
ON SAMPLING OF
IMAGE-BASED RENDERING DATA

Cha Zhang
June 2004

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee
Tsuhan Chen, Chair

Takeo Kanade
José Moura

Richard Szeliski (Microsoft Research)

c© Copyright by Cha Zhang, 2004

Abstract

Image-based rendering (IBR) generates novel views from images instead of 3D models. It
can be considered as a process of sampling the light rays in the space and interpolating the
ones in novel views. The sampling of IBR is a high-dimensional sampling problem, and is
very challenging. This thesis focuses on answering two questions related to IBR sampling,
namely how many images are needed for IBR, and if such number is limited, where should
we capture them. There are three major contributions in this dissertation.

First, we give a complete analysis on uniform sampling of IBR data. By introducing the
surface plenoptic function, we are able to analyze the Fourier spectrum of non-Lambertian
and occluded scenes. Given the spectrum, we also apply the generalized sampling theorem
on the IBR data, which results in better rendering quality than rectangular sampling for
complex scenes. Such uniform sampling analysis provides general guidelines on how the
images in IBR should be taken. For instance, it shows that non-Lambertian and occluded
scenes often require higher sampling rate.

Second, we propose a very general sampling framework named freeform sampling. Freeform
sampling has three categories: incremental sampling, decremental sampling and rearranged
sampling. When the to-be-reconstructed function values are unknown, freeform sampling
becomes active sampling. Algorithms of active sampling are developed for image-based
rendering and show better results than the traditional uniform sampling approach.

Third, we present a self-reconfigurable camera array that we developed, which features a
very efficient algorithm for real-time rendering and the ability of automatically reconfiguring
the cameras to improve the rendering quality. Both are based on active sampling. Our
camera array is able to render dynamic scenes interactively at high quality. To our best
knowledge, it is the first camera array in literature that can reconfigure the camera positions
automatically.

ii

Acknowledgements

There are many people who I am deeply indebted to, and without whom this work would

never have been finished. First and foremost is my advisor, Prof. Tsuhan Chen. He has

served all of the roles of teacher, mentor, guide, encourager, task-master, advocate, and

friend. Throughout our weekly group and individual meetings, he teaches me how to select

topics, conduct research and communicate effectively. I have learnt from him how to become

a successful researcher and I hope to carry on to make contributions to our community. I

am very fortunate to become his student and join his group at CMU.

I would also like to thank Prof. Takeo Kanade, Prof. José Moura and Dr. Richard

Szeliski for spending their valuable time as my thesis committee members. I would like to

thank them for all the fruitful discussions that improve the quality of this work.

My current and previous group mates Fu Jie Huang, Ta-Chien Lin, Deepak Turaga,

Trista Chen, Howard Leung, Xiaoming Liu, Claire Fang, Wende Zhang, Edward Lin, Sam

Chen, Jessie Hsu, Simon Lucey, Jack Yu, Kate Shim, Avinash Baliga, Michael Kaye, David

Liu, Li-Ying Chang and Akira Kubota, broaden my views through the exchange of research

ideas. I have developed the sense of belonging and I am proud to be in this AMP (Advanced

Multimedia Processing) group. In addition to my group, I also enjoy discussing research

ideas with other friends such as Dapeng Wu, Jin Lu, Ying Sun, David Sepiashvili, etc.

It was really a great experience to have been in the Electrical and Computer Engineering

department at Carnegie Mellon University, where I have the opportunity to meet so many

great faculties, staff and students.

I should also thank Dr. Jin Li and Dr. Stephen Lew for supervising me during my

internship at Microsoft Research Redmond and NVidia Corp. The experience of internship

iii

greatly broadened my research field and helped me understand better why and how research

should be applied to industry.

Most of all, I would like to thank my wonderful wife, Jing Ding. Without her support,

encouragement, and confidence in me from the day I came to graduate school until now,

this thesis would certainly have gone unwritten. She is my helper and friend, and deserves

more credit than I can put into words. I dedicate this thesis to her, to our lovely son, Alex

Muyang Zhang, and to my parents.

iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Objective and Approaches . 1
1.2 Contributions . 2
1.3 Guide to the Thesis . 3

2 A Survey on IBR Techniques 5
2.1 Introduction . 5
2.2 Constraining the Viewing Space . 9
2.3 Introducing Source Descriptions . 21
2.4 Summary . 32

3 Previous Work on IBR Sampling 34
3.1 Uniform Sampling . 35
3.2 Nonuniform Sampling . 38
3.3 Summary . 39

4 Uniform Sampling: Spectral Analysis of IBR Data 41
4.1 The Surface Plenoptic Function . 42
4.2 Analysis for the Light Field . 46
4.3 Analysis of Scenes with Unknown Geometry 56
4.4 Analysis for the Concentric Mosaics . 62
4.5 Summary . 64

v

5 Uniform Sampling: Generalized IBR Sampling 66
5.1 Generalized Sampling for Light Field Data 66
5.2 Experimental Results . 70
5.3 Summary . 73

6 Freeform Sampling and Active Sampling: A New Sampling Framework 74
6.1 The Freeform Sampling Problem . 75
6.2 Solutions of the Freeform Sampling Problem 77
6.3 Active Sampling . 81
6.4 The Proposed Algorithms for Active Sampling 83
6.5 Summary . 87

7 Active Sampling: Applications in IBR 88
7.1 The Local Consistency Score . 88
7.2 IBR Active Incremental Sampling . 91
7.3 IBR Active Rearranged Sampling . 99
7.4 Summary . 106

8 The Self-Reconfigurable Camera Array 107
8.1 System Overview . 108
8.2 Camera Calibration . 112
8.3 Real-Time Rendering . 114
8.4 Self-Reconfiguration of the Cameras . 126
8.5 Summary . 131

9 Conclusions and Future Work 132
9.1 Contributions . 132
9.2 Future Work . 133

Bibliography 136

vi

List of Tables

2.1 IBR representations with various viewing space constraints. 12
2.2 Various IBR approaches using source descriptions. 21

5.1 Rendering image qualities for different sampling methods. 72

7.1 Performance comparison between uniform sampling and active incremental
sampling on light field scene Earth. 94

vii

List of Figures

2.1 The 7D plenoptic function. 7
2.2 One parameterization of the light field. 14
2.3 A sample light field image array: fruit plate. 15
2.4 Concentric mosaics capturing. 17
2.5 Parallax observed from concentric mosaics rendered scenes. 18
2.6 A 360◦ cylindrical panorama. 19
2.7 Synthesize novel view with tensor space. 24
2.8 The layered depth image. 25

3.1 The plenoptic sampling analysis. 36
3.2 The minimum sampling curve. 37

4.1 The 2D surface plenoptic function and general IBR capturing. 43
4.2 The light field parameterization with surface plenoptic function. 47
4.3 Spectrum of Lambertian and non-Lambertian scenes at constant depth. . . 49
4.4 Spectrum of a tilted planar scene with a sinusoid pasted as texture. 51
4.5 Spectrum of an occluded scene. 55
4.6 Best rectangular sampling of a non-occluded and Lambertian scene. 56
4.7 Best rectangular sampling of a non-Lambertian scene. 57
4.8 An example of the minimum sampling rate for non-Lambertian surface. . . 59
4.9 Best rectangular sampling of occluded scenes. 60
4.10 An example of the minimum sampling rate for occluded surface. 61
4.11 The concentric mosaics parameterization with surface plenoptic function. . 61
4.12 Spectrum of a Lambertian scene at constant depth for concentric mosaics. . 64

5.1 Generalized sampling of light field. 67
5.2 Filter design for light field reconstruction. 69
5.3 Test scenes for generalized sampling of light field. 71

6.1 Illustration of Condition 6.1.2 with a 1D example. 76
6.2 The flow of decremental sampling. 78
6.3 The flow of incremental sampling. 79
6.4 The flow of rearranged sampling. 80
6.5 Cliques and their subdivision. 84

viii

6.6 The flow of active incremental sampling. 85

7.1 Interpolation weight calculation using angular difference. 89
7.2 Cases that will cause a low local consistency score. 90
7.3 Active incremental sampling for the light field setup. 92
7.4 Active incremental sampling of a light field Earth. 93
7.5 Active incremental sampling for the concentric mosaics setup. 95
7.6 Concentric mosaics scenes: (i) Reflective cone; (ii) Hemisphere bowl; (a)

scene snapshot; (b) used scene geometry. 95
7.7 Active incremental sampling results on concentric mosaics scene RC. 97
7.8 Active incremental sampling results on concentric mosaics scene HB. 98
7.9 Comparison of EPIs for different scenes. 99
7.10 The setup of active rearranged sampling for the light field. 101
7.11 Scaling factor for updating the auxiliary weights. 102
7.12 Active rearranged sampling results of a light field Teapot. 104
7.13 The setup of active rearranged sampling for the concentric mosaics. 105
7.14 Active rearranged sampling results of concentric mosaics scene Hemisphere

bowl. 106

8.1 Our self-reconfigurable camera array system with 48 cameras. 108
8.2 The mobile camera unit. 109
8.3 Images captured by our camera array. 110
8.4 Locate the feature corners of the calibration pattern. 112
8.5 The multi-resolution 2D mesh with depth information on its vertices. 114
8.6 The flow chart of the rendering algorithm. 115
8.7 Locate the neighboring images for interpolation and depth reconstruction

through plan sweeping. 116
8.8 Determine the ROI of a certain input image. 117
8.9 Subdivision of a mesh triangle. 119
8.10 Synthetic scenes rendered with our proposed algorithm. 122
8.11 Scenes captured and rendered with our camera array. 124
8.12 Real-world scenes rendered with our proposed algorithm. 125
8.13 Scenes rendered by reconfiguring our camera array. 127
8.14 Self-reconfiguration of the cameras. 128

ix

Chapter 1

Introduction

1.1 Objective and Approaches

Image-based rendering (IBR) has attracted much attention recently. By capturing a set of

images of a scene, IBR is capable of rendering 3D views with little or no scene geometry.

Compared with traditional model-based rendering methods, IBR bypasses the most difficult

geometric model reconstruction stage, and is easy to capture and fast to render.

The tradeoff for not using a geometric model for 3D rendering is the tremendous amount

of data one needs to capture and store. Given a scene, it is thus essential to answer the

following two questions in IBR applications:

How many images are needed for IBR? If such number is limited, where shall

we capture these images?

