
EFFICIENT FEATURE EXTRACTION FOR 2D/3D OBJECTS
IN MESH REPRESENTATION

Cha Zhang and Tsuhan Chen

Dept. of Electrical and Computer Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{czhang, tsuhan}@andrew.cmu.edu

ABSTRACT

Meshes are dominantly used to represent 3D models as
they fit well with graphics rendering hardware. Features
such as volume, moments, and Fourier transform coeffi-
cients need to be calculated from the mesh representation
efficiently. In this paper, we propose an algorithm to cal-
culate these features without transforming the mesh into
other representations such as the volumetric representa-
tion. To calculate a feature for a mesh, we show that we
can first compute it for each elementary shape such as a
triangle or a tetrahedron, and then add up all the values for
the mesh. The algorithm is simple and efficient, with many
potential applications.

1. INTRODUCTION

3D scene/object browsing is becoming more and more
popular as it engages people with much richer experience
than 2D images. The Virtual Reality Modeling Language
(VRML) [1], which uses mesh models to represent the 3D
content, is rapidly becoming the standard file format for
the delivery of 3D contents across the Internet. Tradition-
ally, in order to fit graphics rendering hardware well, a
VRML file models the surface of a virtual object or envi-
ronment with a collection of 3D geometrical entities, such
as vertices and polygons.

In many applications, there is a high demand to calcu-
late some important features for a mesh model, e.g., the
volume of the model, the moments of the model, or even
the Fourier transform coefficients of the model. One ex-
ample application is the search and retrieval of 3D models
in a database [2][3][9]. Another example is shape analysis
and object recognition [4]. Intuitively, we may calculate
these features by first transforming the 3D mesh model
into its volumetric representation and then finding these
features in the voxel space. However, transforming a 3D
mesh model into its volumetric representation is a time-
consuming task, in addition to a large storage requirement
[5][6][7].

 Work supported in part by NSF Career Award 9984858.

In this paper, we propose to calculate these features
from the mesh representation directly. We calculate a fea-
ture for a model by first finding it for the elementary
shapes, such as triangles or tetrahedrons, and then add
them up. The computational complexity is proportional to
the number of elementary shapes, which is typically much
smaller than the number of voxels in the equivalent volu-
metric representation. Both 2D and 3D meshes are consid-
ered in this paper. The result is general and has many po-
tential applications.

The paper is organized as follows. In Section 2 we
discuss the calculation of the area/volume of a mesh. Sec-
tion 3 extends this idea and presents the method to com-
pute moments and Fourier transform for a mesh. Some
applications are provided in Section 4. Conclusions and
discussions are given in Section 5.

2. AREA/VOLUME CALCULATION

The computation of the volume of a 3D model is not a
trivial work. One can convert the model into a discrete 3D
binary image. The grid points in the discrete space are
called voxels. Each voxel is labeled with ‘1’ or ‘0’ to indi-
cate whether this point is inside or outside the object. The
number of voxels inside the object, or equivalently the
summation of all the voxel values in the discrete space,
can be an approximation for the volume of the model.
However, the transforming from a 3D mesh model into a
binary image is very time-consuming. Moreover, in order
to improve the accuracy, the resolution of the 3D binary
image needs to be very high, which can further increase
the computation load.

2.1. 2D Mesh Area
We explain our approach starting from the computation of
areas for 2D meshes. A 2D mesh is simply a 2D shape
with polygonal contours. As shown in Figure 1, suppose
we have a 2D mesh with bold lines representing its edges.
Although we can discretize the 2D space into a binary
image and calculate the area of the mesh by counting the
pixels inside the polygon, doing so is very computationally
intensive.

: "positive" area

: "negtive" area

A (x1, y1)

B (x2, y2)

O
x

y

NAB

Figure 1: The calculation of a 2D polygon area

To start with our algorithm, let us make the assump-
tion that the polygon is close. If it is not, a contour close
process can be performed first [9]. Since we know all the
vertices and edges of the polygon, we can calculate the
normal for each edge easily. For example, edge AB in
Figure 1 has the normal:

2
12

2
12

1212

)()(

ˆ)(ˆ)(

yyxx

yxxxyy
N AB

−+−

−+−−= (1)

where (x1, y1) and (x2, y2) are the coordinates of vertices A
and B, respectively, and x̂ and ŷ are the unit vectors for

the axes. We define the normal here as a normalized vec-
tor which is perpendicular to the corresponding edge and
pointing outwards of the mesh. In computer graphics lit-
erature, there are different ways to check whether a point
is inside or outside a polygon [8], thus it is easy to find the
correct direction of the normals. Later we will show that
even if we only know that all the normals are pointing to
the same side of the mesh (either inside or outside, as long
as they are consistent), we are still able to find the correct
area of the mesh.

