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Abstract—In this paper, we propose a general active learning
framework for content-based information retrieval (CBIR).
We use this framework to guide hidden annotations in order
to improve the retrieval performance. For each object in the
database, we maintain a list of probabilities, each indicating the
probability of this object having one of the attributes. During
training, the learning algorithm samples objects in the database
and presents them to the annotator to assign attributes to. For
each sampled object, each probability is set to be one or zero
depending on whether or not the corresponding attribute is as-
signed by the annotator. For objects that have not been annotated,
the learning algorithm estimates their probabilities with biased
kernel regression.Knowledge gainis then defined to determine,
among the objects that have not been annotated, which one the
system is the most uncertain of. The system then presents it as the
next sample to the annotator to which it is assigned attributes.
During retrieval, the list of probabilities works as a feature vector
for us to calculate the semantic distance between two objects, or
between the user query and an object in the database. The overall
distance between two objects is determined by a weighted sum
of the semantic distance and the low-level feature distance. The
algorithm is tested on both synthetic databases and real databases
of three-dimensional (3-D) models. In both cases, the retrieval
performance of the system improves rapidly with the number of
annotated samples. Furthermore, we show that active learning
outperforms learning based on random sampling.

Index Terms—Active learning, attribute tree, biased kernel re-
gression, content-based information retrieval, semantics, three-di-
mensional model retrieval.

I. INTRODUCTION

CONTENT-BASED INFORMATION RETRIEVAL
(CBIR) has attracted a lot of research interest in recent

years. A typical CBIR system, e.g., an image retrieval system,
includes three major aspects: feature extraction, high-dimen-
sional indexing, and system design [1]. Among the three
aspects, feature extraction is the basis of CBIR. However, fea-
tures we can extract from the data are often low-level features.
As a result, two semantically similar objects may lie far from
each other in the feature space, while two completely different
objects may stay close to each other. Although many features
have been designed for general or specific CBIR systems, and
some of them showed good retrieval performance, the gap
between low-level features and high-level semantic meanings
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of the objects has been the major obstacle to more successful
retrieval systems.

Relevance feedback and hidden annotation have been shown
to be two of the most powerful tools for bridging the gap be-
tween low-level features and high-level semantics. Widely used
in text retrieval [2], relevance feedback was first proposed by
Rui et al. [3] as an interactive tool in content-based image re-
trieval. Since then it has been proven to be a powerful tool and
has become a major focus of research in this area [4]–[7]. Rel-
evance feedback moves the query point toward the relevant ob-
jects or selectively weighs the features in the low-level feature
space based on user feedback. However, if the low-level features
of a set of semantically similar objects lie in the space as sev-
eral clusters, querying with an object in one cluster would not be
able to retrieve semantically similar objects in other clusters by
reweighing the space. In [9] and [10], similar approaches were
proposed to use relevance feedback to build semantic relation-
ships inside the database. Their systems grouped the objects in
the database into small semantic clusters and related the clus-
ters with semantic weights. The updating of the clusters and se-
mantic weights are based on the user’s feedback. Another so-
lution to the above problem is hidden annotation. By attaching
Boolean attributes to images in the database, Coxet al. [8] did
some experiments on hidden annotation in their Bayesian image
retrieval system,PicHunter, and showed positive results. In this
paper, we study the hidden annotation as a preprocessing stage
of a retrieval system, referred to as the learning stage, before any
user can use the system.

Most existing systems using hidden annotation either anno-
tate all the objects in the database (full annotation), or anno-
tate a subset of the database manually selected (partial anno-
tation). As the database becomes larger, full annotation is in-
creasingly difficult because of the manual effort involved. Par-
tial annotation is relatively affordable and trims down the heavy
manual labor. Once the database is partially annotated, tradi-
tional pattern classification methods are often used to derive se-
mantics of the objects not yet annotated. However, it is not clear
how much annotation is sufficient for a specific database, and
what the best subset of objects to annotate is. In this paper, we
use active learning to determine which objects should be an-
notated. During the learning stage, the system provides sample
objects automatically to the annotator. The sample objects are
selected based on how much information annotation of each
sample object can provide to decrease theuncertaintyof the
system. The object, once annotated, giving the maximum infor-
mation or knowledge gain to the system is selected. In machine
learning literature, the idea of maximizing the expected infor-
mation from a query has been studied under the name “active
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learning” or “learning with queries” [12]. It was revisited by
Cox et al.when they updated the display of the query result in
[8]. We will present a more detailed survey of the active learning
literature in Section II-B.

