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ABSTRACT 

 
We introduce a novel approach to capturing light field with 
lensless cameras. By moving the cameras back and forth, we 
capture a set of images. We show that it is possible to reconstruct 
the light field from these blurry images. The problem is formu-
lized in a way similar to computer tomography, so that the light 
field can be reconstructed using existing algorithms. The light 
field can then be used to render 3D scenes. Synthetic examples 
are presented to show the effectiveness of the proposed method.  
 

1. INTRODUCTION 
 
Image-based rendering (IBR) has attracted a lot of research inter-
est recently [1]. By capturing a set of images or light rays for a 
3D scene, IBR can reproduce the scene correctly at arbitrary 
viewpoint without too much knowledge of the scene geometry. 
Compared with the traditional model-based rendering, IBR pro-
vides the benefits that images are easier to obtain, simpler to 
handle and more realistic to render.  

In practice, in order to capture an IBR scene, one needs to 
point a camera (or a camera array) to the scene and take many 
images from different positions. Most existing IBR approaches 
assume the capturing cameras are ideal, i.e., they are pin-hole 
cameras. However, practical cameras are often equipped with 
lenses. Although there have been many different kinds of lenses 
invented for different purposes, one limitation of having lenses in 
a camera system is that the camera will have a limited depth of 
field (DOF). This can cause problem for IBR when the scene has 
large depth variations, because not all the objects can be in focus 
in a single image. One way to leverage this problem is to take 
multiple images at different focal lengths while the camera stays 
at each of the capturing positions. Work has been done to render 
all in-focus images from such captured image sets [3][4]. Never-
theless, moving the cameras while adjusting the focal lengths at 
each camera position is tedious and time-consuming, not to say 
that the focal length of each image has to be measured accurately 
for the rendering. 

In this paper, we propose a novel approach to capturing the 
scene with lensless cameras. We remove the lenses in the cam-
eras, thus each pixel in the captured images is the sum of the light 
rays entering that pixel from different directions. As shown in 
Figure 1, such a lensless sensor is placed in front of the object. 
We move the camera forward and backward and capture many 
images of the scene. We show that although the captured images 
are blurry, using technology similar to computer tomography 
(CT), we may reconstruct the individual light rays via existing 
methods. Other than saving the cost of complex lenses, the major 
advantage of the proposed scheme is the ability to produce im-
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ages with infinite DOF. This is achieved without extra assump-
tion about the nature of the light sources and illuminations.  

 
Figure 1 Use lensless cameras/sensors to capture a 3D scene.  

The paper is organized as follows. Section 2 gives a brief in-
troduction on light field, which is a representative IBR represen-
tation. The proposed capturing scheme is detailed in Section 3. 
Related work is described in Section 4. Some experimental re-
sults are shown in Section 5. Conclusions and future work are 
given in Section 6.   

 
2. THE LIGHT FIELD 

 
Consider a scene as shown in Figure 2. For illustration purpose, 
we use 2D examples throughout this paper, although they can be 
easily extended to 3D. If the light rays emitted/reflected from the 
objects in the scene do not change their intensity along their path 
in the free space, we may parameterize them by their crossing 
points with two horizontal lines, namely the v axis and the t axis. 
That is, any light ray in the space can be represented as ( )vtl , . 
Such a representation is named the light field [2] of the scene. 
Notice that we adopt a local v axis whose origin aligns with the t 
coordinate. Let f be the distance between the v axis and the t axis; 
θ  be the angle between the light ray and the vertical axis z. The 
local v axis setup means:  

θtanfv = .   (1) 
If ( )vtl ,  is available for any pair of t and v values, a novel view 
at arbitrary viewpoints can be easily synthesized by finding the 
( )vt,  pair for each rendered light ray. In practice, we may only 
store ( )vtl ,  at discrete ( )vt,  coordinates. The rendering can still 
be performed by interpolation, which has been shown in [2]. It is 
also shown that if the light field is sampled dense enough, no 
scene geometry is needed for 3D photorealistic rendering. We 
refer the reader to [1] for more details about light field rendering 
or image-based rendering techniques.  

