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ABSTRACT

In this paper, we propose an algorithm for view-dependent non-
uniform sampling for image-based rendering (IBR). Given a set of
virtual views, the positions of the capturing cameras are rearranged
in order to obtain the optimal rendering quality. The resulting ar-
rangement of the cameras is effectively non-uniform sampling of
the plenoptic function. We formulate the above sampling problem
as a recursive weighted vector quantization problem, which can be
solved efficiently. Experimental results show that the non-uniform
sampling scheme renders much better images than traditional uni-
form sampling methods.

1. INTRODUCTION

Image-based rendering (IBR) has received much attention recently
[1]. From the signal processing point of view, IBR is the sampling
and interpolation of the 7D plenoptic function [2], which describes
all the light rays at any position (3D), along any direction (2D),
at any time (1D) and over any wavelength (1D). Compared with
the old way of 3D rendering which relies heavily on accurate ge-
ometric models, IBR is easy to capture and fast to render. Most
importantly, IBR can generate very realistic views unparalleled by
the traditional model-based rendering.

One disadvantage of IBR, however, is the huge amount of im-
ages required for alias-free rendering. In the literature, representa-
tive IBR techniques such as light field rendering [3] and concen-
tric mosaics [4] often use over-sampling to avoid aliasing artifacts.
Chai et al. [5] presented the first formal uniform sampling analysis
on the light field for scenes with Lambertian surface and without
occlusions. Their work was later extended by Zhang and Chen
[6] to scenes with non-Lambertian surface and occlusions, as well
as concentric mosaics. Unfortunately, according to the theoretical
sampling analysis, the minimum number of images needed by a
typical scene is in the order of thousands, which brings practical
concerns during the capturing and storage of the data.

To reduce the overall number of images needed by IBR, Zhang
and Chen [7] proposed the Position-Interval Error (PIE) function
for the non-uniform sampling of IBR. The PIE function measures
the error of interpolation given the location and interval of the sam-
ples in a certain neighborhood. As a general framework for non-
uniform sampling, PIE leads to two practical algorithms specif-
ically designed for IBR: progressive capturing (PCAP) and rear-
ranged capturing (RCAP). PCAP captures the scene by progres-
sively adding cameras at the places where PIE are maximal. RCAP,
on the other hand, assumes that the overall number of cameras is
fixed and tries to rearrange the cameras such that the PIE has equal
value everywhere. With non-uniform sampling, it is possible to
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Fig. 1. The capturing and rendering of IBR scenes.

achieve good rendering results from hundreds of images, which is
a big improvement over uniform sampling.

In this paper, we propose a view-dependent non-uniform sam-
pling scheme which aims at further reducing the number of images
required by IBR. We make an additional assumption, i.e., during
the capturing, the virtual view’s rendering position is known. This
assumption is practical if the rendering process is performed on-
the-fly during the capturing process. We show that the cameras can
be rearranged such that the quality of the virtual view is optimized.
The camera positions are computed using a recursive weighted
vector quantization (VQ) method, which can be solved efficiently.

The paper is organized as follows. Section 2 briefly reviews
the typical capturing and rendering process of IBR scenes. Sec-
tion 3 presents the proposed algorithm for view-dependent non-
uniform sampling. Experimental results are described in Section
4. Conclusions are presented in Section 5.

2. IBR SCENE CAPTURING AND RENDERING

Fig. 1 shows a typical IBR system including capturing and render-
ing. We place a set of cameras around the object and shoot images.
In the light field [3] setup, the cameras are uniformly distributed
on a plane (namely the camera plane), and point to the same direc-
tion. In the concentric mosaics [4], the cameras are arranged along
a circle. In the most general form, the cameras can be anywhere,
which can still be rendered through the unstructured Lumigraph
rendering [8]. In this paper, we assume that the cameras are con-
strained on a camera plane, but on that plane the distribution of the
cameras can be non-uniform. The directions of the cameras are
assumed to be the same, although this requirement is not crucial to
the proposed algorithm.

To render novel views from the captured images, we split the



virtual view into many light rays and obtain their intensities one
by one. As shown in Fig. 1, consider one of the light rays being
rendered. We first trace the light ray back to the scene geome-
try, and obtain the crossing point O. As the geometry is typically
unknown for real-world scenes, usually a constant depth plane is
assumed. We then project O to the neighboring captured images
(circled by an ellipse in Fig. 1) and obtain the light ray’s intensity
through weighted interpolation of all the projections. The weights
are usually determined by the angular difference between the ren-
dered light ray and the projection directions from O to the captured
images, which also serves as an criterion for selecting the neigh-
boring images. The smaller the angular difference, the higher the
weight to the associated image. Other factors such as resolution or
field of view may also affect the weights [8], however they are not
considered in the current implementation.

3. VIEW-DEPENDENT IBR NON-UNIFORM SAMPLING

3.1. Problem Statement
The view-dependent non-uniform sampling problem can be stated
as follows. Assume we have N cameras to capture a static or
slowly-moving scene. They can move freely on the same camera
plane, and point to the same direction. During the capturing, we
also have P viewers who are watching the scene. These P views
are rendered through the above mentioned method from the N cap-
tured images. The goal is to arrange these N cameras such that the
P views can be rendered at their best quality. Here both N and P
are finite.