The key assumption we make throughout this paper is that, al-
though the low-level feature space cannot describe the semantic
meaning, it islocallay inferable. This means that in the low-level
feature space, if two objects are very close to each other, they
should be semantically similar, or be able to infer some knowl-
edge to each other. Notice that this assumption allows objects
with the same semantic meaning to lie in different places in
the feature space, which cannot be handled by normal relevance
feedback. If the above assumption does not hold, neither rele-
vance feedback nor hidden annotation will be able to help im-
proving the retrieval performance, even if the database is fully
annotated. The only solution to this circumstance is to find better
low-level features for the objects.

We assume that the semantic meanings of the objects in the
database can be characterized by a multilevel attribute tree. To
make the attribute tree general, the attributes at the same level of
the tree are not necessarily exclusive of each other. For each ob-
ject in the database, we maintain a list of probabilities, each of
them indicating the probability of this object having the corre-
sponding attribute. If an object is annotated, the probabilities are
set to be one or zero depending on whether the corresponding at-
tributes are annotated to characterize the object or not. For each
of the objects that have not been annotated, we estimate its at-
tribute probabilities based on its annotated neighbors. Kernel
regression is employed to fulfill this task. With this list of prob-
abilities, we are able to tell which object the system is most un-
certain of, and propose it as a sample to the annotator. The list
of probabilities also works as a feature vector to calculate the
semantic distance between two objects or between a query and
an object. The final similarity measurement between any two
objects is determined by a weighted sum of the semantic dis-
tance and the low-level feature distance. Using both synthetic
database and a three-dimensional (3-D) model database as ex-
amples, we show that with our algorithm, the performance of the
retrieval system improves rapidly with the number of annotated
models, and in all cases outperforms the approach of randomly
choosing the objects to annotate.

This paper is organized as follows. In Section II, we intro-
duce the general criterion for active learning in our approach.
Section III presents the details of the proposed algorithm. We
discuss the joint semantic and low-level feature similarity mea-
surement in Section IV. We show the experimental results in
Section V and conclude the paper in Section VI.

II. THE GENERAL CRITERION FORACTIVE LEARNING

A. The Learning Interface and the Attribute Tree Structure

Fig. 1 shows the learning/annotation interface of our system.
On the left-hand side is a list of attributes to be annotated. On
the right-hand side is a sample object (e.g., an image or a 3-D
model) the system proposes. The basic operation for the anno-
tator is to check some of the attributes for this sample model and
press the “Annotate” button for the system to get the annotation
information of the sample model.

Fig. 1. Learning interface and the tree annotation structure.

In our system, the attributes form a tree structure with mul-
tiple levels. In the attribute tree, each node is an attribute. The at-
tributes at higher-level nodes are more general than those at the
lower-level nodes. By default we assume that once an attribute at
a lower-level nodes is checked, the attributes at the higher-level
nodes or its parent nodes are also checked. As a simple example,
“Aircraft” lies at the first level that is the highest level in the tree
structure, thus it is more general than “Jets”, which lies at the
second level. An object that is a “Jets” is also an “Aircraft.”
Unlike the decision tree in classification applications, the nodes
with the same parent node in our attribute tree are not necessarily
exclusive of each other. For example, an aircraft can be both a
“Classic” and a “Jets.” This makes our tree structure more gen-
eral and more natural to use for annotation.

The annotation starts with no attributes in the tree structure.
When necessary, the annotator may add, rename or remove any
attributes at any level. The annotator is asked to check all the
attributes that the sample object has. For an attribute that the
annotator does not check, we assume the annotator implies that
this object does not have that attribute.

B. Active Learning and the General Criterion to Choose the
Samples

For many types of machine learning algorithms, one can find
the statistically “optimal” way to select the training data. The
pursuing of the “optimal” way by the machine itself was referred
to asactive learning. While in traditional machine learning re-
search, the learner typically works as a passive recipient of the
data, active learning enables the learner to use its own ability to
collect data. Some representative work on active learning can be
found in [22]–[24].