In literature, answers to these questions are rare and incomplete. Many IBR representations

resorted to over-sampling to avoid problems caused by insufficient number of samples such

as ghosting or aliasing. Solving the sampling problem is thus fundamental, and may bring

insights to the design of future IBR algorithms.

In this dissertation, we will first address the uniform sampling of IBR using traditional

Fourier transform based sampling methods. Fourier transform based analysis was adopted

in some previous papers, but none of them were able to solve it completely, especially for

non-Lambertian and occluded scenes. This dissertation proposes a new uniform sampling

1

2

analysis approach based on the so-called surface plenoptic function, which is able to provide

a more complete solution. The uniform sampling analysis provides general guidelines on

how IBR scenes should be sampled, for instance, a non-Lambertian or occluded object

should be sampled denser than Lambertian and non-occluded ones.

Based on the guidelines we achieve from uniform sampling analysis, it is natural to

consider freeform or non-uniform sampling for IBR, because real world scenes always vary

their surface properties. The second part of the dissertation thus focuses on the freeform

sampling of IBR data. We not only answer the question how many images are needed, but

also tell where these images should be placed. The result of our sampling scheme is a non-

uniform arrangement of the capturing cameras, which leads to better worst case rendering

quality and less quality jittering during the rendering.

1.2 Contributions

The key contributions of this dissertation are three-fold:

Uniform IBR sampling analysis. We propose a novel method to analyze the Fourier

spectrum of IBR scenes, which is able to handle both non-Lambertian surface and occlu-

sions. We show that in both cases the required sampling rate is higher than Lambertian and

non-occluded ones. Considering that the IBR sampling problem is a multi-dimensional sam-

pling problem, we also apply the generalized sampling theorem on IBR sampling. We are

able to reduce the sampling rate by a factor of 50% in theory, and achieve better rendering

quality for complex scenes.

A very general framework on freeform sampling and active sampling. Compared

with the traditional uniform sampling theorem, the freeform sampling framework has more

practical considerations such as the reconstruction method, the reconstruction set, the sam-

pling noise, etc. General solutions of freeform sampling are described in this dissertation,

including decremental sampling, incremental sampling and rearranged sampling. We also

present active sampling as a special case of freeform sampling, where the function values

3

of the sampled signal on the reconstruction set is unknown. We apply it to IBR and show

that it is superior to the traditional uniform sampling method.

The self-reconfigurable camera array. We build the world’s first self-reconfigurable

camera array, where the cameras are mobile, in order to demonstrate our active sampling

theory. We develop a very efficient algorithm for the real-time rendering of dynamic scenes.

Active sampling is widely used in the algorithm to improve the rendering speed. We also

show that by moving the cameras around for active sampling, we can improve the rendering

quality, especially at object boundaries.

1.3 Guide to the Thesis

Here we outline the chapters that follow.

Chapter 2 – A Survey on IBR Techniques. We give a survey of the various IBR tech-

niques in the literature. They are classified into two categories based on how the plenoptic

function is simplified: constraining the viewing space or introducing source descriptions.

This chapter is written in order to give the reader some background knowledge on IBR.

Chapter 3 – Previous Work on IBR Sampling. The literature on IBR sampling is

rare and incomplete. We give brief introduction to them and comment on their pros and

cons, which serves as a motivation for this dissertation.

Chapter 4 – Uniform Sampling: Spectral Analysis of IBR Data. In this chapter

we propose our general framework of IBR uniform sampling analysis based on the surface

plenoptic function. Our method is able to derive the IBR spectrum for non-Lambertian

and occluded scenes, which is more complete than previous work.

Chapter 5 – Uniform Sampling: Generalized IBR Sampling. Given the Fourier

spectrum of the scene, this chapter focuses on how to sample it efficiently. We apply the

generalized sampling theory for high-dimensional signal to IBR, and show its advantage

4

over the traditional rectangular sampling on complex scenes. However, we conclude that

rectangular sampling may still be preferable for its simplicity and good performance.

Chapter 6 – Freeform Sampling and Active Sampling: A New Sampling Frame-

work. This chapter tries to give a very general sampling framework named freeform sam-

pling. Samples are no longer limited to regular patterns, thus solutions to freeform sampling

also change. Active sampling is a special case of freeform sampling, where the sample values

on the reconstruction set are unknown. General algorithms are also presented for active

sampling.

Chapter 7 – Active Sampling: Applications in IBR. We apply the active sampling

theorem in the last chapter to IBR. Several algorithms specific for IBR are proposed, and

show very good performance on synthetic scenes.

Chapter 8 – The Self-Reconfigurable Camera Array. We describe our self-reconfigurable

camera array project in this chapter. Our camera array features real-time calibration, real-

time geometry reconstruction and rendering, and self-reconfiguration. It shows examples of

how active sampling is applied in real-world applications.

Chapter 9 – Conclusions and Future Work. We conclude this work with a review

of our contributions along with some discussions of future work for IBR sampling and the

camera array.

Readers are suggested to start with Chapter 2 and 3 if not familiar with IBR and its

sampling problem. Chapter 4 and 5 are on the uniform sampling of IBR. They are related

but can be read separately. Both Chapter 6 and Chapter 7 are for freeform sampling

and active sampling, but Chapter 7 refers many conclusions from Chapter 6. Chapter 8

introduces the self-reconfigurable camera array, which loosely depends on Chapter 6 and 7.

Chapter 2

A Survey on IBR Techniques

In this chapter, we give a brief survey on the various techniques developed for IBR. The

goal is to provide an overview of research for IBR in a complete and systematic manner. We

observe that essentially all the IBR representations are derived from the plenoptic function,

which is seven dimensional and difficult to handle. We classify various IBR representations

into two categories based on how the plenoptic function is simplified, namely constraining

the viewing space and introducing source descriptions. In the former category, we summarize

six common assumptions that were often made in various approaches and discuss how the

dimension of the plenoptic function can be reduced based on these assumptions. In the

latter category, we further categorize the methods based on what kind of source description

was introduced, such as scene geometry, texture map or reflection model. While most work

in this category used known source descriptions, we also review some of the techniques that

tried to infer source descriptions from captured images and perform high quality rendering.

2.1 Introduction

One might remember that in the movie Matrix, the scene with Keanu Reeves dodging the

bullets might be one of the most spectacular images ever caught on camera. This filming

technology is what the movie producers called Flo-Mo. Flo-Mo lets the filmmakers shoot

scenes where the camera moves at a normal speed while the action is frozen or happens in

slow motion. Two movie cameras and 120 computer-controlled still cameras were used in

5

6

that scene. Similarly, the Eyevision system [48] developed by Takeo Kanade [140], which

consisted of 33 cameras spaced approximately 6 degrees apart around the rim of the stadium,

was used in a live broadcast of Super Bowl game in Jan. 2001. It provided a unique 3D view

of selected plays in a 270◦ stop action image. These novel viewing experiences were brought

to us by image-based rendering (IBR), which has been a very active research topic recently.

By capturing a set of images or light rays in the space, the goal of IBR is to reproduce the

scene correctly at an arbitrary viewpoint, with unknown or limited amount of geometry.

Compared with geometric models that dominate the traditional 3D rendering pipelines,

images are easier to obtain, simpler to handle and more realistic to render. Moreover, since

image processing is one of the most widely studied research topics in the literature, IBR

has attracted many researchers from different communities, including graphics, vision and

signal processing.

Since the goal of IBR is to capture and render the 3D world, let us first see how the

world can be described. One possible solution is to record all the objects in the world

and their interactions, which we call a source description. The traditional model-based

rendering approach adopts such a description: shapes of the objects are represented by

certain geometric models; properties of the object surfaces are described by texture maps

and reflection models; lighting and shading are the results of interaction between the light

sources and objects, etc. The source description is often compact and insightful, because it

tells how the world is composed. However, it has the disadvantage that such a description

is not always available. From what we can observe with our eyes or cameras, deriving the

source description is not trivial, and has been the goal of computer vision for many years.

An alternative way to describe the world is through the appearance description. The

appearance of the world can be thought of as the dense array of light rays filling the space,

which can be observed by posing eyes or cameras in the space. These light rays can be

represented through the plenoptic function, proposed by Adelson and Bergen [1]. As

shown in Figure 2.1, the plenoptic function is a 7D function that models a 3D dynamic

environment by recording the light rays at every space location (Vx, Vy, Vz), towards every

7

()zyx VVV ,,

()φθ ,

λ,t

Figure 2.1: The 7D plenoptic function.

possible direction (θ, φ), over any range of wavelengths (λ) and at any time (t), i.e.,

l(7)(Vx, Vy, Vz, θ, φ, λ, t) (2.1)

As pointed out by Adelson and Bergen [1]:

The world is made of three-dimensional objects, but these objects do not com-

municate their properties directly to an observer. Rather, the objects fill the

space around them with the pattern of light rays that constitutes the plenop-

tic function, and the observer takes samples from this function. The plenoptic

function serves as the sole communication link between the physical objects and

their corresponding retinal images. It is the intermediary between the world

and the eye.

When we take an image for a scene with a pinhole camera1, the light rays passing through

the camera’s center-of-projection are recorded. They can also be considered as samples

of the plenoptic function. As image-based rendering is based on images, it adopts the

appearance description. We define IBR under the plenoptic function framework as follows:
1Throughout this thesis, we assume that the cameras we use are pinhole cameras. Most of the IBR

technologies in the literature made such assumption. There are some exceptions, however, such as the work
in [49, 59].

8

Definition 2.1.1. Given a continuous plenoptic function that describes a scene, image-

based rendering is a process of two stages - sampling and rendering2. In the sampling

stage, samples are taken from the plenoptic function for representation and storage. In

the rendering stage, the continuous plenoptic function is reconstructed from the captured

samples.

The above definition reminds us about what we typically do in signal processing: given

a continuous signal, sample it and then reconstruct it. The uniqueness of IBR is that the

plenoptic function is 7D - a dimension beyond most of the signals handled before. In fact,

the 7D function is so general that, due to the tremendous amount of data required, no one

has been able to sample the full function into one representation. Research on IBR is mostly

about how to make reasonable assumptions to reduce the sample data size while keeping

reasonable rendering quality.