The above problem becomes trivial if all the P views are on
the camera plane, and P ≤ N, because one may simply move the
cameras to the virtual view positions and capture the scene at those
places directly. However, the problem is valid as long as one of
the virtual viewpoints are out of the camera plane (even if P =
1), or P > N. This is because any out of plane view will have
to be synthesized from multiple images, which can be potentially
improved by rearranging the capturing cameras.

3.2. Formulation Based on the Angular Difference
Let the cameras’ positions on the camera plane be cj , j = 1, 2, · · · , N .
For the P views being rendered, we may split them into totally
L light rays. Denote them as li, i = 1, 2, · · · , L. The intersec-
tion of the light rays and the camera plane are denoted as xi, i =
1, 2, · · · , L. As shown in Fig. 2, consider a certain light ray li,
which crosses the scene geometry at O, and one of its neighboring
camera cj . Denote the distance between cj and xi as dij and the
angular difference as θij . Let the distance between O and xi be ri,
which is known beforehand. From the figure, we know that when
the scene depth ri � dij (which is often true), we have:

θij ≈
dij cos αi

ri
= wi‖xi − cj‖ (1)

where αi is the angle between the light ray li and the normal of
the camera plane (not shown in Fig. 2), and wi = cos αi

ri
. Let

θ̃i = min
j=1,··· ,N

θij (2)

be the minimum angular difference between light ray li and its
neighboring images. A sufficient (but not necessary1) condition

1This condition is not necessary because even if θ̃i is large, the render-
ing quality can still be good if the scene geometry is accurate and the scene
surface is Lambertian.
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Fig. 2. The formulation of the problem.

that the light ray li will be rendered correctly, is that θ̃i is very
small. Therefore, to have a very good rendering quality of all the
light rays, we may minimize

∑L
i=1 θ̃i. Given Equ. 1 and 2, the

best camera positions can be obtained as:

ĉj = arg
cj

min

L∑
i=1

wi min
j=1,··· ,N

‖xi − cj‖ (3)

for j = 1, · · · , N . As xi and wi is known during the rendering
(the scene depth ri and light ray direction αi are known), Equ. 3
is a standard weighted VQ problem, and can be easily solved.

3.3. Formulation Based on the Local Color Consistency
One constraint about the algorithm proposed in the last subsec-
tion is that angular difference is only a sufficient but not neces-
sary condition of good rendering quality. This means that if we do
use wi = cos αi

ri
as the weight, we may not get optimal rendering

quality by minimizing Equ. 3. However, if the wi in Equ. 3 can
be defined based on a better criterion, we may still use the same
weighted VQ algorithm to achieve the optimal rendering quality.

We propose to use the local color consistency as a better con-
dition for good rendering quality. The local color consistency was
first proposed in [7] for measuring the PIE functions. It states that
a good rendering quality can be expected if the projections used to
interpolate a certain light ray share the same intensity. Therefore,
an easy implementation of the local color consistency is to use the
variance of the projections. Take the light ray li in Fig. 2 as an
example. The local color consistency Ci of li can be calculated as:

Ci =
1

σi
(4)

where σi is the variance of the projections of O to the k nearest
neighboring images. Usually k is small, e.g., k = 4. In [7] it has
been shown that such measurement is indeed a good estimate of
the rendering quality.

It is therefore natural to think of wi as a function of Ci. That
is:

wi = f(Ci) (5)

Here f(·) is a function which produces a large wi when Ci is small,
vise versa.

Unfortunately, unlike the minimization of Equ. 3 using wi =
cos αi

ri
in the last subsection that has a clear physical meaning (min-

imize the minimal angular difference for all the light rays to their
closest camera), defining wi as in Equ. 5 can be rather arbitrary



and does not have a physical meaning. In the next subsection, we
propose an algorithm that finds wi recursively aiming at making
all the Ci to be large as well as equal to each other.

3.4. A Recursive Algorithm for View-Dependent Non-Uniform
Sampling
In the previous sections, we have been vaguely using the word
”best rendering quality” for the goal of non-uniform sampling.
Here we give a more well-defined goal:

A non-uniform sampling scheme is optimal if the lo-
cal color consistency of all the light rays share the
same value, which is as large as possible.

The above goal is similar to the one we used in [7]. It is targeted
to make the rendered light rays have equal quality everywhere.
Such property is desired so that the rendered views deliver a con-
stant quality over the whole images. Meanwhile, we try to make
the consistency value be as large as possible, which improves the
overall quality of the rendering.

Having set the goal of non-uniform sampling, let us examine
how to achieve such a goal. In Equ. 3, if the weight wi is given,
the minimization process will try to find the best locations of the
capturing cameras such that their weighted distance to the rendered
light rays is minimized. As the local color consistency usually
increases when such distance reduces, the rendering quality will be
improved as a whole. However, such minimization process does
not affect whether the resultant local color consistency values are
equal or not. To make the values equal, one must adjust the weight
wi. Next, we propose an recursive two-stage algorithm that can
achieve the goal.

