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ABSTRACT  
In this paper, we propose a new eigenfilter approach to designing 
least square error filters. The filters are obtained by finding an ei-
genvector of a real, symmetric and positive definite matrix, which 
is numerically stable. The proposed algorithm has two advantages. 
First, we show that the least-square solution, which can only be 
obtained through matrix inversion in the literature, can be asymp-
totically reached with our algorithm. Second, when numerical er-
rors break the matrix inversion method, our algorithm can still find 
some “optimal” filter through tuning an internal parameter.  

1. INTRODUCTION 
It is well know that most linear-phase finite impulse response filter 
(FIR) design problems can be solved by the McClellan-Parks (MP) 
algorithm [1]. The MP algorithm provides the optimal filter design 
results in the sense of minimizing the maximum error in both pass-
band and stopband. On the other hand, a number of researchers 
have also considered the least-squares approach to FIR filter design 
[2]−[6]. Under certain situations the least-squares approach is pref-
erable, such as when time- and frequency-domain constrains need 
to be incorporated.  

There are two well-documented least-squares approaches to FIR 
filter designs: the matrix inversion (MI) method and the eigenfilter 
approach. The MI method is based on solving a set of linear equa-
tions by matrix inversion [2], and the eigenfilter approach is based 
on the computation of an eigenvector of an appropriate real, sym-
metric, and positive-definite matrix. Although the MI method tries 
to minimize the real square-error between the designed filter and 
the target filter, the process of MI is numerically unstable because 
we have to inverse a huge matrix with very small determinant. The 
inversion of the matrix is also computational expensive. The eigen-
filter approach overcomes these problems by modifying the target 
function they try to minimize. For example, the first eigen-
approach by Vaidyanathan and Nguyen (V&N) [4] added to the 
minimization problem a constraint that at the reference frequency, 
the designed filter has to have the same response as the target filter. 
Pei and Tseng (P&T) [6] removed the above constraint by using 
the total least squares (TLS) error criterion. In both approaches the 
filter design is formulated as the computation of an eigenvector of 
a real, symmetric, and positive-definite matrix, which is much more 
stable than the MI method. However, the price is that for many 
filter design problems, the square errors given by the eigenfilter 
approach is greater than the MI method.  

In this paper, we propose a new framework to design least square 
error filters. In our framework, the filters are still obtained by find-
ing an eigenvector of a real, symmetric and positive definite matrix, 
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which keeps numerical stability. The P&T algorithm turns out to be 
a special case of our framework, while the least-square solution, 
which can only be obtained through MI method in the literature, 
can be asymptotically reached. The V&N algorithm is very similar 
to another extreme case of our algorithm, which will be discussed 
in the paper. When numerical errors break the MI method, with our 
algorithm we are able to find some “optimal” filter simply by tun-
ing a parameter in our framework.  

The paper is organized as follows. Section 2 gives a brief overview 
of existing least-squares approaches and proposes the new frame-
work. Section 3 gives a filter design example where the MI 
method, the V&N algorithm, the P&T algorithm and our algorithm 
are compared. Section 4 shows another example where numerical 
errors play a role. Section 5 concludes the paper.  

2. THE PROPOSED FRAMEWORK 

2.1. Overview of previous approaches 
Consider a typical filter design problem. We want to approximate a 
“desired response” ( )ωD  with a certain real-coefficient linear-

phase FIR filter ( )ωH . We can rewrite ( )ωH  as the inner product 
of two vectors [3]-[6], i.e.:  

( ) ( )ωω CaTH =    (1) 
where a  is a vector related with the coefficients of the designed 
filter, and ( )ωC  is a vector of appropriate trigonometrical func-
tions. The goal of least-squares approaches is to find the vector a  
that can minimize the square error between the target and the de-
signed filters. In other words, the objective function of the minimi-
zation is:  
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where R is the region we care about, e.g., the passband and the 
stopband. The MI method solves the problem directly [2]:  
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Unfortunately, the inversion of matrix MIQ  takes a long time and 

might be numerically unstable, which causes bad design results 
when the length of the filter is long.  