A simple approach to capture such a light field is to use many 
cameras placed on the t axis and captures images. The focal 
lengths of the cameras are set to be f, such that the imaging 
planes of the cameras overlap with the v axis. Such scheme works 
well if the scene has small depth variations and the cameras have 
large DOF. The capturing cameras can be considered as pin-hole 
ones. Unfortunately, when the depth variation is large, common 
cameras cannot focus on all the objects in the scene due to lim-
ited DOFs.  
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Figure 2 Capture a 3D scene with lensless camera.  

 
3. THE PROPOSED METHOD  

 
Consider a single pixel on the lensless sensor, as shown in Figure 
2. In the 2D world, its position is , where x is the horizontal 
position (it is the same axis as the t axis in the light field repre-
sentation) and z is the vertical position (depth). The sensor can 
move freely in the 2D world. The intensity measured at each 
position is represented as . In practice, a lensless camera 
(film or CCD sensor) can be placed horizontally to record 

( zx, )

)( zxs ,
( )zxs ,  

at a certain depth z. Moving the camera along the depth axis (re-
fer to Figure 1) will record the whole  signal. The goal is 
to reconstruct the light field  based on the recorded signal 

.  

( zxs , )

)

( )vtl ,
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A. The lensless sensor model  
In practice, any sensor responds differently to light rays entering 
from different directions. Therefore, we may write the acquired 
data  as:  ( zxs ,

( ) ( ) ( ) ( )∫−=
2

2 ,, π

π
θθθ dglzxs zx   (2) 

where θ  is the angle between the entered light ray and the z axis. 
( )( )θzxl ,  is the light ray passing through the sensor at ( )zx, , and 

has an angle .  is the sensor gain for light rays coming 
along direction . Without loss of generality, we assume that 
this gain function does not change at different places on the sen-
sor (independent of x and z). An example of such a gain function 
is the well-known foreshortening effect in computer vision [5], 
where  

θ ( )θg
θ

( ) ( )θθ cos=g    (3) 
In reality, this gain function can be measured by recording the 
sensor response to point light sources at different  directions. 
Hereafter we assume the gain function is known.  

θ

According to Equation (1), there is a one-to-one mapping be-
tween  and v. Therefore, through a variable transform, we can 
easily obtain the relationship between the captured data 

θ
( )zxs ,  

and the light field ( )vtl , :  

( ) ( )∫
∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= dv

dv
dgvz

f
vxlzxs θθ,,  (4) 

Notice the item ( )
dv
dg θθ  in the above integration is a function of 

v. We can merge it with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− vz

f
vxl , by defining:  

( ) ( ) ( )
dv
dgvtlvtl θθ,,

~
=    (5) 

Consequently we have: 

( ) ∫
∞
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⎞
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⎛
−= dvvz

f
vxlzxs ,

~
,   (6) 

If the function ( )vtl ,
~

 can be recovered from ( )zxs , , we may 
effortlessly obtain the light field ( )vtl ,  through Equation (5).  
 
B. Explanation in the light ray space     
The light ray space is the space defined by the axis t and v. It is 
also called the epipolar image of the light field (EPI). As shown 
in Figure 3, when x and z are fixed, the integration of Equation 
(6) is effectively along a line which can be represented as:  

( xt )
z
fv −−=    (7) 

Notice such integration resembles that of the standard computer 
tomography (CT) [6]. Equation (6) is the standard definition of 
Radon transform [7]. Therefore, there are many existing algo-
rithms that can be used to solve ( )vtl ,

~
 from ( )zxs ,  captured 

with the lensless cameras. 
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v
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Figure 3 The explanation of our lensless camera approach in 
the light ray space.  

An implication from Figure 3 is that we should not place our 
lensless films uniformly along z. The projection direction  and 
depth z has the following relationship:  

β

2
tan 1 πβ +−= −

z
f   (8) 

Therefore, the depth z of the lensless sensors should be arranged 
such that we have a uniformly spaced projection direction . 
This results in a larger distance between sensors when z is large, 
and vise versa.  

