
ANNOTATING RETRIEVAL DATABASE WITH ACTIVE LEARNING

Cha Zhang and Tsuhan Chen

Dept. of Electrical and Computer Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{czhang, tsuhan}@andrew.cmu.edu

ABSTRACT

In this paper, we describe a retrieval system that uses hidden
annotation to improve the performance. The contribution of
this paper is a novel active learning framework that can im-
prove the annotation efficiency. For each object in the data-
base, we maintain a list of probabilities, each indicating the
probability of this object having one of the attributes. This list
of probabilities serves as the basis of our active learning algo-
rithm, as well as semantic features to determine the similarity
between objects in the database. We show active learning has
better performance than random sampling in all our experi-
ments.

1. INTRODUCTION

Content-based information retrieval (CBIR) has attracted a lot
of research interest in recent years. A typical CBIR system,
e.g., an image retrieval system, includes three major aspects:
feature extraction, high dimensional indexing, and system
design [1]. Among the three aspects, feature extraction is the
basis of content-based information retrieval. However, fea-
tures we can extract from the data are often low-level features.
We call them low-level features because most of them are ex-
tracted directly from digital representations of objects in the
database and have little or nothing to do with how a human
would perceive or recognize them. As a result, two semanti-
cally similar objects may lie far from each other in the feature
space, while two completely different objects may stay close to
each other in the same space. Although many features have
been designed for general or specific CBIR systems, and some
of them showed good retrieval performance, the gap between
low-level features and high-level semantic meanings of the
objects has been the major obstacle to more successful re-
trieval performance.

Hidden annotation appears to be a powerful tool for bridg-
ing the gap between low-level features and high-level seman-
tics. It also powers the system with functionalities such as
query with keywords. Early work by Picard and Minka [2] let
the user annotate texture pattern in images and extended the
knowledge with clustering algorithms. Cox et al. did some
experiments on hidden annotation in their Bayesian image
retrieval system, PicHunter [3], and showed positive results. In
this paper, we study the hidden annotation as a preprocessing
stage of a retrieval system, referred to as the learning stage,
before any user can use the system. As the retrieval database
can have a huge size, we want to annotate only part of it. Ac-
tive learning is used to find the subset of objects such that the
annotation of them has the best efficiency.

Active learning is a type of machine learning algorithms
that can find the statistically “optimal” way to select the train-
ing data. While in traditional machine learning research, the
learner typically works as a passive recipient of the data, active
learning enables the learner to use its own ability to respond to
collect data and to influence the world it is trying to under-
stand. Some representative work on active learning can be
found in [4]-[7]. Recently there has been increasing interest in
applying active learning for retrieval systems, such as the work
in [8][9]. Both work used support vector machines [10] as the
tool for object classification.

This paper is organized as follows. In Section 2, we intro-
duce the general criterion for active learning in our approach.
Section 3 presents the details of the proposed algorithm. We
discuss the joint-semantic-low-level feature similarity meas-
urement in Section 4. We show the experimental results in
Section 5 and conclude the paper in Section 6.

2. THE ACTIVE LEARNING FRAMEWORK

2.1. The Learning Interface and the Attribute Tree
Structure

Figure 1 shows the learning/annotation interface of our system.
On the left hand side is a list of attributes to be annotated. On
the right hand side is a sample object (e.g., an image or a 3D
model) the system proposes. The basic operation for the anno-
tator is to check some of the attributes for this sample model
and press the “Annotate” button for the system to get the anno-
tation information of the sample model.

Figure 1 The learning interface and the tree annotation struc-
ture.

In our system, the attributes form a tree structure with mul-
tiple levels. In the attribute tree, each node is an attribute.
The attributes at higher-level nodes are more general than

those at the lower-level nodes. By default we assume that once
an attribute at a lower-level nodes is checked, the attributes at
the higher-level nodes or its parent nodes are also checked. As
a simple example, “Aircraft” lies at the first level that is the
highest level in the tree structure, thus it is more general than
“Jets”, which lies at the second level. An object that is a
“Jets” is also an “Aircraft”. Unlike the decision tree in classi-
fication applications, the nodes with the same parent node in
our attribute tree are not necessarily exclusive of each other.
For example, an aircraft can be both a “Classic” and a “Jets”.
This makes our tree structure more general and more natural to
use for annotation.

The annotation starts with no attributes in the tree struc-
ture. When necessary, the annotator may add, rename or re-
move any attributes at any level. The annotator is asked to
check all the attributes that the sample object has. For an at-
tribute that the annotator does not check, we assume the anno-
tator implies that this object does not have that attribute,
unless the attribute is the parent of another checked attribute.