Vaidyanathan and Nguyen [4] proposed to change the representa-
tion of ( )ωD  by adding a reference frequency 0ω , i.e.:  
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which allows the target filter amplitude to be scaled by the fre-
quency response of the designed filter at the reference point. On 
the other hand, it requires a normalization step to force the refer-
ence point frequency response to be equal to that of the original 

target filter ( )ωD . By making 1=aaT  at the same time to avoid 
trivial solutions, the objective function is changed to:  
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The nice thing is that the objective function (7) can be minimized 
by simply looking for the eigenvector corresponding to the mini-
mum eigenvalue of the real, symmetric and positive-definite matrix 

N&VQ , which is both computationally efficient and stable. How-

ever, there are two shortcomings of this algorithm. First, the de-
signed filter is sensitive to the selection of the reference frequency, 

as will be shown in Section 3. Second, the constraint 1=aaT  is 
restricting and the above algorithm cannot achieve as small square 
error as the MI method when there is no numerical problem.  

The more recent work by Pei and Tseng [6] improves the V&N 
algorithm by using the total least square (TLS) error criterion. They 
modify the objective function as:  
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which is recognized as a traditional plane fitting problem minimiz-
ing the square distances of points ( ) ( )( ) RD ∈∀ ϕϕϕ ,,C  and the 

superplane ( ) ( ) 0=− ωω CaTD , where R is the frequency region 
we care about and a  is related to the optimal filter coefficients we 
try to find. By defining:  

[ ]TT 1ˆ −= aa , ( ) ( ) ( )[ ]TT D ωωω CC =ˆ  (10) 

We have:  
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The optimal filter in the TLS sense is obtained by finding the ei-
genvector with respect to the minimum eigenvalue of T&PQ . The 

authors show that by relaxing the reference frequency constraint 

and the 1=aaT  constraint, the resulting filter has a smaller square 
error than the V&N algorithm.  

2.2. The unifying framework 
We propose a new objective function for least-squares filter design 
as follows:  
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where ( )+∞∈ ,0β  is a parameter we can tune. Notice that the P&T 
algorithm has a very similar objective function as ours. In fact, the 
P&T algorithm is simply a special case of our framework when 

1=β .  

However, our objective function has much more implications than 
the P&T algorithm. Let us first look at one extreme case of β , i.e., 

+∞→β . The objective function changes to:  
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Since β  is a pre-fixed constant during the design, we are getting 
the optimal least-squares filter which could only be achieved by the 
MI method in the literature! 

On the other hand, when 0→β , the objective function becomes:  
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which is very similar to the objective function of the V&N ap-

proach. Both of them impose the constraint that 1=aaT . However, 
Equation (15) does not have the reference point constraint. On one 
hand, we do not need to worry about choosing the right reference 
point any more, which eases the filter design process. On the other 
hand, Equation (15) loses the flexibility of changing the target 

( )ωD ’s amplitude with a  as in Equation (6), which hurts the filter 
design performance. As will be shown in Section 3, if we choose 
the best reference frequency for the V&N algorithm, the resulting 
filter is better than minimizing Equation (15). If the reference fre-
quency is randomly chosen, minimizing Equation (15) will pro-
vides a smaller overall square error in general.  

( ) ( ) 0=− ωω CaTD

( )ωD

( )ωC

( )ϕC

( )ϕD
( ) ( )( )ϕϕ D,C

θ( )ϕe

( )ϕ'e

( ) ( )( )ϕϕ CaC T,

P&T

R∈ϕ

Least-squares

Ours

 

Figure 1 Geometric explanation of the unified framework.  