There have been many IBR representations invented in the literature. They basically

follow two major strategies in order to reduce the data size. First, one may constrain the

viewing space of the viewers. Such constraints will effectively reduce the dimension of the

plenoptic function, which makes sampling and rendering manageable. For example, if we

limit the viewers’ interest to static scenes, the time dimension in the plenoptic function can

be simply dropped. Second, one may introduce some source descriptions into IBR, such

as the scene geometry. Source description has the benefit that it can be very compact. A

hybrid source-appearance description is definitely attractive for reducing the data size. To

obtain the source description, manual work may be involved or we may resort to computer

vision techniques.
2We believe that considering IBR as a generic term for the techniques of both sampling and rendering is

more appropriate than the conventional definition in [86]. In the sections that follow, IBR rendering will
be used to refer to the rendering stage specifically.

9

2.2 Constraining the Viewing Space

If the viewing space can be constrained, the amount of images required for reproducing the

scene can be largely reduced. Take an extreme example: if the viewer has to stay at one

certain position and view along one certain direction, an image or a video sequence captured

at that position and direction is good enough for representing the scene. Another example is

branch movies [75, 117, 89], in which segments of movies corresponding to different spatial

navigation paths are concatenated together at selected branch points, and the user is forced

to move along the paths but allowed to switch to a different path at the branch points.

2.2.1 Commonly used assumptions to constrain the viewing space

There is a common set of assumptions that people made for constraining the viewing space in

IBR. Some of them are preferable, as they do not impact much on the viewers’ experiences.

Some others are more restrictive and used only when the storage size is a critical concern.

We list them below roughly based on their restrictiveness.

[Assumption 1] As we are taking images of the scene for IBR, we may simplify the wave-

length dimension into three channels, i.e., the red, green and blue channels. Each

channel represents the integration of the plenoptic function over a certain wavelength

range. This simplification can be carried out throughout the capturing and rendering

of IBR without noticeable effects. Almost all the practical representations of IBR

make this assumption.

[Assumption 2] The air is transparent and the radiances along a light ray through empty

space remain constant. Under this assumption, we do not need to record the radiances

of a light ray on different positions along its path, as they are all the same. To see how

we can make use of this assumption, let us limit our interest to the light rays leaving

the convex hull of a bounded scene (if the viewer is constrained in a bounded free-

space region, the discussion hereafter still applies). Under Assumption 2, the plenoptic

function can be represented by its values along an arbitrary surface surrounding the

10

scene. This reduces the dimension of the plenoptic function by one. The radiance of

any light ray in the space can always be obtained by tracing it back to the selected

surface3. In other words, Assumption 2 allows us to capture a scene at some places

and render it at somewhere else. This assumption is also widely used, such as in

[66, 37, 128].

[Assumption 3] The scene is static, thus the time dimension can be dropped. Although a

dynamic scene includes much more information than a static one, there are practical

concerns that restrict the popularity of dynamic IBR. One concern is the sample

data size. We all know that if we capture a video for a scene instead of a single

image, the amount of data may increase for about 2 or 3 orders of magnitude. It can

be expected that dynamic IBR will have the same order of size increase from static

IBR. Moreover, IBR often requires a large amount of capturing cameras. If we want

to record a dynamic scene, all these cameras must be present and capturing video

together. Unfortunately, today’s practical systems cannot afford to have that many

cameras. The known IBR camera array that has the largest number of cameras may

be the Stanford light field video camera [149], which consists of 128 cameras. This

is yet not enough for rendering high quality images. Capturing static scenes does not

have the above problem, because one can always use the time axis to compensate for

the lack of cameras. That is, images captured at different time and positions can be

used together to render novel views.

[Assumption 4] In stead of moving in the 3D space, the viewer is constrained to be on a

surface, e.g., the ground plane. The plenoptic function can then reduce one dimension,

as the viewer’s space location becomes 2D. Although restricting the viewer on a surface

seems unpleasing, Assumption 4 is acceptable for two reasons. First, the eyes of human

beings are usually at a certain height-level for walk-through applications. Second,
3Strictly speaking, a real camera has finite resolution. A pixel in an image is in fact an average of the

light rays from a certain area on the scene surface. If we put two cameras on a line and capture the light
ray along it, they may have different results, as their observing area size on the scene surface may be very
different. Such resolution sensitivity was pointed out by Buehler et al. in [11].

11

human beings are less sensitive to vertical parallax and lighting changes because their

two eyes are spaced horizontally. Example scenes using concentric mosaics [128]

showed that strong effects of 3D motion and lighting change could still be achieved

under this assumption.

[Assumption 5] The viewer moves along a certain path. That is, the viewer can move for-

ward or backward along that path, but he/she cannot move off the path. Assumption

5 reduces two dimensions from the full plenoptic function. Branch movies [75, 117, 89]

is an example that takes this assumption. This assumption is also reasonable for ap-

plications such as virtual touring, where the viewer follows a predefined path to view

a large scene [56, 98].

[Assumption 6] The viewer has a fixed position. This is the most restrictive assumption,

which reduces the dimension of the plenoptic function by three. No 3D effects can

possibly be perceived under this assumption. Nevertheless, under this assumption

the representations of IBR can be very compact and bear much similarity to regular

images and videos. Capturing such representations is also straightforward. Thanks

to these benefits, the QuickTime VRTM technology [18] based on Assumption 6 has

become the most popular one among all the IBR approaches in practice.

There is one important thing to notice. That is, the dimension reduced by the above

six assumptions may not be addable. In particular, Assumption 2 does not help further

save dimension so long as one of the Assumption 4, 5 or 6 is made. This is because when

the viewer’s position has certain constraints, usually the sampled light ray space intersects

each light ray only at a single point, which makes Assumption 2 not useful any more. In

the next subsection, we will show a concrete example with concentric mosaics [128].

2.2.2 Various representations and their rendering process

By making the assumptions mentioned above, the 7D plenoptic function can be simpli-

fied to lower dimensional functions, from 6D to 2D. A quick summary of some popular

12

Table 2.1: IBR representations with various viewing space constraints.

Dimension Example Representations Assumptions
7D Plenoptic function No
6D Surface plenoptic function (2)

5D
Plenoptic modeling (1,3)
Light field video (1,2)

4D Light field/Lumigraph (1,2,3)

3D

Concentric mosaics (1,2,3,4)
Panoramic video (1,6) or (1,3,5)
Branch movies (1,3,5)

Video (1,6)

2D
Image mosaicing (1,3,6)

Image (1,3,6)

representations is given in Table 2.1. We will explain these techniques in detail.

6D - The surface plenoptic function

The surface plenoptic function (SPF) was first introduced in [160]. It is simplified from

the full 7D plenoptic function using Assumption 2. As we discussed, when radiance along a

light ray through empty space remains constant, the plenoptic function can be represented

by its values on any surface surrounding the scene. SPF chooses the surface as the scene

surface itself. For regular scene surface with dimension two, the SPF is 6D: position on

the surface (2D), light ray direction (2D), time (1D) and wavelength (1D). Although it is

difficult to apply SPF for capturing real scenes due to unknown scene geometry, SPF was

used in [160] for analyzing the Fourier spectrum of IBR representations (see more details

in Chapter 4). The surface light field [90, 152] could be considered as dimension-reduced

version of SPF.

Take anyone among Assumption 1, 3 and 4, we may also obtain a 6D representation of

the scene. However, a 6D function is still too complicated for a practical IBR system to

capture and render.

13

5D - Plenoptic modeling and light field video

By ignoring wavelength and time dimensions (Assumption 1 and 3), McMillan and Bishop

[86] introduced plenoptic modeling, which is a 5D function:

l(5)(Vx, Vy, Vz, θ, φ) (2.2)

They record a static scene by positioning cameras in the 3D viewing space, each on a tripod

capable of continuous panning. At each position, a cylindrical projected image was com-

posed from the captured images during the panning. This forms a 5D IBR representation:

3D for the camera position, 2D for the cylindrical image. To render a novel view from

the 5D representation, the close-by cylindrical projected images are warped to the viewing

position based on their epipolar relationship and some visibility tests.

The light field video [149, 155] is another 5D representation based on Assumption 1

and 2. It is a straightforward extension of the 4D light field, which will be explained in

detail later. Light field video captures dynamic scenes using a multi-camera array. Due

to hardware constraints, the number of cameras in the array is very limited at the current

stage (128 in [149] and 64 in [155]). Therefore, aliasing or ghosting effects are visible from

the rendered videos.

From Table 2.1 it is clear that any IBR representation below 5D will make Assumption

1. The other assumptions are optional and can be chosen to generate new representations.

For example, if we constrain the viewer to be on a surface (Assumption 4), we get another

5D representation. Although no work has been reported to take such a representation, it

is obviously feasible. What we need to do is to put many cameras on the viewer’s surface

and capture video sequences. During the rendering, since we did not make Assumption 2,

the rendering position is also restricted on that surface.

4D - Light field/Lumigraph

The most well-known 4D IBR representations are the light field [66] and the Lumigraph

[37]. They both ignored the wavelength and time dimensions and assumed that radiance

14

v

us

t

(u0,v0)

(s0,t0)

Light ray

z

Object

Focal plane
Camera plane

Discretized point

Novel view
position

Figure 2.2: One parameterization of the light field.

does not change along a line in free space (Assumption 1, 2 and 3). However, parameterizing

the space of oriented lines is still a tricky problem. The solutions they came out happened

to be the same: light rays are recorded by their intersections with two planes. One of the

planes is indexed with coordinate (u, v) and the other with coordinate (s, t), i.e.:

l(4)(s, t, u, v). (2.3)

In Figure 2.2, we show an example where the two planes, namely the camera plane and

the focal plane, are parallel. This is the most widely used setup. An example light ray is

shown and indexed as (s0, t0, u0, v0). The two planes are then discretized so that a finite

number of light rays are recorded. If we connect all the discretized points from the focal

plane to one discretized point on the camera plane, we get an image (2D array of light rays).

Therefore, the 4D representation is also a 2D image array, as is shown in Figure 2.3. To

create a new view of the object, we just split the view into its light rays, which are then

calculated by quad-linearly interpolating existing nearby light rays in the image array. For

example, the light ray in Figure 2.2 is interpolated from the 16 light rays connecting the

solid discrete points on the two planes. The new view is then generated by reassembling the

split rays together. Such rendering can be done in real time [65, 131] and is independent

of the scene complexity.

We discuss briefly the difference between light field and Lumigraph. Light field assumes

15

1 2 L

1

2

M

u

v

t

s

Figure 2.3: A sample light field image array: fruit plate.

no knowledge about the scene geometry. As a result, the number of sample images required

in light field for capturing a normal scene is huge [16, 160]. To keep the amount of samples

manageable, pre-filtering is applied during the capturing to reduce the light field signal’s

bandwidth [66]. On the other hand, Lumigraph reconstructs a rough geometry for the

scene with an octree algorithm to facilitate the rendering with a small amount of images.