Fig. 3 shows the flow chart of our proposed non-uniform sam-
pling algorithm applicable for static or slowly-moving scenes. Given
a set of newly captured images, we may first measure the local
color consistency of all the light rays li, i = 1, · · · , L as Ci, i =
1, · · · , L. If we are informed that the viewers have moved to some
new viewpoints during the capturing of the images, we will give
some arbitrary initial values for the weights wi, i = 1, · · · , L. For
instance, we can let:

wi =
1

L
(6)

Otherwise, we will simply use the weights in the last time instance.
We then examine the values of the local color consistency for all
the light rays. If they are equal, nothing needs to be performed,
and we are ready to capture the next set of images. Otherwise, we
perform an update of the weights based on the local color consis-
tency values or the variance of the projections for the light rays. In
the currently implementation, we first define:

si = log σi (7)

as the score for each light ray. Let smin and smax be the minimum
and maximum value of si, i = 1, · · · , L. s be the average value of
si. The weight wk+1

i at time instance k + 1 is updated from those
wk

i at time instance k as:

wk+1
i =

{
wk

i ∗ (1 + (ξ − 1) s−si
s−smin

), si ≤ s;
wk

i ∗ (1 + (ζ − 1) si−s
smax−s

), si > s.
(8)

where ξ and ζ are the minimum and maximum weight scaling fac-
tor. They are set as 0.5 and 4 respectively in the current implemen-
tation. Equ. 8 basically says that if the variance of the projections
to the neighboring images for a light ray is greater than the av-
erage (thus the local color consistency is bad), its weight will be
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Fig. 3. The flow chart of our proposed non-uniform sampling al-
gorithm for static or slowly-moving scenes.

increased. During the weight VQ, the camera positions will then
move closer to that light ray. Otherwise, the camera positions will
move away. Notice that after the weight update with Equ. 8, one
should normalize the new weights such that

∑L
i=1 wk+1

i = 1.
Having determined the new weights, we then perform a weighted

VQ as Equ. 3 to obtain the new camera positions. To find the so-
lution of Equ. 3, an slightly modified LBG-VQ algorithm [9] is
adopted, which is based on the following two criteria:

1. Nearest neighbor condition:

xi ∈ Rj , if ‖xi − cj‖ ≤ ‖xi − cj′‖,∀j′ = 1, · · · , N (9)

where Rj is the neighborhood region of centroid cj .
2. Centroid condition:

cj =

∑
xi∈Rj

wixi∑
xi∈Rj

wi
, j = 1, · · · , N (10)

The modified LBG-VQ algorithm iteratively applies Equ. 9
and Equ. 10 to find the solution of Equ. 3. The initial camera po-
sitions of the modified LBG-VQ algorithm are the current camera
positions. After solving Equ. 3, the capturing cameras are then
moved to the new positions and take some new images. Since the
scene is static or slowly-moving, we assume that by the time the
cameras move to the new positions, the scene has not changed too
much.

4. EXPERIMENTAL RESULTS

We verify the effectiveness of the proposed view-dependent non-
uniform sampling algorithm with a static synthetic scene, as shown
in Fig. 4. The scene is named Teapot and is captured by 64 cam-
eras. A single virtual view is used whose position is off the camera
plane. In Fig. 4(i-a), we use a constant depth plane at the teapot’s
mouth as the geometric model. The body and lid of the teapot
are thus blurred due to the inaccurate geometry. Fig. 4(i-b) shows
the projections of the cameras’ positions to the rendered view (red
dots). The white triangles are used during the rendering for texture
mapping, however the corner of the triangles have the same depth
since we do not have the scene geometry. Fig. 4(i-c) and (i-d) are
the non-uniform sampling results after one iteration of weighted
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Fig. 4. Results of our view-dependent non-uniform sampling algorithm on the Teapot scene. (i) View rendered with the depth plane at
its mouth. (ii) View rendered with the depth plane around the lid. (a)(b) Uniform sampling and its camera distribution. (c)(d) After one
iteration of weighted VQ and the corresponding camera distribution. (e)(f) After 3 iterations.

VQ. The rendering quality improvement is very obvious. Notice
that the camera positions are moving towards the body and lid of
the teapot, where the rendering quality was bad. Fig. 4(i-c) and (i-
d) are the results after 3 iterations. More samples are around the lid
because that is the place that has the wrongest geometry. Fig. 4(ii-
a) to (ii-f) is another set of results when the rendering depth is
around the lid. Notice that the non-uniform sampling scheme au-
tomatically moves the cameras to the region of body and mouth.

5. CONCLUSIONS

This paper presented a view-dependent non-uniform sampling al-
gorithm for IBR, which is able to improve the rendering quality of
the given virtual views significantly. We believe non-uniform sam-
pling is very promising in reducing the number of images required
by IBR.
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