The geometric explanation of the proposed framework is shown in 
Figure 1. The horizontal axis is ( )ωC , which actually represents a 
vector of all the trigonometrical base functions; the vertical axis is 

( )ωD . For the surface ( ) ( )( ) RD ∈∀ ϕϕϕ ,,C  (shown as a curve in 
Figure 1), which is predetermined by the target filter and the base 

functions, we try to fit a plane ( ) ( ) 0=− ωω CaTD  to it. The goal 
of least-squares filter design is, by adjusting the vector a , to mini-
mize the overall vertical distances of the surface to the plane. The 
objective function is:  
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R
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where ( ) ( ) ( )ϕϕϕ CaTDe −=  is shown in Figure 1. However, the 
direct answer to Equation (16) is the MI method, which is expen-
sive and sometimes numerically unstable. In our framework, in-
stead of Equation (16), we minimize:  
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where  
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This is equivalent to projecting the vertical error ( )ϕe  onto some 

line at a certain angle θ  with respect to the vertical line and mini-
mizing the projected error ( )ϕ'e . In this way, we transfer the ma-
trix inversion problem into an eigenfilter problem that is more 
numerically stable. Moreover, by increasing β , we decrease the 

θ  angle and get closer and closer to the target of Equation (16), 
which is optimal. Again we can see that the P&T algorithm is the 
special case when 1=β  and ( )ϕ'e  becomes the perpendicular 
distance from the point to the plane.  

To minimize Equation (13), we can take an approach similar to the 
P&T algorithm. Define:  
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All we need to do is to find the eigenvector corresponding to the 
minimum eigenvalue of a real, symmetric and positive-definite 
matrix oursQ , and scale the eigenvector so that the last element of 

â  is β− . The filter coefficients can be found by mapping the a  
vector back according to how we obtain Equation (1). One thing to 
notice is that when β  is very large or very small, using Equation 
(19) will introduce another source of numerical errors. Fortunately, 
experiment shows that we can already be very close to the optimal 
least-squares filter when β  is around 10 to 100.  

3. EXAMPLE I − A COMPARISON 
In this section, we give an example to verify the ideas mentioned 
above. Assume that we are asked to design a Type-1 linear-phase 
low-pass FIR filter with least-squares approaches. The desired 
frequency response is given as:  
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The length of the filter is 15=N .  

3.1. The MI solution 
Since the order of the desired filter is low, the inversion of the 
matrix MIQ  is possible. The least square error filter can be solved 

directly through Equation (3). The overall square error  
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can be calculated as 0.00771382 =optE . If we use square error as 

the measure of the performance of a filter design algorithm, this is 
the best result we can ever achieve.   

3.2. The V&N solution 
With the V&N algorithm, we need to carefully choose the refer-
ence frequency in order to get the best performance.  
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Figure 2 V&N algorithm with different reference frequency.  

As shown in Figure 2, the overall square error of the resultant filter 
by the V&N algorithm changes when we choose different reference 
frequencies. The best result that can be reached is met when the 
reference frequency is π158.0 . The corresponding overall square 

error is 0.00773682 =E . We define Distance To the Optimal 
(DTO) as:  
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where 2E  is the total square error of the current algorithm calcu-

lated by Equation (23), and 2
optE  is the optimal square error that is 

obtained by the MI method. Obviously, the lower the DTO, the 
better the filter design algorithm. The V&N algorithm can reach a 
minimum DTO of –25.2516dB.  

3.3. The solution of the proposed algorithm 
In the proposed framework, we may change the value of β  to get 

different filters. We plot the relationship between the DTO and β  

as in Figure 3. We can see that, in the worst case, when 0→β , 
the DTO converges to about –21.5563dB, which is slightly worse 
than the best filter the V&N algorithm can obtain. However, if the 
reference frequency is randomly chosen between 0 and π2.0 in the 
V&N algorithm, 95% of the chance the V&N algorithm will give a 
worse performance than the worst case of our proposed framework.  
As +∞→β , we observe a very rapid drop of the DTO of the de-
signed filter. This simply means that we can obtain the optimal 
least square error filter by increasing β . We see that when 

10=β , dB5756.69DTO −= , which means we are very close to 

the least-squares solution already. Note that when 10>β , we plot 

the curve as dash line since the difference of 2E and 2
optE  in Equa-

tion (24) has already been smaller than the precision of the numeri-
cal integration we use to calculate them. However, the fast drop-
ping tendency is still observable when 10>β .  

