

Yj−1 < yi < Yj+1 and xi ∈ Bjk, (12)

the score of the vertex is added to the bin Bjk. After all the vertices have been back-projected, we obtain a set of

accumulated scores for each linear guide, denoted as Sjk, where j is the row index of the linear guide, k is the

index of bins on that guide.

5. Determine which camera to move on each linear guide. Given a linear guide j, we look for the largest

Sjk, 1 ≤ k ≤ 7. Let it be SjK . If the two cameras forming the corresponding bin BjK are not too close to each

other, one of them will be moved towards the other (thus reducing their distance). Notice each camera is associated

with two bins. To determine which one of the two cameras should move, we check their other associated bin and

move the camera with a smaller accumulated score in its other associated bin.

6. Move the cameras. Once the moving cameras have been decided, we issue them commands such as “move
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left” or “move right”2. Once the cameras are moved, the process waits until it is confirmed that the movement has

finished and the cameras are re-calibrated. Then it jumps back to step 1 for the next epoch of movement.

The above algorithm can be viewed as a simplified version of the active rearranged capturing algorithm described

in Section III. The three major simplifications are: 1. Cameras can only move on a line. Effectively the 2D weighted

vector quantization algorithm becomes a 1d vector quantization problem. 2. Each time only one camera can move

on a row. 3. The camera movement has fixed step size, since the only command we can issue is “move left” or

“move right”. The latter two simplifications may affect the convergence speed and performance of the algorithm.

Nevertheless, such a simplified algorithm can still bring improvements on the rendering quality of the virtual views.

We show results of the proposed algorithm in Fig. 14. In Fig. 14 (i) and (iii), the capturing cameras are evenly

spaced on the linear guide. Fig. 14(i) is rendered behind the camera plane, and Fig. 14(iii) is rendered in front

of the camera plane. Due to depth discontinuities, some artifacts can be observed from the rendered images (Fig.

14 (i-d) and (iii-d)) along the object boundaries. Fig. 14(b) is the reconstructed depth of the scene at the virtual

viewpoint. Fig. 14(c) is the rendering error score computed during the rendering process. It is obvious that along

the object boundaries, the score is high, which indicates bad rendering quality. The red dots in Fig. 14(c) are the

projections of the capturing camera positions to the virtual imaging plane.

Fig. 14 (ii) and (iv) shows the rendering result after ARC. Fig. 14 (ii) is the result of 6 epochs of camera

movement, and Fig. 14 (iv) is after 20 epochs. It can be seen from the score map (Fig. 14(c)) that after the

camera movement, the consistency gets better. The cameras have been moved, which is reflected as the red dots in

Fig. 14(c). The cameras moves towards the regions where the score is high, which effectively increases the sampling

rate around those regions. Fig. 14 (ii-d) and (iv-d) shows the rendering results after self-reconfiguration, which are

much better than 14 (i-d) and (iii-d). A video clip on the ARC process is available at:

http://amp.ece.cmu.edu/projects/MobileCamArray/.

The major limitation of our self-reconfigurable camera array is that the motion of the cameras is slow. When the

computer write a command to the serial port, the command will be buffered in the Mini SSC II controller for about

15 ms before sending to the servo. After the servo receives the command, there is also a long delay (hundreds of

ms) before it moves enough distance. Therefore, during the self-reconfiguration of the cameras, we have to assume

that the scene is either static or moving very slowly, and the viewer is not changing his/her viewpoint all the

time. In our current implementation, the calibration process and the rendering process run separately. During self-

reconfiguration, the moving cameras are not used for rendering until their calibration parameters are successfully

computed. We observe some jittering artifacts of the rendered images when the moved cameras have not been fully

calibrated.

There is no collision detection in the current system while moving the cameras. Although the calibration process

is very stable and gives fairly good estimation of the camera positions, collision could still happen. In the previous

2We can only send such commands to the sidestep servos, because the servos were modified for continuous rotation. The positions of the

cameras after movement is uncertain, and can only be obtained through the calibration process.
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subsection, we have a threshold for verifying whether two cameras are too close to each other. The current threshold

is set as 10 cm, which is reasonably safe in all our experiments.