To be more specific, what we are interested is a specific form
of active learning, i.e.,selective sampling. The goal of selec-
tive sampling is to reduce the number of training samples that
need to be annotated, by examining objects that are not yet anno-
tated and selecting the most informative ones for the annotator.
Many approaches have been proposed for selective sampling. In
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[16], Seunget al. proposed an algorithm calledquery by com-
mittee (QBC), which generates a committee of classifiers and
the next query is chosen by the principle of maximal disagree-
ment among these classifiers. Freundet al. [17] extended the
QBC result to a wide range of classifier forms. They gave some
theoretical proofs that, under some assumptions, the effect of
training on annotated data can be achieved for the cost of ob-
taining data that are note yet annotated, and labeling only a log-
arithmic fraction of them. In [18], Nigam and McCallum mod-
ified the QBC algorithm by a combination of active learning
and the traditional expectation-maximization (EM) algorithm.
In [21], Musleaet al. introduced an algorithm calledco-testing.
It is similar to the QBC algorithm and is designed to apply to
problems with redundant views or problems with multiple dis-
joint sets of attributes (features) that can be used to learn the
target attribute. Lewis and Gale [19] described in their paper an-
other approach calleduncertainty sampling. The idea is to use
only one classifier not only tells which class a sample is, but
also gives an uncertainty score for each data sample not yet an-
notated. The next sample is chosen based on which one the clas-
sifier has the least confident with. With uncertainty sampling, it
was reported in [19] and [20] that the size of the training data
could be reduced as much as 500-fold for text classification.

We need to find a general criterion to measure how much
information the annotation can provide to the system. Let

be the objects in the database, and
be the attributes the annotator wants to

use for annotation. These attributes form the attribute tree. For
each object , we define probability to be the probability
that this object has attribute , where if the object
has been annotated as having attribute, and if it has
been annotated as not having attribute. If the object has not
been annotated, is estimated by its neighboring annotated
objects, as will be described in Section III-B. In order to derive
the expected information gain when we annotate a certain
object, we define an uncertainty measurement as follows:

(1)

where is the uncertainty measurement and is a function
on all the attribute probabilities of object . We want the un-
certainty measurement to have the following properties.

1) If object has been annotated, .
2) If for , i.e., we know nothing

about the object, .
3) Given , if it is uncertain that object

has or does not have some attributes,should be
large.

Since the third property of is not presented in a strict sense,
various functions can be defined to satisfy these properties. For
instance, let us assume that . In this case, only one at-
tribute is concerned. The well-knownentropyis a good uncer-
tainty measurement

(2)

where represents the entropy function. We will define uncer-
tainty measurement for multiple attributes in Section III-C.

There is another important factor that affects the benefit the
annotator can give to the system. It is the distribution of the ob-
jects in the low-level feature space. Annotating objects at a high
probability region and a low probability region may give the
system different amounts of information, which in turn leads to
different retrieval performance. Therefore, we define theknowl-
edge gainthe annotator can give to the system by annotating
object as

(3)
where

definedknowledge gain;
probability density function (pdf) around object ,
which will be estimated in Section III-A;
uncertainty measurement defined in (1).

The criterion of choosing the next sample object is to find the
unlabeled object that has the maximum knowledge gain.

III. T HE PROPOSEDAPPROACH

The proposed approach is as follows. We first initialize the
probability lists with prior probabilities that we have about the
whole database. The pdf is also estimated. A small number of
objects are randomly chosen and annotated as the initialization
step of the algorithm. The probability list is re-calculated based
on the randomly annotated objects. The system then starts to se-
lect the object that has the maximum knowledge gain, and asks
the annotator to annotate it. After that some of the objects in
the database update their probability lists because one of their
neighbors is newly annotated. The system then searches for the
object that has the maximum knowledge gain again, and asks
the annotator to annotate it. This loop keeps going until the an-
notator stops or the database is fully annotated.

A. Estimate the Probability Density Function

The probability density function is one of the important fac-
tors in the definedknowledge gainin (3). In machine learning lit-
erature, there have been many efficient ways for density estima-
tion, such as the Naïve density estimator, the Bayesian networks,
the mixture models, the density trees [28], and the kernel den-
sity estimator [27] (also known as Parzen windows). We use the
kernel density estimator. The kernel method is also used in up-
dating the probability lists in the next subsection. Since the prob-
ability density estimation is independent of the latter probability
list updating and needs only to be calculated once offline before
the annotation, any of the above algorithms can be employed.