β

 
C. The reconstruction algorithm      
While in CT the sensors can be placed along arbitrary directions 
due to the free rotation of the emitter/sensor pair, in our approach 
we cannot place the lensless sensor anywhere in the space. For 
example, if the scene objects occupy a depth range from  to 

, our sensor cannot be there due to physical occupancy con-
fliction. In the CT literature, such situation is referred as the lim-
ited-view problem and has been widely studied [9][10][11].  

minz

maxz

In this paper, we adopted an algebraic reconstruction tech-
nique (ART) algorithm [8][11] to recover the light field, as ex-
plained below.  

We first discretize the light field into sample light rays, as 
was done in [2] (Figure 4). Denote the samples on the t axis as tp, 
p = 1,2,…,P and the samples on the v axis as vq, q = 1,2,…,Q. 

  



Only the light rays passing through the discrete sample points 
will be reconstructed. Similarly, the x and z axis of the captured 
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Figure 4 Discretization of the problem. 

signal can also be discretized into xm, m = 1,2,…,M and zn, n = 
1,2,…,N. Notice that discretizing the z axis simply means we will 
place the lensless sensors at these discrete depth values. In Figure 
4, the z axis is non-uniformly discretized. This is because we 
want to have a uniformly discretized projection direction , as 
was shown in Equation (8). The light field can therefore be writ-
ten as 

β

( )qp vtl ,  or , and the captured data can be written as 

 or . For a given captured data sample , we may 
rewrite Equation (2) in the following discrete form:  

pql
( )nm zxs , mns mns

( ) ( )∑ ∆=
i

iiizxmn gls
nm

θθθ   (9) 

where the input light ray directions are discretized into iθ ’s, and 
the integration in Equation (2) becomes summation. ( )izx nm

l θ  is 
the intensity of the light ray passing through xm and zn, and has an 
angle iθ . It is easy to find that such a light ray corresponds to:  

( ) ( )iinmizx fzxll
nm

θθθ tan,tan−⇔  (10) 

Unfortunately, inm zx θtan−  and if θtan  may not be integers. 
Let  and  be the two sample positions on the t axis closest 

to 
1pt

2pt

inm zx θtan− , and  and  be the samples closest to 
1qv

2qv

if θtan . We may derive ( )iinm fzxl θθ tan,tan−  via the bilin-
ear interpolation of , ,  and .  

11qpl
21qpl

12qpl
22qpl

In short, each captured data sample can always be written as a 
linear combination of the discrete light rays in the light field, i.e.,  

∑=
qp

pqpqmnmn lws
,

,   (11) 

where  is the weights of the light ray  when obtaining 

, which can be calculated based on the item 
pqmnw , pql

mns ( ) iig θθ ∆  in 
Equation (9) and the weights used during the bilinear interpola-
tion mentioned above.  

In a matrix form, If we cascade the light field samples into a 
 vector , and the captured samples into a  vector 

. Based on Equation (11), we have the following relationship 
between S  and L :  

1×PQ L 1×MN
S

11 ××× = PQPQMNMN LWS    (12) 

where W is the matrix associates  and . The elements in W 
represent the contributions of light field samples to the captured 
pixels, which are known.  

S L

Solving Equation (12) directly gives:  

( ) SWWWL
1−

= TT .   (13) 
In practice, the dimension of the matrix W is often huge. Equa-
tion (13) is therefore inefficient to compute because the W matrix 
needs to be stored in memory and the matrix  need to be 
inverted. An iterative method is more popular, i.e., by perform-
ing:  
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where ( )k
pql̂  is the kth iteration value of estimated . pql ( )kλ  is a 

relaxation factor and may be chosen in the range from 0.0 to 2.0. 
For more details on the ART method, the readers are referred to 
[6][11][12][13] etc.  
 