Lumigraph also allows irregular sampling with a tracked hand-held camera. A hierarchical

algorithm was proposed to resample the irregular samples onto the uniform grid on the

camera and focal planes.

As we mentioned before, when Assumption 2 is made, the plenoptic function can be rep-

resented by its values on an arbitrary surface surrounding the scene. Often, that surface is

where we put our capturing cameras. Light field and Lumigraph both choose this surface to

be a box - each face of the box is the camera plane of the two-plane parameterization above.

In the spherical light field [47, 15], a spherical surface was chosen for parameterization.

Another interesting way to represent all the oriented lines in the space is the sphere-plane

light field [15]. In this representation, a light ray is indexed by its direction (2D) and its

crossing point (2D) with a plane perpendicular to its direction.

One thing to notice is that all the above representations are structured representations.

16

There were some papers that tried to analyze such line space structures [66, 14, 41] and

claimed that one is better than the other [14]. Nevertheless, all the above representations

share one common drawback: they do not match with practical image capturing. For

instance, in light field although we may place cameras on the camera plane at the exact

positions where discrete samples were taken, the pixel coordinates of the captured images

cannot coincide with the focal plane samples. A sheared perspective projection was taken

to compensate this [66]. In Lumigraph the images were taken with a hand-held camera

so a resampling process was required any way. Spherical light field requires all the sample

light rays passing through the corners of the subdivided sphere surface, which demands

resampling for practical capturing. The sphere-plane light field does not have pencil (a set

of rays passing through the same point in space [1]) in the representation so resampling

is also needed. It would be attractive to store and render scenes from the captured images

directly. In Section 2.3 we will discuss unstructured Lumigraph [11], which does not require

the resampling.

Similar to the discussions in 5D, there are other possibilities to generate 4D IBR repre-

sentations. For example, by making Assumption 1, 3 and 4, we may capture a static scene

for a viewer to move smoothly on a surface [4, 18]. If we make Assumption 1 and 5, we

may record a dynamic event and allow a viewer to move back and forth along a predefined

path.

3D - Concentric mosaics and panoramic video

Other than the assumptions made in light field (Assumption 1, 2 and 3), concentric mosaics

[128] further restricts that both the cameras and the viewers are on a plane (Assumption

4), which ”reduces” the dimension of the plenoptic function to three. In concentric mosaics,

the scene is captured by mounting a camera at the end of a level beam, and shooting images

at regular intervals as the beam rotates, as is shown in Figure 2.4. The light rays are then

indexed by the camera position or the beam rotation angle α, and the pixel locations (u, v):

l(3)(α, u, v). (2.4)

17

R

Camera path
Camera

Beam

Rotate

v

u

α

Rendering circle

FOV

Figure 2.4: Concentric mosaics capturing.

This parameterization is equivalent to having many slit cameras rotating around a common

center and taking images along the tangent direction. Each slit camera captures a manifold

mosaic, inside which the pixels can be indexed by (α, u), thus the name concentric mosaics.

During the rendering, the viewer may move freely inside a rendering circle (Figure 2.4) with

radius R sin(FOV/2), where R is the camera path radius and FOV is the field of view of

the cameras. The rendering of concentric mosaics is slit-based. The novel view is split into

vertical slits. For each slit, the neighboring slits in the captured images are located and

used for interpolation. The rendered view is then reassembled using these interpolated slits.

There is a severe problem with concentric mosaics - the vertical distortion. Unfortu-

nately, no matter how dense we capture the scene on the camera path, vertical distortion

cannot be eliminated. In the original concentric mosaics paper [128], depth correction was

used to reduce the distortion. That is, we need to have some rough knowledge about the

scene geometry. Ignoring how difficult it is to obtain the geometry information, recall in

the last subsection that the dimension reduced by Assumption 2 and Assumption 4 are not

addable, we realize that the light ray space concentric mosaics is capturing is in fact still

4D. Recording it with 3D data must require extra information for rendering, in this case,

the scene geometry.

18

Figure 2.5: Parallax observed from concentric mosaics rendered scenes.

Despite the severe vertical distortion, concentric mosaics is still a success. Capturing

concentric mosaics is very simple. The viewer may experience significant horizontal parallax

and lighting changes, as shown in Figure 2.5. A similar work to concentric mosaics is [54],

where the camera path is a 1D straight line. Such scheme can be considered as a simplified

version of the light field. On the other hand, concentric mosaics can be easily boosted to

4D if we align a vertical array of cameras at the end of the beam [69].

Another popular 3D IBR representation is the panoramic video [18, 35, 98]. It can be

used for either dynamic (fixed viewpoint, Assumption 1 and 6) or static scenes (Assumption

1, 3 and 5). Compared with regular video sequences, the field of view in panoramic video is

often 360◦, which allows the viewer to pan and zoom interactively. If the scene is static, the

viewer can also move around [18, 56]. Capturing a panoramic video is an easy task. We

simply capture a video sequence by a multi-camera system [35, 132], or an omnidirectional

camera [97], or a camera with fisheye lens [154]. Rendering of panoramic video only

involves a warping from cylindrical or spherical projected images to planar projected images.

Due to the convenience of capturing and rendering, the acceptable perceptual quality and

the affordable storage requirement, multi-panorama representations are adopted for several

systems to capture large-scale scenes, such as in [55, 139]. Many commercial panoramic

video systems are also available, such as iPIX immersive imaging from Internet Pictures

Corp. [24], 360 One VRTM from Kaidan [50], TotalViewTM from Be Here Technologies

19

Figure 2.6: A 360◦ cylindrical panorama of the Confucius Temple, Shandong, China.

[138], LadybugTM from Point Grey [40], among many others.

2D - Image mosaicing

Image mosaicing composes one single mosaic with multiple input images. The output mo-

saic is a 2D plenoptic function. Often such mosaic is composed for increasing the field of

view of the camera, with early applications in aerial photography [42, 88] and cel animation

[153]. Depending on the collection of the light rays recorded in the mosaic, image mosaic-

ing techniques can be classified into two categories: single-center-of-projection mosaic or

multiple-center-of-projection mosaic.

In most cases, the light rays recorded in the mosaic share the same center-of-projection

(COP), which is called panoramic mosaic or panorama (Figure 2.6). The light rays are

indexed by their directions, i.e.:

l(2)(θ, φ). (2.5)

Although a panorama can be easily obtained by hardware intensive systems [87, 97, 154],

the focus of research is on how to construct spherical or cylindrical panoramas by stitching

multiple input images together [18, 86, 119, 133]. Usually, the input images are taken

from the same viewpoint and are related by 2D projective transforms. If the transforms

are known in advance, images can be composed together easily [38]. Otherwise, a common

technique is to establish at least four corresponding points across each image pair and find

such transforms [39]. Other techniques for deriving these transforms without specific point

correspondence have also been developed [133, 135]. One practical issue is that the input

images may not strictly share the same COP, which causes certain ghosting artifacts in

the resultant mosaic. Such artifacts can be partially eliminated through local alignment

20

algorithms [135, 144].

In the more general scenario, the cameras of the input images can move in free form and

the resultant mosaic has multiple COPs. In contrast to the panoramic mosaic where light

rays are indexed by their directions, multiple-COP mosaic often indexes the light rays by

a certain surface or manifold, thus it is also called manifold mosaic. The direction of the

light rays is often perpendicular or tangential to the manifold surface. Recall in concentric

mosaics [128] the 3D parameterization is equivalent to having many slit cameras rotating

around a common center and taking images along the tangent direction. Each slit camera

captures a manifold mosaic, which can be indexed by points on a 2D cylindrical surface

((α, u) as in Figure 2.4). All the light rays captured are tangential to that surface. In

[105, 106, 168], manifold mosaic is constructed by stitching slit images together, assuming

the motion of the camera is slow. Effectively, the surface that is used for light ray parame-

terization has various forms such as a plane, a cylindrical or other general surfaces. If center

slits of the captured images are used for stitching, as was suggested in [106], the indexed

light rays will be roughly perpendicular to these manifolds. A particularly interesting mo-

saic is constructed when the camera has forward or backward motion. Pipe projection was

used to construct the mosaic on a pipe surface [107].

The rendering of image mosaicing is very simple. For panoramic mosaic, we often

perform a warping from the cylindrical or spherical projected mosaic to planar projected

images, as what we have done for panoramic video. Such a warping is often unknown in a

general manifold mosaic. Therefore regions of the mosaic may be used directly for rendering,

as long as the field of view of the rendered image is small enough [153]. Notice that in both

cases, the motion of the viewer is very restricted. In a panoramic mosaic the viewer can only

change his/her view direction, while in a manifold mosaic the viewer can only move along a

fixed surface/path and towards a fixed direction. It is possible to alleviate the constraints

by capturing multiple mosaics. The QuickTime hopping [18] and the manifold hopping

[129] are two such extensions for panoramic mosaic and manifold mosaic, respectively.

Other than increasing the field of view of the camera, image mosaicing can also be used

to increase the image resolution, namely super-resolution. We refer the reader to [8] for a

21

Table 2.2: A quick summary of various approaches that introduce source descriptions.

Source description Representative reference

Scene geometry
Correspondence [19, 125, 62, 5], etc.

Depth map [127, 17, 113], etc.
Mesh model etc. [11, 146, 112], etc.

Texture map (+ scene geometry) [27, 83], etc.
Reflection model (+ scene geometry) [13, 152], etc.

[19]View interpolation; [125]View morphing; [62]Reference views; [5]Tensor space;
[127]Layered depth image (LDI); [17]LDI tree; [113]Multiple-center-of-projection images;
[11]Unstructured Lumigraph; [146]Spatial-temporal view interp.; [112]View dependent geometry;
[27]View dependent texture map; [83]Image-based visual hull;
[13]Reflection space IBR; [152]Surface light field;

review of this area.

2.3 Introducing Source Descriptions

Another strategy to make the image-based rendering data manageable is to introduce some

source descriptions. Such descriptions can be the scene geometry, the texture map, the

surface reflection model, etc. Among them, the scene geometry is the most widely used.

Texture map and reflection model are often used as additional descriptions on top of the

scene geometry. A quick summary of the different approaches is given in Table 2.2. Source

descriptions can tell the correspondence between light rays, thus reduce the overall number

of necessary light rays to be captured.