2.2. The General Criterion to Choose the Samples

We need to find a general criterion to measure how much in-
formation the annotator’s annotation can provide to the system.
Let NiOi ...,,21,, = be the objects in the database, and

KkAk ...,,21,, = be the K attributes the annotator wants to

use for annotation. These attributes form the whole attribute
tree. For each object Oi, we define probability Pik to be the
probability that this object has attribute Ak, where Pik = 1
means that the object Oi has been annotated as having attribute
Ak, and Pik = 0 means it has been annotated as not having at-
tribute Ak. If the object has not been annotated, Pik is esti-
mated by its neighboring annotated objects, as will be de-
scribed in Section 3.2. In order to derive the expected informa-
tion gain when we annotate a certain object, we define an un-
certainty measurement as follows:

NiPPPU iKiii ...,,2,1),,...,,(21 =Ψ= (1)

where Ui is the uncertainty measurement,)(⋅Ψ is a function

on all the attribute probabilities of object Oi. We want the
uncertainty measurement Ui to have the following properties:
• If object Oi has been annotated, Ui = 0;
• If ,...,,2,1for,5.0 KkPik == i.e., we know nothing about

the object, Ui = Umax;
• Given ,...,,2,1, KkPik = if it is uncertain that object Oi

has or does not have some attributes, Ui should be large.
Since the third property of Ui is not presented in a strict sense,
various functions can be defined to satisfy these properties.
For instance, let us assume that K = 1. In this case, only one
attribute is concerned. The well-known entropy is a good un-
certainty measurement:

() ()).1log()1(log 111111 iiiiiii PPPPPEPU −−−−==Ψ= (2)

where E represents the entropy function. We will define uncer-
tainty measurement for multiple attributes in Section 3.3.

There is another important factor that affects the benefit
the annotator can give to the system. It is the distribution of
the objects in the low-level feature space. Suppose we have
two objects that have the same uncertainty: one is at a high
probability region in the low-level feature space where many
other objects’ feature vectors lie, and the other is at a very low

probability region. Annotating these two objects will defi-
nitely give the system different amounts of information, which
in turn leads to different retrieval performance. Therefore, we
define the knowledge gain the annotator can give to the system
by annotating object Oi as:

....,,2,1),,...,,(21 NiPPPqUqG iKiiiiii =Ψ⋅=⋅= (3)

where Gi is the defined knowledge gain; iq is the probability

density function around object Oi, which will be estimated in
section 3.1; Ui is the uncertainty measurement defined in (1).
The criterion of choosing the next sample object is to find the
unlabeled object Oi that has the maximum knowledge gain Gi.

3. THE PROPOSED APPROACH

The proposed approach has a working flow as follows. We
first initialize the probability lists with prior probabilities that
we have about the whole database. The probability density
function is also estimated. A small number of objects are ran-
domly chosen and annotated as the initialization step of the
algorithm. The probability list is re-calculated based on the
randomly annotated objects. The system then start to select the
object that has the maximum knowledge gain, and ask the
annotator to annotate it. Again, some of the objects in the
database update their probability lists because one of their
neighbors is newly annotated. The system then searches for
the object that has the maximum knowledge gain again, and
the annotator is asked to annotate it. This loop keeps going
until the annotator stops or the database is fully annotated.

3.1. Estimate the Probability Density Function

The probability density function is one of the important factors
in the defined knowledge gain in Equation (3). This function
can be calculated offline before annotation. Although many
other algorithms are available, in the current system, we use
the kernel density estimator [11] simply because the kernel
method is also used in updating the probability lists in the next
subsection. We choose the kernel as an isotropic Gaussian
function (assume the features has been normalized), as it is
widely used. The window of the estimation is a hyper-sphere
centered at the concerned object Oi. Let the radius of the su-
per-sphere be ri, which was named the bandwidth of the kernel
density estimator in the literature. Normally,

Nirri ,,2,1for, L== , where r is a constant bandwidth. Let

ix be the feature vector of object Oi. The density estimation at

the position where Oi locates is given by:

(),,21,for,
2

exp,kernel
1

2

2

2

1
Ni

r
ccq

N

j
j

jiN

j
jii =∑















 −
−=∑=

==

xx
xx

(4)

where
2ji xx − is the Euclidian distance from the neighbor-

ing object Oj to the center object Oi; c is a constant which does
not matter when we compare the knowledge gain.