After getting the normals, we construct a set of trian-
gles by connecting all the polygon vertices with the origin.
Each edge and the origin form an elementary triangle,
which is the smallest unit for computation. We define the
signed area for each elementary triangle as below: The
magnitude of this value is the area of the triangle, while
the sign of the value is determined by checking the posi-
tion of the origin with respect to the edge and the direction
of the normal. Take the triangle OAB in Figure 1 as an
example. The area of OAB is:

.)(
2

1
2112 yxyxSOAB +−= (2)

The sign of SOAB is the same as the sign of the inner prod-

uct ABNOA ⋅ , which is positive in this case.

The total area of the polygon can be computed by
summing up all the signed areas. That is,

�=
i

itotal SS (3)

where i goes through all the edges or elementary triangles.
Following the above steps, the result of equation (3) is

guaranteed to be positive, no matter the origin is inside or

outside the mesh. Note here that we do not make any as-
sumption that the polygon is convex.

In real implementation, we do not need to check the
signs of the areas each time. Let:

()
.''

,
2

1
' 2112

�=

+−=

i
itotal

iiiii

SS

yxyxS
(4)

where i stands for the index of all the edges or elementary
triangles. (xi1, yi1), (xi2, yi2) are coordinates of the starting
point and the end point of edge i. When we loop through
all the edges, we need to keep forwarding so that the in-
side part of the mesh is always kept at the left hand side or
the right hand side. According to the final sign of the result
S’total, we may know whether we are looping along the
right direction (the right direction should give the positive
result), and the final result can be simply achieved by tak-
ing the magnitude of S’total.

2.2. 3D Case
We can extend the above algorithm into the 3D case. In a
VRML file, the mesh is represented by a set of vertices
and polygons. Before we calculate the volume, we do
some preprocessing on the model and make sure that all
the polygons are triangles. Such preprocessing, called tri-
angulation, is commonly used in mesh coding, mesh signal
processing, and mesh editing. The direction of the normal
for a triangle can be determined by the order of the verti-
ces and the right-hand rule, as shown in Figure 2. The con-
sistent condition is very easy to satisfy. For two neighbor-
ing triangles, if the common edge has different directions,
then the normals of the two triangles are consistent. For
example, in Figure 2, AB is the common edge of triangle
ACB and ABD. In triangle ACB, the direction is from B to
A, and in triangle ABD, the direction is from A to B, thus
NACB and NABD are consistent.

A

B

C D

NACB NABD

Figure 2: Normals and order of vertices

In the 3D case, the elementary calculation unit is a tet-
rahedron. For each triangle, we connect each of its vertices
with the origin and form a tetrahedron, as shown in Figure
3.

As in the 2D case, we define the signed volume for
each elementary tetrahedron as: The magnitude of its value
is the volume of the tetrahedron, and the sign of the value
is determined by checking if the origin is at the same side
as the normal with respect to the triangle. In Figure 3, tri-

A (x1, y1, z1)

B (x2, y2, z2)

C (x3, y3, z3)O

x

y

z

NACB

Figure 3: The calculation of 3D volume

angle ACB has a normal NACB. The volume of tetrahedron
OACB is:

.)

(
6

1

321312231

213132123

zyxzyxzyx

zyxzyxzyxVOACB

+−−

++−=
(5)

As the origin O is at the opposite side of NACB, the
sign of this tetrahedron is positive. The sign can also be

calculated by inner product ACBNOA ⋅ .

In real implementation, again we only need to com-
pute:

(
)

�=

+−−

++−=

i
itotal

iiiiiiiii

iiiiiiiiii

VV

zyxzyxzyx

zyxzyxzyxV

''

.
6

1
'

321312231

213132123

(6)

where i stands for the index of triangles or elementary
tetrahedrons. (xi1, yi1, zi1), (xi2, yi2, zi2) and (xi3, yi3, zi3) are
coordinates of the vertices of triangle i and they are or-
dered so that the normal of triangle i is consistent with
others. Volume of a 3D mesh model is always positive.
The final result can be achieved by take the absolute value
of V’total. In order to compute other 3D model features
such as moments or Fourier transform coefficients, we
reverse the sequence of vertices for each triangle if V’total

turns out to be negative.