2.3.1 IBR with known scene geometry

Given the scene geometry, light rays from the same surface point can be identified. Since

most scene surfaces are close to Lambertian, or at least locally color consistent (light rays

from the same surface point share the same color if their reflection directions are similar)

[158], geometry can save the number of light rays to be captured for a scene [16]. In

fact, as was pointed out by many researchers, there is a geometry-image continuum in the

22

representations of scenes [52, 64]. The more we know about the scene geometry, the smaller

the amount of images we need for good rendering.

The scene geometry can be described in different forms, such as correspondence between

images (e.g., optical flow), dense depth map, volumetric or mesh model, etc. Here we classify

the various approaches based on different geometry forms they take and present them one

by one.

Correspondence between images

Any scene geometry information can be considered as knowledge about the correspondence

between images. Here we specifically mean approaches that do not have an explicit geometry

representation. Examples of such knowledge are point feature correspondences, disparity

map, optical flow, etc. The idea is to find corresponding light rays in the captured image

set for those in the novel view. In the photogrammetric community, such approaches are

developed under the name of transfer methods.

Early work on this track was under the study of image morphing [6] and often involves

certain manual help. For example, an animator needs to specify a set of feature corre-

spondences, which form a control mesh. In [150], the novel view is generated by warping

the control mesh through spline interpolation. A two-dimensional free-form deformation

and Bézier Clipping was used to fulfill the same task in [99]. In [6], Beier and Neely

defined a global transform/warping between the two images based on a set of matched line

segments. For any view in between, the matched line segments in the novel view are first

interpolated, which then determines the transform from one of the reference views to the

novel view. A deformable surface model based morphing strategy that does not require

the control mesh structure was also discussed in [63]. Recently, a feature-based light field

morphing algorithm was proposed in [166].

View interpolation [19], proposed by Chen and Williams, eliminates the need of the

human animator. Instead, the optical flow between the two images is assumed as known.

To generate an in-between view of the input image pair, the offset vectors in the optical flow

23

are linearly interpolated and the pixels in the source images are moved by the interpolated

vector to their destinations in the novel view. View interpolation performs very well if the

two input images are close to each other, so that visibility ambiguity is not an issue. On

the other hand, the interpolated views will be physically exact only if the camera motion is

perpendicular to the camera viewing axis. In [147] a mathematical formulation was given

to show the conditions when linear interpolation is physically correct.

In [125, 124], Seitz and Dyer proposed view morphing. View morphing guarantees that

the rendered view is physically valid by introducing a prewarping stage and a postwarp-

ing stage. During the prewarping, the two reference images are rectified [43]. After the

rectification, the two images share the same image plane and their motion becomes per-

pendicular to their viewing axis. Linear interpolation is then used to get the intermediate

view, followed by postwarping to compensate the rectification effect on that view.

The novel view in view interpolation and view morphing are often in between the two

reference images. Laveau and Faugeras [62] first proposed to make use of the epipolar

constraints [43], which enabled extrapolation. The novel view is generated from a set of

weakly or fully calibrated reference views. The viewpoint and the retinal plane of the novel

view are specified by manually selected four corresponding points. A dense disparity map

is also assumed to be available. To render the novel view, a ray-tracing like algorithm is

implemented, which for each rendered light ray finds the corresponding light rays in the

reference views through the epipolar constraint and the disparity map. Notice that when

the reference views are weakly calibrated, only projective structure can be recovered [43],

thus the resultant novel view may appear warped. Knowing the intrinsic parameters of the

cameras (full calibration) will solve such problem.

In plenoptic modeling [86], a similar approach was proposed. The difference is that the

reference view positions are known, and the reference views are now cylindrically projected

panoramic views. Therefore, cylindrical epipolar constraints and dense angular disparity

maps were used for novel view interpolation.

The epipolar constraint is between two images. For three images, there is another

constraint represented by the trifocal tensor [43]. Given two views in correspondence and

24

Ref. Image 1 Ref. Image 2

Ref. Image 3
Novel view

Seed tensorUnknown tensor

TR,

Figure 2.7: Obtain the tensor between a novel view and the two reference views from a seed
tensor [5].

a tensor, the corresponding third view can be generated by a warping function. Avidan

and Shashua proposed a view synthesis algorithm based on the above principle [5]. The

key of their approach is the way to specify the tensor between two reference views and a

novel view. As illustrated in Figure 2.7, given a seed tensor between the two reference views

and an additional reference view (which could be a duplication of one of the two reference

views), the unknown tensor could be obtained by knowing the rotation and translation

between the third reference view and the novel view. Therefore specification of a novel view

is more direct compared with the epipolar constraint based methods such as [62], where

manual selection of matching points is needed. Moreover, Avidan and Shashua argued that

trifocal tensor based method is often more stable than the epipolar constraint based ones

under certain singular camera configurations (e.g., when the camera centers are collinear).

In a recent paper Lhuillier and Quan [67] presented an interpolation algorithm based on

joint view triangulation. Starting from some points of interest selected automatically, they

first grow the matching points to their neighborhoods. Planar patches are then fit locally

for regularization or removing outliers assuming the matching is piecewise smooth. The two

reference views are then triangulated jointly. Novel views are interpolated by warping the

matched triangles. A walk-through system based on a similar framework was also developed

25

Camera
viewpoint Object 1

Object 3

Object 2
Image plane

a b
c d 0l

Figure 2.8: The layered depth image.

in [2].

Dense depth map

Another popular scene geometry representation is the dense depth map. It indicates the

per-pixel depth values of the reference views. Such a depth map is easily available for

synthetic scenes, and can be obtained for real scenes via a range finder.

The simplest IBR representation with a dense depth map is a set of images and their

depth maps [85, 122]. An extension to the multiple-center-of-projection (MCOP) mosaic

was given in [113], where again a depth value is attached to each pixel in the MCOP

image. In [127], Shade et al. proposed the sprite with depth and the layered depth image

(LDI). Sprite with depth keeps an out-of-plane displacement component at each pixel in

the sprite, which resembles the above-mentioned representations. LDI is a view of the

scene from a single input camera view, but with multiple pixels along each line of sight.

Correspondingly, the depth map is also multi-valued for each pixel. This is shown in Figure

2.8. On the path of the light ray l0, the depth and color value of point a, b, c and d are

all recorded. Extensions to the LDI include the layered depth cube [76] and the LDI tree

26

[17].

The rendering algorithms of IBR representations with dense depth map are often similar

to each other. In [85], a 3D warping algorithm was proposed to render novel views that are

close to a reference view. The pixels of the reference view are first projected back to their 3D

locations and then re-projected to the novel view. To speed up the above process, Oliveira

and Bishop [101] proposed to factorize the warping process into a simple pre-warping

stage followed by a standard texture mapping. The pre-warp handles only the parallax

effects resulting from the depth map and the direction of view. The subsequent texture-

mapping operation handles the scaling, rotation, and remaining perspective transformation,

which can be accelerated by standard graphics hardware. A similar factoring algorithm was

performed for the LDI [127], where the depth map is first warped to the output image with

visibility check, and colors are pasted afterwards.

One major problem in the above rendering methods is that holes may occur in the

rendered view due to undersampling or disocclusion (scene is occluded in the reference view

but visible in the novel view). By introducing multiple depth values along a light ray, the

disocclusion problem is partially solved in the LDI representation [127]. In [122], because

multiple images are available for rendering, holes due to disocclusion are also not serious

as long as the number of images is large enough. The undersampling problem can also

be solved by taking more images. The LDI tree [17] is a modified LDI approach which

combines multiple reference views in to a single hierarchical representation, which maintains

the resolution of each reference view in the data structure. On the other hand, even if holes

do happen, they may be removed through algorithms such as splatting [80, 127] or meshing

[80, 113].

Mesh or volumetric model

Mesh model is the most widely used components in model-based rendering. Despite the

difficulty to obtain such a model, if it is available in image-based rendering, we should make

use of it to improve the rendering quality.

27

Buechler et al. proposed the unstructured Lumigraph rendering [11], which addressed

the above rendering problem. They first proposed eight goals for IBR rendering: use of

geometric proxies; unstructured input; epipole consistency; minimal angular deviation; con-

tinuity; resolution sensitivity; equivalent ray consistency and real-time. These goals served

as the guidelines of their proposed unstructured Lumigraph rendering approach. Weighted

light ray interpolation was used to obtain light rays in the novel view. The weights are

largely determined by how good the reference light ray is to the interpolated one according

to the goals. A clever weight blending field for the reference views is described to guarantee

real-time rendering.

Another popular geometric representation is a volumetric model, which can be recon-

structed from various algorithms [37, 146, 126, 32]. Although the volumetric model can be

easily converted to a mesh model [78], sometimes it may be preferable to render with the

volumetric model directly. The algorithm in [11] can be applied straightforwardly without

any change. One concern about the volumetric model is that it has a finite resolution.

To remove the granular effects in the rendered image due to finite resolution, in [146] a

model smoothing algorithm was applied during the rendering, which greatly improved the

resultant image quality.

Rademacher proposed an interesting approach called view dependent geometry [112].

Namely, the geometry used during the rendering may vary when the view position changes.

Such approach is attractive for scenes where the geometry reconstruction algorithm can only

obtain a model that is locally applicable, such as those obtained through stereo methods

[120].

2.3.2 Texture map (+ scene geometry)

Texture map is one of the most widely used source descriptions in model-based rendering.

As texture maps are often obtained from real objects, a geometric model with texture

mapping can produce very realistic scenes.

In image based rendering, when the scene geometry is available, it is possible to generate

28

texture maps from the reference views. This has already been demonstrated in the 3D

warping algorithm [85] for IBR representations with dense depth map mentioned before.

Notice that in IBR we do not apply reflection models of the scene surface as we do in model-

based rendering. A scene becomes Lambertian if both the geometry and the texture map are

fixed. Such scenes may not be highly interesting. It is therefore natural to introduce texture

maps that vary when the viewpoint changes, namely view dependent texture mapping

(VDTM) [27].

In [27], Debevec et al. proposed to project the reference views onto the geometric

model to form the texture map through a weighting scheme. The weights are determined

by the angular deviation from the reference views to the virtual view to be rendered. Later

a more efficient implementation of VDTM was proposed in [29], where the per-pixel weight

calculation was replaced by a per-polygon search in a pre-computed lookup table. Note that

VDTM is in fact a special case of the later proposed unstructured Lumigraph rendering [11].