We choose the kernel as an isotropic Gaussian function (as-
sume the features has been normalized). The window of the es-
timation is a hyper-sphere centered at the concerned object.
Let the radius of the super-sphere be, which was named the
bandwidthof the kernel density estimator in the literature. Nor-
mally, for , where is a constant band-
width. Let be the feature vector of object . The density
estimation at the position where locates is given by

for (4)
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where is the Euclidian distance between the neigh-
boring object and the center object .

The choice of the bandwidth has an important effect on
the estimated probabilities. If the size of the neighborhood is
too large, the estimation will suffer from low resolution. On
the other hand, a too small size may cause local overfitting,
which hurts the generalization ability of the estimation. The op-
timal Parzen window size has been studied extensively in the
literature. The optimal bandwidth can be determined by mini-
mizing theintegrated squared error (ISE)or themean integrated
squared error (MISE)[29]. Adaptive bandwidth was also pro-
posed in [30]. For simplicity, we choose a constant bandwidth

based on the maximum distance from any object to its closest
neighbor , i.e.

(5)

where is a scalar. Through experiments we find that with a
well-normalized feature space, selectingbetween 1 and 10
often gives good results. Detailed experiments will be shown in
Section V.

B. Update the Probability Lists

We assume that we have some prior knowledge about the
probability lists before the annotation. That is

for (6)

where is the prior probability for an object to have attribute
. Experimental results show that the guess of the prior prob-

ability will not influence the annotation efficiency too much.
During the annotation, the annotator is supposed to check all
the attributes the query model has, and all the other attributes the
annotator does not check are assumed to be not belonging to the
object unless they have some of their children nodes checked.
Let be the set of attributes the annotator annotated for object

, including those having children nodes checked. The new list
of probabilities for object after the annotation is

if
otherwise.

(7)

Recall the basic assumption we made in Section I, annotated
models tend to infer knowledge to their nearby neighbors. If a
model has some of its neighbors annotated, its probability list
needs to be updated. Meanwhile, if the objects are far from any
of the annotated objects, we do not want to link the semantic
meanings between them. Such semantic meaning extension fits
the framework of kernel regression very well. The annotated ob-
jects are anchor points that have known probability values. For
those objects that have not been annotated, their attribute proba-
bilities can be regressively interpolated. We assume in this paper
that for each attribute the probabilities can be independently in-
terpolated with kernel regression.

As we mentioned earlier, if an object is annotated as
having attribute , the probability will increase to 1. Oth-
erwise, it will drop to 0. These annotated objects are considered
as anchor points in the low-level feature space. Let us consider,
for example, one of the attributes . Let

be the feature vectors of all the currently annotated objects, and
the corresponding probabilities are defined as in (7), i.e.

if the object corresponding to has
otherwise.

(8)

We proposed a simplebiased kernel regressionalgorithm to
estimate, given an unannotated object whose feature vector is,
the probability of this object having attribute

(9)

where is the prior probability of any object that belongs
to attribute and is the tendency of the object toward the
prior probability. If , (9) degenerates to the normal kernel
regression. When the weight is less than 1, there exists an
equivalent distance , which satisfies

(10)

where is the kernel bandwidth of the object to be predicted.
In this case, biased kernel regression can be viewed by putting
a virtual anchor point at a distance to the point to be pre-
dicted, and set the probability of the virtual anchor point having
attribute as the prior probability.

The weights are defined as

(11)

where is the bandwidth for object . This bandwidth will
have very similar effects on the final result as that when we es-
timate the pdf using kernel density estimator. Actually, we will
use the same kernel bandwidth in the pdf estimation in the last
subsection and kernel regression here. Obviously, from (11), an
annotated object that is closer to the query pointwill be as-
signed a higher weight, which gives more influence on the pre-
dicted value . This is coherent with our basic as-
sumption.