3. MOMENTS AND FOURIER TRANSFORM

The above algorithm can be generalized to calculate other
features for 2D and 3D mesh models. Actually, whenever
the feature to be calculated can be written as a signed
sum of features of the elementary shape (triangle in the
2D case and tetrahedron in the 3D case), and the feature
of the elementary shape can be derived in an explicit
form, the proposed algorithm applies. Although this seems
to be a strong constrain, many of the commonly-used fea-
tures fall into this category. For example, all the features
that have the form of integration over the space inside the
object can be calculated with this algorithm. This includes
moments, Fourier transform, wavelet transform, and many
others.

In classical mechanics and statistical theory, the con-
cept of moments is used extensively. In this paper, the

moments of a 3D mesh model are defined as:

� � �= dxdydzzyxzyxM rqp
pqr),,(ρ (7)

where),,(zyxρ is an indicator function:

�
�
�

=
otherwise.,0

meshtheinsideisz)y,(x,if,1
),,(zyxρ (8)

and p, q, r are the orders of the moment. Central moments
can be obtained easily from the result of equation (7).
Since the integration can be rewritten as the sum of inte-
grations over each elementary shape:

� ���=
i

i
rqp

ipqr dxdydzzyxzyxsM),,(ρ (9)

where),,(zyxiρ is the indicator function for elementary

shape i, and si is the sign of the signed volume for shape i.
We can use the same process as that in Section 2 to

calculate a number of low order moments for triangles and
tetrahedrons that are extensively used. A few examples for
the moments of a tetrahedron are given in the Appendix.
More examples can be found in [9].

Fourier transform is a very powerful tool in many sig-
nal processing applications. The Fourier transform of a 2D
or 3D mesh model is defined by the Fourier transform of
its indicator function:

� � �
++−=Θ dxdydzzyxewvu zwyvxui),,(),,()(ρ (10)

Since Fourier transform is also an integration over the
space inside the object, it can also be calculated by de-
composing the integration into integrations over each ele-
mentary shape. The explicit form of the Fourier transform
of a tetrahedron is given in the Appendix.

As the moments and Fourier transform coefficients of
an elementary shape are explicit, the above computation is
very efficient. The computational complexity is O(N),
where N is the number of edges or triangles in the mesh.
Note that in the volumetric approach, where a 2D or 3D
binary image is obtained first before getting any of the
features, the computational complexity is O(M), where M
is the number of grid points inside the model, not consid-
ering the cost of transforming the data representation. It is
obvious that M is typically much larger that N, especially
when a relatively accurate result is required and the resolu-
tion of the binary image has to be large. The storage space
required by our algorithm is also much smaller.

Previous work by Lien and Kajiya [10] provide a
similar method for calculating the moments for tetrahe-
drons. Our work gives more explicit forms of the moments
and extends their work to calculating the Fourier trans-
form.

4. APPLICATIONS

A good application of our algorithm is to find the principal
axes of a 3D mesh model. This is useful when we want to
compare two 3D models that are not well aligned. In a 3D

model retrieval system [2][9], this is required because
some of the features may not be invariant to arbitrary rota-
tions.

We construct a 3x3 matrix by the second order mo-
ments of the 3D model:

.

002011101

011020110

101110200

�
�
�

�

�

�
�
�

�

�

=
MMM

MMM

MMM

S (11)

The principal axes are obtained by computing the ei-
genvectors of matrix S, which is also known as the princi-
ple component analysis (PCA). The eigenvector corre-
sponding to the largest eigenvalue is made the first princi-
pal axis. The next eigenvector corresponding to the secon-
dary eigenvalue is the second principal axis, and so on. In
order to make the final result unique, we further make sure
that the 3rd order moments, M300 and M030, are positive
after the transform. Figure 4 shows the results of this algo-
rithm.