The image-based visual hull (IBVH) algorithm [83] can be considered as another ex-

ample of VDTM. In IBVH, the scene geometry was reconstructed through an image space

visual hull [61] algorithm. A texture pixel was generated from the reference views by back

projection using only the light ray with the smallest angular deviation. Such adaptation is

partially due to the fact that only four cameras were used in IBVH.

2.3.3 Reflection models (+ scene geometry)

Other than the texture map, the appearance of an object is also determined by the interac-

tion of the light sources in the environment and the surface reflection model. This becomes

more obvious if the texture map is very simple (e.g., uniform color) and the object is highly

specular, such as a simple mirror ball.

In image-based rendering, we often do not try to figure out what the scene object’s

reflection model is. Instead, we capture light rays that are reflected from the scene surface.

Recall that such parameterization has been discussed before under the name surface plenop-

tic function [160]. The advantages of recording only the reflected light rays are numerous:

29

we do not need to derive the underlying surface reflection model any more; we do not need

to model the complex light sources in a real environment; and we do not need to calculate

the interaction between the light source and the reflection model. The downside is that the

light source and the reflection model are now tightly coupled. Efforts need to be made for

relighting the scene under different lighting conditions [151, 26].

In [13], Cabral et al. proposed reflection space image-based rendering. Reflection

space IBR records the total reflected radiance for each possible surface direction. Note the

difference between such a radiance environment map and the traditional environment map,

where the incoming radiance is stored [7, 39]. The proposed radiance environment map is

viewpoint dependent, thus a set of such maps are pre-computed before rendering, as the

multiple images we often have in normal IBR representations. During the rendering, the

radiance environment map is first interpolated/warped to the desired viewpoint and then

used for novel view generation. An interesting application of radiance environment map is

given in [25], where synthetic objects are rendered into real scenes. A probing mirror ball

is used to obtain the radiance environment map at the position the synthetic objects are

located. A differential rendering technique allows for good results to be obtained when only

an estimate of the local scene reflectance properties is known.

The above method assumes that if two surface points share the same surface direction,

they have the same reflection pattern. This might not be true due to multiple reasons such

as inter-reflections. A more general approach is to really capture the scene reflections at

arbitrary surface points as in the surface plenoptic function [160]. By ignoring the time

and the wavelength dimensions, Wood et al. proposed surface light field [152]. They

first obtained a base mesh of the scene object through a range scanner. For points on the

base mesh, they obtained the reflections along different directions by capturing hundreds of

images of the scene. A pointwise fairing algorithm was proposed to resample the irregular

sample light rays into a reflection map or lumisphere with a piecewise linear model. Notice

that these lumispheres may have missing data as only light rays reflected to the outside of

the object can be captured. Rendering surface light field is as straightforward as tracing

each rendered light ray onto the geometric model and obtain its radiance. A more compact

30

representation of surface light field suitable for an accelerated graphics pipeline was recently

proposed in [20]. A surface light field created on the surface of a visual hull rather than the

true scene geometry is discussed in [84]. As we mentioned earlier in Section 2.2.1, under

Assumption 2 (the radiance of a light ray does not change along its path in empty space),

using the visual hull surface for recording the light rays is equivalent to using the true scene

geometry as long as the viewpoint is outside the visual hull.

As mentioned before, the surface plenoptic function captures the scene only at a fixed

lighting condition. Recently there has been some work on the relighting of IBR, such as

the human face reflectance field [26], the plenoptic illumination function [151] and the 4D

incident light fields [81]. These approaches share similar ideas. Images of the scene under

different point light source or directional light source are first captured. These images can

then be superimposed to render scenes under a much more complex lighting environment.

Such operation can be performed to live-action scenes in real time [28].

2.3.4 Reconstructing source descriptions for IBR

In the above discussions, most IBR approaches assumed known source descriptions such as

a known scene geometric model. In practice, acquiring such source descriptions is not a

trivial task unless the scene is synthetic or a range finder is on hand. We may resort to

computer vision techniques to reconstruct the source descriptions based on the captured

images. Such techniques are called image-based modeling (IBM). Due to the close coupling

of image-based rendering and image-based modeling, we see a clear convergence of the

graphics community and the vision community [64]. Since a survey of the various IBM

techniques is out of the scope of this dissertation, we refer the reader to the survey paper

by Zhang [167] and by Oliveira [100] for more information.

There is subtle difference in the purpose of source description reconstruction in IBR and

IBM. In IBM, the source description is the goal. The effectiveness of an IBM algorithm

largely depends on the accuracy of the reconstructed source description. In contrast, the

goal of IBR is rendering. While a highly complicated and accurate IBM algorithm can

31

certainly serve well during the preprocessing stage of IBR, IBR does not necessarily need a

high quality source description. As pointed out in [52], the errors in the source description

is less visible during local viewpoint perturbation, which is a unique characteristic of IBR.

In certain applications, a complicated IBM algorithm is simply not affordable. For in-

stance, recently there has been increasing interest in capturing and rendering dynamic IBR

scenes, as it provides rich new experiences and has wide applications in immersive TV, re-

mote education, teleconferencing, games etc. Dynamic IBR has to be captured by a camera

array. Due to cost constraints, existing camera arrays are not dense enough to perform

view interpolation without scene geometry [155]. Therefore, one has to reconstruct scene

geometry from the captured images. The dynamic property of the scene also forbids any

complicated IBM algorithms. In the following text, we review several algorithms designed

for dynamic IBR applications, which may not be covered in a normal IBM survey paper.

Depth from stereo (binocular or trinocular) is an attractive candidate for geometry

reconstruction for IBR in real-time [45, 94]. Schirmacher et al. [123] built a 6-camera

system which was composed of 3 stereo pairs. Each stereo pair is connected to a computer

for calculating a dense depth map at 1-2 frames per second (fps)(this speed should be easily

boosted with more powerful computer and better implementation of the depth-from-stereo

algorithm). Naemura et al. [95] constructed a camera array system consisting of 16 cameras.

A single depth map was reconstructed in real-time from 9 of the 16 images using a stereo

matching PCI board. The rendering process of the above systems resembles those discussed

in Section 2.3.1. We notice that stereo algorithms are not very suitable for large camera

arrays if dense depth maps have to be reconstructed for every pair of images. However,

view-dependent stereo [130, 156] is a good candidate, as will be discussed later.

Matusik et al. [83] proposed image-based visual hull (IBVH), which rendered dynamic

scenes in real-time from 4 cameras. IBVH is a clever algorithm which computes and shades

the visual hull of the scene without having an explicit visual hull model. The visual hull

is calculated from the virtual viewpoint, thus IBVH has view-dependent geometry. The

computational cost is low thanks to an efficient pixel traversing scheme, which can be

implemented with software only. Another similar work is the polyhedral visual hull [82],

32

which computes an exact polyhedral representation for the visual hull directly from the

silhouettes. Lok [77] and Li et al. [70] proposed to reconstruct the visual hull on modern

graphics hardware with a volumetric representation and an image-based representation,

respectively. One common issue of visual hull based rendering algorithms is that they cannot

handle concave objects, which makes some close-up views of concave objects unsatisfactory.

An improvement was made by the image-based photo hull (IBPH) [130] approach. IBPH

utilizes the color information of the images to identify scene geometry, which results in

more accurately reconstructed geometry. Visibility was considered in IBPH by intersecting

the visual hull geometry with the projected line segments of the considered light ray in the

nearby views.

Recently, Yang et al. [156] proposed a real-time consensus-based scene reconstruction

method using commodity graphics hardware. Their algorithm utilized the Register Com-

biner for color consistency verification (CCV) with the sum-of-square-difference (SSD) mea-

sure, and obtained a per-pixel depth map in real-time. Both concave and convex objects of

generic scenes could be rendered with their algorithm. In Chapter 8 of this thesis, we also

present a similar view-dependent geometry reconstruction algorithm, which is fast enough

to be implemented in software. The key of our method is to use an adaptive mesh to

represent the scene geometry, which greatly reduces the computational cost. Compared

with hardware implementations, our algorithm is more flexible in applying different CCV

measures, handling lens distortions, etc. Please refer to Chapter 8 for more details.

2.4 Summary

In this chapter we surveyed various techniques of image-based rendering. We found that

all the IBR representations are originated from the 7D plenoptic function, which describes

the appearance of the world. As the 7D plenoptic function has too much data to handle,

various approaches were proposed to reduce the data size while still giving the viewer a

good browsing experience. Two major strategies were identified: constraining the viewing

space and introducing source descriptions. We have presented many IBR representations

33

based on such a categorization.

Image-based rendering often involves huge amount of image data. By choosing more

restrictive representations one can always reduce such data amount. On the other hand, it

is important to know, given certain representations, what is the minimum amount of data

needed. In the next section, we review existing methods from this aspect.

Chapter 3

Previous Work on IBR Sampling

In this chapter, we review the literature on IBR sampling. We ask the following question:

knowing what representation we will use for the scene, how many images or light rays do

we have to capture/store in order to render nice-looking images? Being able to answer such

sampling question is essential in providing guidance to various IBR representations.

Unfortunately, IBR sampling is a very difficult problem, as the plenoptic function is such

a high dimensional signal. Obviously, the sampling rate will be determined by the scene

geometry, the texture on the scene surface, the reflection property of the scene surface,

the motion of the scene objects, the specific IBR representation we take, the capturing

and the rendering cameras’ resolution, etc. Over-sampling was widely adopted in the early

stages [66, 128], as no solution to the sampling problem was available. To reduce the huge

amount of data recorded due to over-sampling, people have resorted to various compression

schemes to save the storage space, which was surveyed in detail in [161]. These compression

techniques viewed IBR data as video sequences or image arraies, and utilized existing image

compression or video compression methods to reduce their size. In comparison, sampling is

more of a fundamental problem to IBR. Solving the IBR sampling problem may provide a

unique and deep-grounded view of IBR from signal processing’s viewpoint.

Depending on how the capturing cameras are placed, IBR sampling can be classified

into two categories: uniform sampling and nonuniform sampling. In uniform sampling, the

cameras are positioned evenly on a surface or a line, following a regular pattern. Examples

of such IBR representations are the light field [66] and the concentric mosaics [128]. The

34

35

main research topic is to find the minimum sampling rate or largest spacing between cameras

such that one can achieve perfect reconstruction of the continuous plenoptic function. In

nonuniform sampling, the cameras are often allowed to move freely along a surface [121, 158]

or a line [159]. The goal of non-uniform sampling analysis is to use the minimum number

of cameras and render the highest quality scene by arranging these cameras intelligently.

The literature of IBR sampling is surprisingly poor due to the difficulty of the problem.