Fig. 2 explains the reason why biased kernel regression is bet-
tern than the normal kernel regression. The horizontal axis is
the feature value, and the vertical axis is the probability that the
corresponding object has the certain attribute. Notice that for
normal kernel regression in Fig. 2(a), when the feature value is
far away from the anchor points (e.g., at the two ends of the hor-
izontal axis), and the weight is very small, the predicted proba-
bility is still close to 1 or 0. This is mainly due to the normaliza-
tion of the weights at the denominator. This effect is not what we
expected. Again, our assumption is that close annotated objects
can infer knowledge to the current object, but far objects cannot.
In other words, if an object has only very far neighbors being an-
notated, we expect its probability to remain similar to the prior
probability. Fig. 2(b) shows the result of biased kernel regres-
sion, where is set to be equal to , and the prior probability
is set to be 0.5. It is obvious that the biased kernel regression is
very suitable for our approach, as we will estimate
as the prior probability if all the annotated objects are far away.
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Fig. 2. (a) Normal kernel regression and (b) biased kernel regression.

Notice that the predicted curve does not pass the anchor point
for Fig. 2(a) and (b). This is actually a nice property of kernel re-
gression. From the probabilistic point of view, if the object with a
certain feature vector is annotated as having attribute, it is still
probable that another object having the same feature vector does
not have this attribute. It can be proven that, when the number
of anchor points goes infinite and the kernel bandwidth becomes
very small, the result of kernel regression asymptotically con-
verges to the actual probability distribution [25].

Although the database might be huge, the computational cost
on the probability list updating is actually low. That’s because
in kernel regression, a newly annotated object would not change
an object’s probability list if it were far away. The bandwidth of
the kernel function determines the hyper-sphere inside which
the object’s probability lists have to be updated. These objects
can be easily found if the database is organized by R-tree [26]
or similar structures.

The probabilities of the objects can also be estimated para-
metrically. For example, we can assume the models belonging
to each attribute follow a Gaussian distribution, or a Gaussian
mixture distribution if necessary. Having a new model annotated
is equivalent to adding a new training example to the Gaussian or
the Gaussian mixture. The model to be chosen to annotate could
be the one with which the system is the least confident. Such an
approach does not have a smooth transition from no annotation
to full annotation, because after the database is fully annotated,
the parametric model does not record any annotation for each
object in the database. Moreover, such kind of approach imposes
a very strong global structure over the low-level feature space.
When the model of the distribution is not right, the performance

of the system may suffer. As a comparison, our approach also
imposes some structures on the feature space but they are local.
Local structures offer better opportunity to fit the database well
when we do not have enough knowledge about the database.

C. The Uncertainty Measure

After all the probabilities have been updated, the learning al-
gorithm searches among models that have not been annotated
for another model whose annotation, once given by the anno-
tator, will provide the most extra information. According to the
discussion in Section II-B, this model is the one that produces
the maximum knowledge gain. In order to calculate the gain, we
need to find the uncertainty measurement and the probability
density for each model. We have described the estimation of the
pdf in Section III-A. Hereafter, we discuss the way to determine
the uncertainty measurement.

In Section II-B, we gave some general properties for the un-
certainty measurement we want. We mentioned that if we only
have one attribute to annotate for all the objects, theentropyis
a good measure of uncertainty

(12)

where
uncertainty measurement for object;
entropy function;
probability for object to be characterized by the at-
tribute.



ZHANG AND CHEN: ACTIVE LEARNING FRAMEWORK FOR CBIR 265

If there are multiple attributes, the uncertainty should be defined
based on the joint probability of all the attributes. That is

(13)

where represents the joint probability of ob-
ject having or not having the attributes. The sum is taken
over all the possible combinations of attributes that an object
can have.

As it is often impossible to estimate the joint probabilities,
we use a simplified method to approximate (13). For a certain
object and a certain attribute , we define the individual
entropy as

(14)

The overall uncertainty for an object is defined by a
weighted sum of the entropies for all the attributes, i.e.,

(15)

where is the total number of attributes, and is the se-
mantic weight for each attribute. The semantic weights are re-
lated with which level in the tree the attributes are at. Letbe
the level attribute is at. The weights are defined as

(16)

where is a constant between 0 and 1. In our current implemen-
tation, we set to be 0.6 based on experiments. The justification
of the above weighted entropy approximation is detailed in [32].

With the uncertainty measure in (15) and the probability den-
sity estimate in Section III-A, we are able to calculate the knowl-
edge gain by simply multiplying them together as in (3). The
system then proposes the object with the maximum gain and
asks the annotator to annotate it.