4. RELATED WORK 
 
Three-dimensional imaging has important applications in ma-
chine vision, radiometry, modeling, microscopy, etc. There are 
two major categories of techniques widely studied, namely vi-
sion-based techniques and physical optics techniques. The former 
includes stereo vision [14], depth from defocus [15], image-based 
modeling [16] and all kinds of range sensors [17], etc. The goal 
of such algorithms is to reconstruct the 3D geometry of the scene 
object, typically with regular cameras or special devices such as 
laser range sensors. Examples of the physical optics techniques 
are confocal microscopy [18], coherence imaging [19], coherence 
tomography [20], etc. Usually, physical optics methods rely on 
the interference of lights, which cannot be performed under nor-
mal lighting conditions.  

Instead of reconstructing the scene geometry, the proposed 
method tries to reconstruct the light field of the scene, as it has 
been shown that a densely sampled light field can be used to 
render 3D scenes without scene geometry [2]. As we show that 
the relationship between the captured data and the light field 
resembles CT, many existing algorithms can be applied to solve 
the reconstruction problem. In fact, tomography methods has be 
widely used in many other applications, such as synthetic aper-
ture radar [21], microscopy [18], geometry reconstruction from 
images [22], etc.  

From the point of view of signal processing, what we are cap-
turing with a lensless camera is a filtered version of the light 
field. In this sense, our proposed method also resembles image 
restoration from blurred images [7], or the literature in super-
resolution [23]. We also want to point out that the capturing 
method we use resembles that of coded aperture imaging (CAI) 
[24]. In fact, the aperture designed in CAI can be directly used in 
our lensless camera. The derivation in Section 3 is still valid as 
long as we apply the coded pattern for . The difference is 
that CAI reconstructs one single image about an object at a con-
stant depth, while our method reconstructs the light field that can 
be used for 3D rendering. 

( )θg

 
5. EXPERIMENTAL RESULTS 

 
Due to page limits, we show a very simple example to demon-
strate the ability of the proposed scheme to reconstruct the light 
field. We use a 3D scene named Duck. Figure 5 (a) shows the 
setup of our experiment. The target light field is one that records 
all the light rays passing through the t axis. Compared with the 

  



regular 4D light field in [2], our light field is 3D, which is equiva-
lent to a set of images captured along a line (the t axis). The light 
field is divided into 64 EPIs, each of which corresponds to a 
plane with a certain tilt angle α . The EPIs are captured and re-
constructed separately with 1D lensless cameras along their cor-
responding planes.  

The EPIs have resolution 64×64. For each EPI, we use 32 1D 
lensless cameras (at 32 different depth) each with 192-pixel reso-
lution to capture the scene and perform the reconstruction using 
Equation (13). The gain function of the lensless camera is as-
sumed to be:  

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤=

otherwise                 ,0
4

              ,cos πθθθg .  (15) 

Figure 5 (b) and (d) show two captured datasets along two differ-
ent tilt angles. Figure 5 (c) and (e) are their reconstructed EPIs. 
Figure 5 (f) and (g) show two images rendered at different t coor-
dinate using the reconstructed light field. The 3D effect between 
the two images is very obvious.  
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Figure 5 The test scene duck. 

 
6. CONCLUSIONS AND FUTURE WORK 

 
The major contribution of this paper was to formulize the prob-
lem of capturing 3D scenes with lensless cameras. Instead of 
reconstructing the scene geometry, we recovered the light field of 
the scene that can also be used for 3D rendering. We showed that 
in principle such reconstruction resembles that in CT etc, thus 
many existing algorithms can be applied directly in our scenario. 
The major advantage of using lensless cameras to capture scenes 
is the simplicity and the infinite depth of field.  

One constraint of the proposed scheme is that due to the com-
putational cost, we have difficulty in recovering high-resolution 

light fields. We are exploring the extension of some efficient 
reconstruction algorithms (such as filtered back projection [6]) to 
our problem. Using real sensors to capture scenes is also our fu-
ture work.  
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