We next review them in two sections for uniform and nonuniform sampling respectively.

3.1 Uniform Sampling

The uniform sampling analysis of IBR generally follows the classic sampling theorem [102,

31], as IBR is essentially a sampled signal from the 7D plenoptic function. One may first

find the Fourier transform of the plenoptic function and then sample it according to its

spectrum bandwidth. Nevertheless, although performing the Fourier transform of the 7D

plenoptic function is possible in theory, in practice we have to reduce the dimension of the

signal. Again we check the assumptions discussed in Section 2.2.1 and see how they may

affect our sampling analysis.

Based on Assumption 1, the wavelength dimension can be ignored in most IBR ap-

plications. Thus sampling along the wavelength axis can also be ignored. Assumption 2

claims that the radiance of a light ray along its path remains constant in empty space. This

means that along the light ray path, one sample is good enough for perfect reconstruction.

In reality, although the resolution of real cameras is finite and Assumption 2 may not be

strictly valid [11], the sampling along the light ray path is still less interesting because the

variation of the radiance is often too slow. Assumption 3 said that if necessary, the time

dimension could also be ignored. In practice, even if we are capturing a dynamic scene,

sampling on the time axis is often determined by the camera’s frame rate and the property

of the human eyes’ temporal perception [23]. Due to the above reasons, most IBR sampling

work in the literature [71, 16, 79] was for the light field and concentric mosaics.

The earliest IBR sampling work was by Lin and Shum [71]. They performed sampling

36

f

v0 'v

()vtd ,

()vtdft ,

0

v focal line

camera line

Object

tΩ

vΩ

π

π−

0
max

=Ω−Ω tvd

f

0
min

=Ω−Ω tvd

f

B∆

0

0

t

(a) (b)

Figure 3.1: The plenoptic sampling analysis in [16]. (a) The light ray correspondence in a
2D light field; (b) the spectrum of light field.

analysis on both light field and concentric mosaics with the scale-space theory. The world

is modeled by a single point sitting at a certain distance to the cameras. Assuming using

constant depth and bilinear interpolation during the rendering, the bounds are derived from

the aspect of geometry and based on the goal that no “spurious detail” should be generated

during the rendering (referred as the causality requirement). Although the viewpoint of

their analysis is rather interesting, this method is constrained by the simple world model

they chose. The texture and the reflection model of the scene surface and occlusions are

hard to analyze with such a method.

In [16], Chai et al. first proposed to perform the light field sampling analysis in the

classic framework, i.e., applying Fourier transform to the light field signal, and then sampling

it based on its spectrum. Assuming Lambertian surface and no occlusions, they found that

the light rays represented by the plenoptic function have certain correspondence among

themselves. For illustration purpose, we show a simplified 2D light field in Figure 3.1(a).

Notice that the camera plane and focal plane in Figure 2.2 degenerate to lines in 2D. A

local discretization of the focal line was adopted in their analysis.

We may easily see the following relationship from Figure 3.1(a):

l(2)(t, v) = l(2)
[
0, v +

ft

d(t, v)

]
(3.1)

where f is the focal length and d(t, v) is the scene depth of the light ray (t, v). When the

37

of depth layers

of

 im
ag

es

given # of images

given # of
depth layers

Higher
resolution

of depth layers

of

 im
ag

es

(a) (b)

Figure 3.2: The minimum sampling curve in [16]. (a) One sampling curve representing the
tradeoff between images and geometry; (b) the minimum sampling curve with respect to
the capturing and rendering resolution.

scene is at constant depth d(t, v) = d0, its Fourier transform can be written as:

L(2)(Ωt,Ωv) = L′(Ωv)δ
(f

d0
Ωv − Ωt

)
(3.2)

where L′(Ωv) is the Fourier transform of l(2)(0, v) (with some scalar factor) and δ(·) is

the 1D Dirac delta function. Obviously the spectrum has non-zero values only along a

line. When the scene depth is varying between a certain range, a “truncating windows”

analysis was given in the paper, which concludes that the spectral support of a light field

signal is bounded by the minimum and maximum depths of objects in the scene only, no

matter how complicated the scene is (Figure 3.1(b)). Such analysis provides a fairly good

first-order approximation of the spectrum analysis of IBR. However, the dependency on

mapping images captured at arbitrary position to that at the origin prevents it from being

applied to more complicated scenes such as non-Lambertian surface, scenes with occlusions

and other IBR methods such as concentric mosaics.

Another contribution of [16] is the minimum sampling curve in the joint image and

geometry space for light field. Since a Lambertian scene at constant depth corresponds

to a tilted line in the frequency domain, if the scene geometry is represented via dense

depth map and each depth value has a finite precision (a certain number of bits), we may

divide the scene into multiple layers based on the depth values. If occlusions between layers

38

are ignored, each layer can be sampled and rendered independently. This is equivalent to

having many scenes with much smaller depth variation, which reduces the number of images

required. An example minimum sampling curve is shown in Figure 3.2(a). Based on this

curve, given the number of depth layers, we may tell the minimum number of images needed.

On the other hand, given the number of images, we can also tell how many depth layers

we need. The minimum sampling curve is also related with the capturing and rendering

resolution. The higher the resolution, the more images or depth layers are required, as

shown in Figure 3.2(b).

Marchand-Maillet [79] performed Fourier analysis for scenes with functional surfaces.

Instead of mapping all the images into one, they fixed the light ray direction and tried

to find a one-to-one mapping from points on the scene surface to the camera plane. This

one-to-one mapping is valid when no occlusion occurs. They showed that even when there

is no occlusion, a band-limited signal pasted on a functional surface will not result in a

band-limited light field spectrum.

In Chapter 4 of this thesis, we will provide a new spectral analysis framework based on

the surface plenoptic function [160]. Our analysis is very general and can be applied to

obtain the spectrum of IBR scenes even when they are non-Lambertian or occluded. More-

over, the same methodology is applicable for concentric mosaics. “Truncating windows”

analysis can also be used there when the scene geometry is not available.

In Chapter 5, we propose to apply the generalized sampling theory [31] on IBR sampling

after obtaining the spectrum of the IBR representation. Such method can in theory increase

the IBR sampling efficiency by 50%.

3.2 Nonuniform Sampling

The uniform sampling analysis provides an indepth view of how a scene should be captured.

For instance, in Chapter 4 we will show that a scene with non-Lambertian surface or occlu-

sions generally needs more samples. However, an implicit assumption made by the uniform

sampling analysis is that the scene plenoptic function is stationary. In practice, objects in

39

the scene have varying surface properties, and the plenoptic function is non-stationary. It

is therefore natural to consider nonuniform sampling for the plenoptic function. One thing

to notice is, in uniform sampling analysis, since the sampling is periodic, we only need

to tell how many images/light rays are needed for perfect reconstruction of the scene; in

nonuniform sampling, however, we need to answer not only how many images are needed

but also where to place these cameras.

Fleishman et al. [34] proposed an automatic camera placement algorithm for IBR. A

mesh model of the scene is known. The goal is to place the cameras optimally such that

the captured images can form the best texture map for the mesh model. They found that

such problem can be regarded as a 3D art gallery problem, which is NP-hard [103]. They

then proposed an approximation solution for the problem by testing a large set of camera

positions and selecting the ones with higher gain rank. Here the gain was defined based

on the portion of the image that can be used for the texture map. A similar approach was

proposed in [148], where the set of reference views were selected from a large image pool

in order to minimize a certain target function.

Schirmacher et al. [121] proposed an adaptive acquisition scheme for a light field setup.

Assuming the scene geometry is known, they added cameras recursively on the camera plane

by predicting the potential improvement in rendering quality when adding a certain view.

This a-priori error estimator accounts for both visibility problems and illumination effects

such as specular highlights to some extent.

Starting from Chapter 6 of this thesis, we propose a general framework for nonuniform

sampling, namely freeform sampling and active sampling. We apply the framework to IBR,

and show that nonuniform sampling is indeed better than uniform sampling in terms of the

worst case rendering quality.

3.3 Summary

The IBR sampling problem is an important one for providing an insight view of IBR. Due

to the high dimensionality of the plenoptic function, the IBR sampling problem is highly

40

complicated and not well studied in the literature. This thesis is about to address some

of the issues remained in the literature. For instance, Chapter 4 will present a method for

the spectral analysis of non-Lambertian or occluded scenes; Chapter 5 will discuss the most

efficient packing of the IBR spectrum; Chapter 6 will provide a general framework for the

nonuniform sampling analysis of IBR. Such framework is used in Chapter 7 for the sampling

problem of IBR. Chapter 8 describes a mobile camera array which implements nonuniform

sampling for real-world scenes.

Chapter 4

Uniform Sampling: Spectral
Analysis of IBR Data

Despite the previous work in [16], the spectral analysis problem for IBR has not been

completely solved, in particular for non-Lambertian and occluded scenes. In this chapter,

we present a new method to parameterize the problem, which is applicable for general-

purpose IBR spectral analysis. We notice that any plenoptic function is generated by light

rays emitted/reflected/refracted from the object surface. We introduce the surface plenoptic

function (SPF), which represents the light rays starting from the object surface. Given that

radiance along a light ray does not change unless the light ray is blocked (Assumption 2 in

Section 2.2.1), SPF reduces the dimension of the original plenoptic function to 6D. We are

then able to map or transform the SPF to IBR representations captured along any camera

trajectory. Assuming some properties on the SPF, we can analyze the properties of IBR for

generic scenes such as scenes with Lambertian or non-Lambertian surfaces and scenes with

or without occlusions, and for different sampling strategies such as lightfield/concentric

mosaics. We find that in most cases, even though the SPF may be band-limited, the

frequency spectrum of IBR is not band-limited. We show that non-Lambertian reflections,

depth variations and occlusions can all broaden the spectrum, with the latter two being

more significant.

SPF is defined for scenes with known geometry. When the geometry is unknown, spec-

tral analysis is still possible. We show that with the ”truncating windows” analysis and

41

42

some conclusions obtained with SPF, the spectrum expansion caused by non-Lambertian

reflections and occlusions can be quantatively estimated, even when the scene geometry is

not explicitly known.

4.1 The Surface Plenoptic Function

Let us first have a close look at how plenoptic function is generated. Obviously, any light

ray in the free space has a source. It can be either emitted from some light source (e.g.,

the Sun), or reflected by some object surface. If the object is transparent, refraction is

also involved. Let the entire surface of all the light sources and objects be S. We can

always trace a light ray in the free space back to a point on S. Assume the radiance does

not change along a line unless the light ray is blocked, the 7D plenoptic function can be

reparameterized to 6D including time (1D), wavelength (1D), point on the surface S (2D),

and azimuth and elevation angles (2D) the light ray is emitted. We name this 6D function

as the surface plenoptic function (SPF).