IV. JOINT SIMILARITY MEASURE FORSEMANTIC AND

LOW-LEVEL FEATURES

The hidden annotation needs to be integrated into the retrieval
system in order to provide better retrieval performance. In pre-
vious work, annotation was often regarded as a Boolean vector.
In [8] and [10], normalized Hamming distance was used to com-
bine the influence of the annotation and acted as a new feature
for the retrieval. When the database is partially annotated and
the annotations are used for learning, as in [11], neural networks
are often used to train the similarity measurement.

In our system, each model has a list of attribute probabili-
ties, including the query model the user provides. If the query
model is chosen from the database, we already have this proba-
bility list. This is the normal case as hidden annotation is largely
for improving the performance of inside-database queries. If the

query model is selected from outside the database, we can esti-
mate its probabilities as in Section III-B as well. Alternatively,
the user can annotate the query model before providing it to the
retrieval system. The probability list is a complete description
of all the annotations we have ever made and is associated with
high-level semantics. We can treat this list of probabilities as a
feature vector, similar to low-level features such as color, tex-
ture, and shape. The semantic distance between any two
objects and is defined as

(17)

where is the total number of attributes, is the semantic
weight for each attribute as defined in (16), and and
are the attribute probabilities for the two models. The item

is actually the probability of
objects and disagreeing with each other on attribute

(i.e., one of them has but the other one does not have).
We choose the form of weighted sum to measure the overall
disagreement because it is simple and effective in practice.
For attributes at a lower level, the weight is smaller, that
is, we give a less penalty on disagreement on attributes at a
lower level. Intuitively, the disagreement between a “car” and
an “aircraft” is larger than that between “Classic Aircraft”
and a “Jets Aircraft”. Another good property of the defined
semantic distance is that, if the objects to be compared have
been annotated and the probabilities are either 0 or 1, the
defined semantic distance will automatically degenerate into
a Hamming distance (assume one-level attribute tree), which
is widely used in the literature. Many other forms of semantic
distances can be defined as well. However, we assumes that
all the attributes in our system are not exclusive, thus distance
measures that assume one normalized probability vector for
each object are not good, such as the KL divergence [31].

We need another distance measure that is the distance in the
low-level feature space. For two objects and , we simply
use the weighted Euclidean distance

(18)

where is the total number of features, and are the
normalized low-level features of the two objects and ,
respectively, and is the weight set based on the importance
of each feature. In the current implementation, the features are
equally weighted after normalization.

The overall distance between the two models is a weighted
sum of the semantic distance and the low-level feature distance

(19)

where and are the semantic weight and the low-level
feature weight, respectively, and . There are
several methods to specify these two weights. For example, they
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can be fixed as a constant, or they can be proportional to the
number of objects that have been annotated in the whole data-
base. In the current system, the weights are inverse proportional
to the entropy of the query object. Therefore, if the retrieval
system knows what the query is, it prefers to search the database
mainly by semantic features instead of the low-level features.

As hidden annotations are made by the annotator, models that
are far away from each other may be annotated as having the
same attributes, which means they have small semantic distance.
The integration of semantic annotations into the similarity mea-
surement effectively works as warping of the low-level feature
space to make semantically similar objects closer to each other.
As illustrated in Fig. 3, aircrafts are distributed beside cars in the
low-level feature space. Two aircrafts and one car are annotated.
When we compute the final similarity, the aircrafts will have
similar attribute probabilities, and their final similarity score
will be higher than when only low-level features are considered
due to the introducing of item in (19).

V. EXPERIMENTS

We performed experiments on both synthetic database and
real database. Due to the page limit, we refer the detailed exper-
iments to [32]. There are several main conclusions drawn.

1) Active learning always performs better than random sam-
pling on the database tested, and the saving of the number
of annotations can be as large as 50%.

2) For a fairly large range of the kernel bandwidth around
(defined in (5)), the performance is similar, though

a larger bandwidth typically gives more stable perfor-
mance.

3) Adaptive kernel bandwidth does not help improve the per-
formance.

4) The bias weight has almost no impact on the system
performance.

Here we show some experimental results on a real retrieval
system. We use a database of 3-D objects downloaded from
the Internet. The database consists of 1750 objects. More than
one-third of the objects are aircrafts. Some features for com-
paring 3-D models have been proposed in the literature, e.g.,
those in [13]–[15]. In our system, we have ten features extracted
for each object. They are region-based features proposed in [15],
including the volume-surface ratio, the aspect ratio, moment
invariants and Fourier transform coefficients. The features are
normalized to be within range (1, 1).