4. EXAMPLE II − THE NUMERICAL STABILITY 
It is very interesting to see the behavior of our algorithm under the 
condition of numerical errors. In this section, we design a group of 
filters with passband [ ]π2.0,0  and stopband [ ]ππ,4.0 . The lengths 
of the filters are 15, 55, 95, 135 and 161. Since the MI method may 



suffer from numerical errors, we use 2
10log10 E  ( 2E  as defined in 

Equation (23)) as the performance measure.  
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Figure 3 Choose different β  in our algorithm.  

We list the filter design results of all the approaches in Table I. For 
simplicity, we choose 0=ω  as the reference frequency of the 
V&N algorithm. It is obvious that when the filter length is 15, 55 
or 95, P&T and ours are better than V&N. In all the cases, our 
algorithm is always better than the P&T, as the former is a gener-
alization of the latter. For the filters with length 135 and 161, 
where we can say that the filter design is highly numerical sensi-
tive, the MI method breaks down. Note that in this range, the V&N 
actually outperforms or is similar to P&T and our algorithm. This 
is surprising but generally true based on some other experiments. 
The reason might be owing to the flexibility of adjusting the target 
filter’s amplitude during the minimization (Equation (6)).  

Table I: Filter design results using least-squares approaches 
2

10log10 E (dB) 

 N=15 N=55 N=95 N=135 N=161 

MI 
method 

-28.7078 -90.9738 -82.8651 31.9093 29.7836 

V&N -28.0651 -90.7416 -150.3832 -137.6438 -129.5422 

P&T -28.7066 -90.9738 -150.5183 -110.1596 -119.2163 

Ours -28.7078 -90.9738 -150.5184 -122.9683 -126.4135 

We show the relationship between the overall square error and the 
parameter β  in Figure 4. We can draw a list of interesting conclu-
sions from Figure 4. First, when the length of the filter is 15 or 55, 
the MI method is till applicable. Therefore, we see that for a wide 
range of β , the square errors keep the same. In fact, if we enlarge 
the figure, we will be able to see the monotonic decreasing of error 
when β  increases. This is consistent with the experiment we had 
in Section 3. Second, when the filter length increases to 95, the MI 
method suffer a little bit from numerical errors, while our algorithm 
produces a extremely good result as long as 1.0>β . In the range 

[ ]41 10,10− , we notice that the errors are gently fluctuating around –
150dB, which we believe is caused by all the numerical errors dur-
ing the whole process. Third, the results when the filter length is 
huge (N=135 and N=161) seem very interesting. They warn us that 
β  cannot be arbitrary large. Introducing a very large β  (or very 

small β ) into the minimization problem may generate another 

source of numerical error. Fourth, there exists an optimal β  for a 
certain filter design problem when numerical errors happen. This 
can be shown by verifying that both the curve of the filter with 
length 135 and 161 in Figure 4 have a convex shape. Fifth, we 
were expecting that there might be some horizontal shifting be-
tween the filters with length 135 and 161, so that different length 
of filter requires different optimal β . However, our experiments 

do not agree with this. On the contrary, [ ]1,1.0∈β  seems to be a 

magic region that most probably we will find the optimal β  in this 
region. Finally, increasing the length of the filter does not always 
mean smaller error, especially when numerical errors have to be 
considered. The best filter within the four is the one with length 95. 
Designing filters with too much length will not give good results 
due to the numerical error for all the algorithms we tested.  
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Figure 4 Behavior of our algorithm under numerical errors.  

5. CONCLUSIONS 
In this paper, we proposed a new eigenfilter based algorithm on 
least-square error filter design. We showed that we could asymp-
totically reach the optimal least-square error filter without matrix 
inversion. When numerical errors happen, we could find the opti-
mal filter by simply tuning a parameter in our algorithm. The pro-
posed algorithm can be easily modified to design filters with linear 
constraints, equal ripple filters, and multi-dimensional filters.  
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