3.2. Update the Probability Lists

We assume that we have some very rough knowledge about the
probability lists before the annotation. That is,

(),,2,1,...,,21,for, KkNiPP k
ik === (5)

where ()kP is the prior probability for an object to have attrib-
ute Ak. During the annotation, the annotator is supposed to
check all the attributes the query model has, and all the other
attributes the annotator does not check are assumed to be not
belonging to the object unless they have some of their children
nodes checked. If an object Oi is annotated as having attribute
Ak, the probability Pik will increase to 1. Otherwise, it will
drop to 0. We then extend the knowledge of annotation through
biased kernel regression. Let Mmm ,,1,~ L=x be the feature

vectors of all the currently annotated objects, and the corre-
sponding probabilities Pmk are defined as follows:





=
otherwise.,0

,has~toingcorrespondobjecttheif,1 m k
mk

A
P

x
(6)

Given an un-annotated object whose feature vector is x , the
probability of this object having attribute Ak is:

()
()

0
1

0
1

ww

PwPw
AP

M

m
m

k
M

m
mkm

k

+∑

+∑
=∈

=

=x (7)

where the weights are:

.,1,
'2

~
exp

2

2

2 Mm
r

w
m

m

m L=











 −
−=

xx
(8)

Here 'mr is the bandwidth for object mx~ . 0w is a weight rep-

resenting the confidence of the prior probability.

3.3. The Uncertainty Measure

After all the probabilities have been updated, the learning
algorithm searches among models that have not been annotated
for another model whose annotation, once given by the annota-
tor, will provide the most extra information. According to the
discussion in section 2.2, this model is the one that produces
the maximum knowledge gain. In order to calculate the gain,
we need to define the uncertainty measurement and the prob-
ability density for each model.

In section 2.2, we gave some general properties for the un-
certainty measurement we want. We mentioned that if we only
have one attribute to annotate for all the objects, the entropy is
a good measure of uncertainty:

() ())1log()1(log 111111 iiiiiii PPPPPEPU −−−−==Ψ= (9)

where Ui is the uncertainty measurement for object Oi, E is the
entropy function, Pi1 is the probability for object Oi to be char-
acterized by the attribute. In real case, we have multiple at-
tributes in the database. We first define individual entropy for
an object Oi with respect to attribute Ak as:

).1log()1(log ikikikikik PPPPE −−−−= (10)

The overall uncertainty for Oi is defined as a weighted sum of
the entropies for all the attributes, i.e.,

∑=
=

K

k
ikSki EwU

1
(11)

where K is the total number of attributes, and Skw is the se-

mantic weight for each attribute. The semantic weights are
related with which level in the tree the attributes are at. Let

kl be the level attribute Ak is at (defined in Section 2.1). The

weights are defined as:

1−= k
Skw lα (12)

where α is a constant between 0 and 1. In our current im-
plementation, we set α to be 0.6 based on experiments.

With the uncertainty measure in Equation (11) and the
probability density estimate in Section 3.1, we are able to cal-
culate the knowledge gain by simply multiplying them together
as in Equation (3). The system then proposes the object with
the maximum gain and asks the annotator to annotate it. After
the annotation, the system updates the probability lists, recal-
culates the uncertainty measures and proposes the next sample.
This loop keeps going until the annotator stops or the database
is fully annotated.

4. JOINT SIMILARITY MEASURE FOR
SEMANTIC AND LOW-LEVEL FEATURES

The hidden annotation needs to be integrated into the retrieval
system in order to provide better retrieval performance. In our
system, each model has a list of probabilities of having the
attributes, including the query model the user provides. The
probability list is a complete description of all the annotations
we have ever made and is associated with high-level seman-
tics. We can treat this list of probabilities as a feature vector,
similar to low-level features such as color, texture, and shape.
The semantic distance 12Sd between any two objects O1 and

O2 is defined as:

() ()[]∑ −+−=
=

K

k
kkkkSkS PPPPwd

1
122112 11 (13)

where K is the total number of attributes, Skw is the semantic

weight for each attribute as defined in (12), and kP1 and kP2

are the attribute probabilities for the two models.
We need another distance measure that is the distance in

the low-level feature space. For two objects O1 and O2, we
simply use the weighted Euclidean distance

∑ −=
=

J

j
jjLjL ffwd

1

2
2112)((14)

where J is the total number of features, f1j and f2j are the jth

normalized low-level features of the two objects O1 and O2,
and wLj is the weight set based on the importance of each fea-
ture. In the current implementation, the features are equally
weighted after normalization.
The overall distance between the two models is a weighted
sum of the semantic distance and the low-level feature dis-
tance:

121212 LLSSOverall dwdwd ⋅+⋅= (15)

where Sw and Lw are the semantic weight and the low-level

feature weight respectively and 1=+ LS ww .