In the first experiment, we use our active learning algorithm
to distinguish between aircrafts and nonaircrafts.

We measure the annotation efficiency by testing the final re-
trieval performance of our retrieval system. Since our system
has a multilevel attribute tree structure, we define the perfor-
mance measurement as follows. For any specific queryand its
top retrieved results, the average matching error for these re-
sults is measured by

(20)

Fig. 3. Annotations can “warp” the feature space.

where is the semantic distance between the query and the
retrieved object, which is calculated by (17) with the ground

truth data. The indicates the average matching error for the
top retrieved objects with respect to the query. The smaller
the , the better the performance of the system for the query
. The overall system performance is evaluated by

(21)

where is the number of objects in the database, as we take
every object in the database as a query and calculate the average
matching error. The final performance of the system is measured
by taking average of the average matching error for all the ob-
jects.

The performance comparison between our active learning al-
gorithm and the random sampling algorithm on the 3-D model
database is given in Fig. 4. To start both algorithms, 50 models
are randomly chosen and annotated. We use fixed bandwidth
for kernel density estimation and kernel regression. The band-
width is set to be 2 , where is defined in (5). In the biased
kernel regression, we choose the weight of the prior probability
as . Only the performance on the top 20 retrieved results are
reported.

The horizontal axis of Fig. 4 is the number of samples that
have been annotated, including the initial 50 randomly drawn
samples. The vertical axis is the average matching error for
the whole database measured by (21). A curve closer to the
bottom-left corner is considered to have a better performance.
From Fig. 4, it is obvious that our active learning algorithm
works much better than the random sampling approach.

Finally, we test the algorithm on the 3-D model database with
13 attributes. The airplane category is further extended into eight
subcategories such as biplane, jets, helicopters, etc., while the
nonairplanes are divided into four categories such as charac-
ters, shapes, buildings, etc. Fig. 5 shows the performance of our
algorithm versus random sampling. Our algorithm still works
better than the random sampling algorithm, though the improve-
ment is not as significant as in Fig. 4 and the synthetic database.
This may be due to the feature space of the 3-D model database.
When more and more classes are specified, some of the classes
may violate the assumption we proposed in Section I. That is
for objects in some classes the local inferable property may not
hold any more.
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Fig. 4. Performance comparison between our algorithm and random sampling for the 3-D model database on two attributes.

Fig. 5. Performance comparison between our algorithm and random sampling for the 3–D model database on 13 attributes.

VI. CONCLUSIONS ANDDISCUSSIONS

In this paper, we proposed a general approach to add hidden
annotation using active learning for information retrieval. We
considered a natural attribute tree structure for the annotation.
The object to be annotated at any instant was determined by the
knowledge gain of the system by annotating it. We defined the
knowledge gain as the product of the pdf and the uncertainty
measurement. In order to evaluate the uncertainty of an object,
we gave each object a list of attribute probabilities, computed
based on its neighboring annotated objects through kernel
regression. We obtained the uncertainty of an object by giving an
explicit function on these probabilities. The proposed algorithm
outperforms the random sampling algorithm in all the exper-
iments we performed, which shows that hidden annotation
with active learning is a very powerful tool to improve the
performance of CBIR.

Hidden annotation and relevance feedback have different
strategies and serve for different purposes. Normal relevance
feedback does not accumulate semantic knowledge, and is able

to tune to each query very quickly. Hidden annotation, on the
other hand, tries to accumulate all the knowledge given by the
annotator. It is application-dependent to choose between them or
to choose both. The knowledge accumulation can also be smartly
turned on or off depending on whether the user is trustable or not.

In active learning, one may have the concern whether the an-
notator’s preference is always the same as a user. Although the
annotator may be an expert, the user may have his/her own cri-
teria for similarity. We can modify our algorithm to allow user
feedback. Because we define the overall distance as a weighted
sum of the semantic distance and the low-level feature distance
as in (19), where the weights between semantic distance and
low-level feature distance can also be adjusted by the relevance
feedback. This is part of our future work.

To compare our approach with Lewis and Gale’s approach
in [19], their approach is designed for text classification, while
ours is for information retrieval. Our approach is more general
and can be easily modified to be used in other classification
problems.
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