V. CONCLUSION

This paper presented an active rearranged capturing algorithm for IBR. We made two major contributions in this

paper. First, we showed that by observing the captured images at some initial positions, active rearranged capturing

can refine the capturing positions using a recursive weighted vector quantization algorithm. After rearrangement,

the rendering quality of the virtual views can be improved significantly. Second, we have presented the world’s first

large scale self-reconfigurable camera array, which consisted of 48 mobile cameras. Despite the constraints on how

the cameras can move on the camera plane in practice, the rendering quality of our camera array was still shown

to be better than the traditional static camera arrays.
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Given a set of images newly captured, perform:

1) Error estimation, estimate the rendering error

using local color consistency for any light ray li:

Rendered color: mi =
∑K

k=1 µkIik

Variance: σ2
i =

∑K
k=1 µk(Iik −mi)2

where the summations are for the K nearest neigh-

bors. µk is the weight for each captured light ray

determined by the rendering algorithm, Iik is the

captured light ray intensity.

2) Weight update, update the weights γi as Equ. 9

or 11.

3) Weighted VQ, perform weighted vector quantiza-

tion with a modified LBG-VQ algorithm [27]:

a. Nearest neighbor condition:

xi ∈ Rj , if ‖xi−cj‖ ≤ ‖xi−cj′‖,∀j′ = 1, · · · , N

where Rj is the neighborhood region of centroid

cj .

b. Centroid condition:

cj =
P

xi∈Rj
γixiP

xi∈Rj
γi

, j = 1, · · · , N

4) Capture images, move the cameras according to

the VQ result and capture images. Go back to 1).

Fig. 5. The recursive active rearranged capturing algorithm.
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Fig. 6. Setup of experiments on synthetic scenes.
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Teapot scene
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Vase scene
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(c)
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(f)
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(b)
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(h)
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(l)

(n)

(k)

(m)
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Wineglass scene

Fig. 7. Results of our active rearranged capturing (ARC) algorithm. (a) Virtual view to be rendered (ground truth). (b)(c) Rendering results

before ARC and projection of the camera locations on the virtual imaging plane. (d)(e) Update with Equ. 9, 1 iteration of ARC. (f)(g) Update

with Equ. 9, 3 iteration of ARC. (h)(i) Update with Equ. 9, 10 iteration of ARC. (j)(k) Update with Equ. 11, 1 iteration of ARC. (l)(m) Update

with Equ. 11, 3 iteration of ARC. (n)(o) Update with Equ. 11, 10 iteration of ARC.
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Fig. 8. PSNR of ARC with respect to the number of iterations. Each iteration contains weighted VQ, camera movement and new image set

capturing.
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Fig. 9. Performance of ARC for multiple virtual viewpoints. The symbols such as d and z0 were defined in Fig. 6.
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Fig. 10. Our self-reconfigurable camera array system with 48 cameras.

Fig. 11. The mobile camera unit.
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(a)

(b) (c)

(d) (e)

Fig. 12. Images captured by our camera array. (a) All the images; (b–e) sample images from selected cameras.

Fig. 13. Locate the feature corners of the calibration pattern.
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(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d)

(iii-d) (iv-d)

Fig. 14. Scenes rendered by reconfiguring our camera array. (i) Scene flower, cameras are evenly spaced; (ii) scene flower, cameras are

self-reconfigured (6 epochs); (iii) scene Santa, cameras are evenly spaced; (iv) scene Santa, cameras are self-reconfigured (20 epochs); (a) the

camera arrangement; (b) reconstructed depth map, brighter intensity means smaller depth; (c) the score of the mesh vertexes and the projection

of the camera positions to the virtual imaging plane (red dots), darker intensity means better consistency; (d) rendered image.
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Fig. 15. Self-reconfiguration of the cameras.
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