5. EXPERIMENTS

Category A

Category B Category C

Sub-category 1 Sub-category 2

Figure 2 The attribute tree of the synthetic database.

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

8

(a) (b) (c)

(d) (e) (f)

A1

A1A1
A2

B B

C

Figure 3 The annotation process of the synthetic database. (a) The categories. (b) Initial 50 sample objects random chosen. (c) Ran-
dom sampling, 200 objects annotated. (d) Random sampling, 600 objects annotated. (e) Active learning, 200 objects annotated. (f)
Active learning, 600 objects annotated.

We first test our algorithm on a synthetic database. There
are 2000 objects in the database, which fall into 3 categories
and 2 subcategories. The attribute tree of the synthetic data-
base is shown in Figure 2. The dimension of the low-level
feature space is two. The distribution of the categories in the
feature space is shown in Figure 3 (a). From Figure 3 (a) we
can see that the features of Category B, Category C and Cate-
gory A Subcategory 2 overlap a lot in the low-level feature
space. This will hurt the performance of the retrieval system.
We want to do hidden annotation to improve the performance.
We initial the sampling by 50 sample annotations randomly
chosen (Figure 3 (b), annotated objects marked with black
squares). Figure 3 (c) and (d) shows that under random sam-
pling, the annotated objects are uniformly distributed. Figure 3
(e) and (f) shows that active learning makes the samples focus
on the region where the classification is difficult.

We also tested the algorithm on a real database with about
2000 3D models. Positive results are also reported. Due to the
page limit of this paper, we refer the interested reader to [12].

6. CONCLUSIONS

In this paper, we proposed a general approach to make hidden
annotation with active learning for information retrieval. The
proposed algorithm outperforms the random sampling algo-
rithm in all the experiments, which shows that hidden annota-
tion with active learning is a very powerful tool to help im-
prove the performance of content-based information retrieval.

REFERENCES

[1] Yong Rui, Thomas S. Huang, and Shih-Fu Chang, “Image Re-
trieval: Past, Present, and Future”, Proceeding of International Sympo-
sium on Multimedia Information Processing, Dec. 1997.

[2] R. W. Picard and T. P. Minka, “Vision texture for annotation”,
ACM/Springer Verlag Journal of Multimedia Systems, pp. 3-14, Vol. 3,
1995.
[3] Ingemar J. Cox, Matt L. Miller, Thomas P. Minka, Thomas V.
Papathomas, and Peter N. Yianilos, “The Bayesian Image Retrieval Sys-
tem, PicHunter: Theory, Implementation, and Psychophysical Experi-
ments”, IEEE Trans. On Image Processing, pp. 20-37, Vol. 9, No. 1, Jan.
2000.
[4] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan, “Active
Learning with Statistical Models”, pp. 129-145, Journal of Artificial
Intelligence Research 4, 1996.
[5] A. Krogh and J. Vedelsby. Neural network ensembles, cross valida-
tion, and active learning. In G. Tesauro, D. Touretzky, and T. Leen, edi-
tors, Advances in Neural Information Processing Systems, volume 7,
Cambridge, MA, 1995. MIT Press.
[6] H. S. Seung, M. Opper, H. Sompolinsky, “Query by Committee”,
Proceedings of the fifth annual ACM workshop on Computational
learning theory, July 27 - 29, Pittsburgh, PA USA, 1992.
[7] David D. Lewis and William A. Gale, “A Sequential Algorithm for
Training Text Classifiers”, ACM-SIGIR 94, pp. 3-12, Springer-verlag,
London, 1994.
[8] Simon Tong and Edward Chang, “Support vector machine active
learning for image retrieval”, ACM Multimedia 2001.
[9] Milind Naphade, Ching-Yung Lin, John R. Smith, Belle L. Tseng,
and Sankar Basu, "Learning to Annotate Video Databases," SPIE Elec-
tronic Imaging 2002 - Storage and Retrieval for Media Databases, San
Jose, January 2002.
[10] Nello Cristianini, John Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods, Cam-
bridge University Press, 2000.
[11] Silverman B.W., Density Estimation for Statistics and Data Analy-
sis, New York: Chapman and Hall, 1986.
[12] C. Zhang and T. Chen, “An Active Learning Framework for Content
Based Information Retrieval”, Technical Report, CMU-AMP-01-04.