Before rotation After rotation

Before rotation After rotation

x

y

z

Figure 4: 3D models before and after PCA

The Fourier transform of a 3D mesh model can be
used in many applications. For example, the coefficients
can be directly used as features in a retrieval system [9].
Other applications are shape analysis, object recognition,
and model matching. Note that in our algorithm, the result-
ing Fourier transform is in continuous form. There is no
discretization alias since we can evaluate a Fourier trans-
form coefficient from the continuous form directly.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose an algorithm for computing fea-
tures for a 2D or 3D mesh model. Explicit methods to
compute the volume, moments and Fourier transform from
a mesh representation directly are given. The algorithm is
very efficient, and has many potential applications.

The proposed algorithm still has some room for im-
provement. For example, it is still difficult to get the ex-

plicit form of a high order moment for a triangles and tet-
rahedrons. Also the Fourier transform may lose its compu-
tational efficiency if many coefficients are required simul-
taneously. More research is in progress to speed this up.

REFERENCES

[1] R. Carey, G. Bell, and C. Marrin, “The Virtual Reality Modeling
Language”. Apr. 1997, ISO/IEC DIS 14772-1. [Online]:
http://www.web3d.org/Specifications/.
[2] Eric Paquet and Marc Rioux, “A Content-based Search Engine for
VRML Database”, Computer Vision and Pattern Recognition, 1998.
Proceedings. 1998, IEEE Computer Society Conference on, pp. 541-
546, 1998.
[3] Sylvie Jeannin, Leszek Cieplinski, Jens Rainer Ohm, Munchurl
Kim, MPEG-7 Visual part of eXperimentation Model Version 7.0,
ISO/IEC JTC1/SC29/WG11/N3521, Beijing, July 2000.
[4] Anthony P. Reeves, R. J. Prokop, Susan E. Andrews and Frank P.
Kuhl, “Three-Dimensional Shape Analysis Using Moments and Fourier
Descriptors”, IEEE Trans. Pattern Analysis and Machine Intelligence,
pp. 937-943, Vol. 10, No. 6, Nov. 1988.
[5] Homer H. Chen, Thomas S. Huang, “A Survey of Construction and
Manipulation of Octrees”, Computer Vision, Graphics, and Image
Processing, pp. 409-431, Vol. 43, 1988.
[6] Shi-Nine Yang and Tsong-Wuu Lin, “A New Linear Octree Con-
struction by Filling Algorithms”, Computers and Communications,
1991. Conference Proceedings. Tenth Annual International Phoenix
Conference on, pp. 740-746, 1991.
[7] Yoshifumi Kitamura and Fumio Kishino, “A Parallel Algorithm for
Octree Generation from Polyhedral Shape Representation”, Pattern
Recognition, 1996. Proceedings of the 13th International Conference
on, pp. 303-309, Vol. 3, 1996.
[8] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes, Computer Graphics principles and practice, Second Edition,
Addison-Wesley Publishing Company, Inc., 1996.
[9] http://amp.ece.cmu.edu/projects/3DModelRetrieval/.
[10] Sheue-ling Lien and James T. Kajiya, “A Symbolic Method for
Calculating the Integral Properties of Arbitrary Nonconvex Polyhedra”,
IEEE Computer Graphics and Applications, pp. 35-41, Oct. 1984.

APPENDIX

().
6

1
321312231213132123000 zyxzyxzyxzyxzyxzyxM +−−++−=

() .000321100 4

1
MxxxM ++=

() .000313221
2
3

2
2

2
1200 10

1
MxxxxxxxxxM +++++=

(
) 000321

21
2
331

2
232

2
1

3
3

3
2

3
1300

xxx

)()()(
20

1

M

xxxxxxxxxxxxM

+

++++++++=

))()((

i

))()((
e*i

))()((
e*i

))()((
e*i

(

*),,(

333222111

323232313131333

)wzvyi(ux

323232212121222

)wzvyi(ux

313131212121111

)wzvyi(ux

000

333

222

111

wzvyuxwzvyuxwzvyux

wzwzvyvyuxuxwzwzvyvyuxuxwzvyux

wzwzvyvyuxuxwzwzvyvyuxuxwzvyux

wzwzvyvyuxuxwzwzvyvyuxuxwzvyux

Mwvu

++++++
−

+−+−+−+−+−+−++
+

−+−+−+−+−+−++
+

−+−+−−+−+−++

=ℑ

++

++

++