SPF bears close relationship to the surface light field proposed in [90, 152], but it

is more general than surface light field because it may include the time and wavelength

information. Wood et al. [152] focused on the representation, rendering and compression

of surface light field, while we use SPF for sampling analysis. Wong’s plenoptic illumination

function [151] and Lin’s reflected irradiance field [72] are also similar to SPF in the sense

that they tried to model different light ray radiances from same surface points. However,

their work studied scenes under different illuminations (fixed viewpoint), while we consider

scenes under different viewpoints (fixed illumination). The sampling of reflected irradiance

field [72] is independent of the scene geometry, because the viewpoint is fixed and the

correspondence between light rays from the same surface point is known (always at the same

pixel location). In contrast, for IBR sampling analysis we need some geometry information

in order to know the light ray correspondences, such as the constant depth assumption

made in [16].

Since light rays start from the object surface and end at capturing cameras, there exists

43

() 0,1 =yxS

x

y

θ

Or ()
()⎩

⎨
⎧

=
=

syy

sxx

1

1

() 0,2 =yxS

Or ()
()⎩

⎨
⎧

=
=

syy

sxx

2

2

Object 1

Object 2

Camera path

β
() 0, =yxSc

Or ()
()⎩

⎨
⎧

=
=

tyy

txx

c

c

α

Figure 4.1: The 2D surface plenoptic function and general IBR capturing.

an onto mapping from the SPF to the various IBR representations. Such a mapping depends

on both the scene geometry and the camera surface, but not the surface property such as

the bidirectional reflection distribution function (BRDF). If we have some knowledge about

the scene, in other words, if we know some property about the SPF, related property can

be derived for the IBR representation. More importantly, the mapping does not require the

scene to have no occlusions or Lambertian surface, which is very attractive for IBR spectral

analysis.

Without loss of generality, we use the 2D world as example throughout this chapter

for conciseness. The conclusions drawn here are easy to extend to the 3D world. In the

2D world, surface of objects/light sources is described with curves. Ignoring time and

wavelength, the SPF is 2D: one dimension for describing a point on a curve, the other for

illustrating the direction of the light ray emitted/reflected/refracted. An example scene is

shown in Figure 4.1. The surface can be represented by:

Si(x, y) = 0 or
{

x = xi(s)
y = yi(s)

(4.1)

where s can be the arc length, i be the index for different objects. For a certain object i,

define its SPF as:

li(s, θ) on the curve
{

x = xi(s)
y = yi(s)

(4.2)

where 0 ≤ θ < 2π is the direction of the light ray. li(s, θ) is the radiance of the light ray

44

that can be traced back to the surface point determined by s on object i. Notice that the

above function does not appear to be related with what people often use for calculating

lightings, such as surface normal, BRDF etc. We intend to do so because it is often too

complicated if we try to model how the light rays are generated, in addition to the fact

that such a model does not always exist for real scenes. Therefore, we only consider the

resultant lighting effects in 4.2, and assume that we have some knowledge about the SPF.

If we are able to model the lighting very well, the following analysis can still apply after

calculating the lighting effects based on the known model.

Lambertian is the first assumption we could make for the scene, since it has been ex-

clusively used in the IBR sampling literature. In terms of SPF, Lambertian property gives

the following relationship:

li(s, θ) = lis(s) (4.3)

and its Fourier transform is:

Li(Ωs,Ωθ) = Lis(Ωs)δ(Ωθ) (4.4)

where Li(Ωs,Ωθ) is the Fourier transform of li(s, θ), Lis(Ωs) is the Fourier transform of

lis(s).1

In the real world, pure Lambertian objects are rare. Highly reflective surface (like a

mirror) is infrequent, too. In most cases, light rays from the same point on the object

surface tend to be similar and have slow changes with respect to their angles. It is therefore

reasonable to assume that Li(Ωs,Ωθ) can be approximated by a band-limited signal. That

is:

Li(Ωs,Ωθ) ≈ Li(Ωs,Ωθ)IBi(Ωθ) (4.5)

where IBi(Ωθ) is the indicator function over Ωθ, which is defined as:

IBi(Ωθ) =
{

1, if |Ωθ| < Bi;
0, otherwise.

(4.6)

1Strictly speaking, at a certain point on the surface, li(s, θ) need to be truncated on θ, because we can
only observe light rays that come out of the object. Therefore, along Ωθ Li(Ωs, Ωθ) cannot be a delta
function, nor can it be band-limited. However, we assume that this windowing artifact is negligible.

45

Here Bi defines the bandwidth for object i. Our band-limitness assumption can be con-

nected to the band-limitness of the surface BRDF with the signal-processing framework for

inverse rendering recently presented by Ramamoorthi and Hanrahan [114]. For points on

a reflective surface, the outgoing light can be described as the convolution of the incoming

light and the surface BRDF. If the incoming light is far (thus the incoming light can be con-

sidered as a delta function with respect to the angle), as long as the BRDF is band-limited,

the outgoing light rays will be band-limited.

In order to capture the plenoptic function or surface plenoptic function, existing IBR

approaches align cameras on a path/surface and take images for the scene. For example,

cameras are placed on a plane in light field, and on a circle in concentric mosaics. In the

2D world, 2D light field has cameras on a line, while 2D concentric mosaics has cameras on

a circle. In general, the cameras can be put along an arbitrary curve, as is shown in Figure

4.1. Let the camera path be:

Sc(x, y) = 0 or
{

x = xc(t)
y = yc(t)

(4.7)

where t is the arc length. Assume that the camera path curve is differentiable, and the

optical axes of our cameras are identical to the normals of the camera path. That is, at

arc length t, the optical axis has direction (−y′c(t), x
′
c(t)), where x′c(t) and y′c(t) are the first

order derivatives. Denote the direction of the optical axis with angle β, then:

tan(β) = −x′c(t)
y′c(t)

(4.8)

The image pixels can be indexed by the angle between the captured light ray and the optical

axis, as is represented by α in Figure 4.1. Denote the radiance of the light ray captured

at arc length t, angle α as lc(t, α). The goal of spectral analysis for this specific IBR

representation is to find the Fourier transform of lc(t, α), denoted as Lc(Ωt,Ωα), so that we

can determine the minimum number of images we have to capture. Given the knowledge

we have on the SPF li(s, θ) and its Fourier transform Li(Ωs,Ωθ), the strategy is to associate

lc(t, α) with li(s, θ) and hope that we can represent Lc(Ωt,Ωα) in terms of Li(Ωs,Ωθ). In

Section 4.2 and 4.4, we will show examples where we can apply the above strategy to light

field and concentric mosaics, respectively.

46

Before moving on to the next section, it is necessary to compare our work to the work by

Marchand-Maillet in [79]. Being independently developed, they share some similar ideas.

For example, both of them try to find a mapping between the captured light field and the

light rays from the object surface. However, our approach is more general than that in [79].

We employ the concept of surface plenoptic function, which allows us to perform a better

analysis on general IBR representations, as long as we can represent Lc(Ωt,Ωα) in terms

of Li(Ωs,Ωθ). This includes light field and concentric mosaics. In addition, occlusions and

non-Lambertian surface effects can be better analyzed within our framework. Another work

that might be related is shape from texture (SFT) [36]. Both SFT and our approach are

about transforming some spectral property from a certain object surface to the captured

images. However, IBR spectral analysis is significantly different from shape-from texture.

First, the goal of SFT is to reconstruct the scene geometry from texture information, while

we try to find the Fourier spectrum of the IBR representation given the geometry. Second,

SFT often recovers geometry from a single image (although it can be extended to multiple

views), while we deal with many images. Third, SFT only considers texture spectrum (e.g.,

isotropy or homogeneity), while we consider both texture and light ray radiance change

along different directions, including non-Lambertian surface and occlusions.

4.2 Analysis for the Light Field

As shown in Figure 4.2, 2D light field is parameterized by two parallel lines, indexed by t

and v, respectively. The t line is the camera line, while the v line is the focal line. The

distance between the two lines is f , which is the focal length of the cameras. It is easy to

show that a light ray indexed by pair (t, v) satisfies the following algebraic equation:

fx− vy − ft = 0. (4.9)

Notice that the focal line is indexed locally with respect to where the camera is.

The relationship between the light field lc(t, v) and the SPF li(s, θ) is as follows. For

the same light ray emitted/reflected/refracted from a surface point, it must be captured at

47

() 0,1 =yxS

x

y

θ

Or ()
()⎩

⎨
⎧

=
=

syy

sxx

1

1

() 0,2 =yxS

Or ()
()⎩

⎨
⎧

=
=

syy

sxx

2

2

Object 1

Object 2

t

v
v0-v0

v=0

t

f

Figure 4.2: The light field parameterization with surface plenoptic function.

the corresponding angle. That is:

tan(θ) =
f

v
or θ =

3π

2
− tan−1

(v

f

)
, (4.10)

where −v0 ≤ v ≤ v0 and 2 tan−1
(

v0
f

)
is the field of view (FOV). The above equation is

actually the mapping between a pixel’s angular position θ and its image coordinate v. Such

a mapping can be linearized as:

θ ≈ 3π

2
− v

f
. (4.11)

The above linearization will introduce 4.3% maximum error if the FOV of the camera is

40◦. In practice, the approximation in Equation 4.11 can be replaced by a simple pixel

re-arrangement. In the following discussions, we denote φ = v
f ≈ 3π

2 − θ for conciseness,

where −v0
f ≤ φ ≤ v0

f due to the limited FOV.

Another constraint is that the light ray (t, v) can be traced back to a cross point on the

object surface, whose arc length s can be obtained through solving:
x = xi(s)
y = yi(s)
fx− vy − ft = 0.

(4.12)

When multiple objects exist in the scene or some objects occlude themselves, Equation

4.12 may have multiple answers. We have to figure out which cross point is the closest

48

to the cameras. The closest point will occlude all the others. This may make scenes with

occlusions hard to analyze. However, for simple scenes this is still doable and we will show

examples later in this section.

4.2.1 Scene at a constant depth

The simplest scene we can have for light field is one at a constant depth, as shown in Figure

4.3(a). Denote its SPF as l0(s, θ). The surface can be described by:{
x = x0(s) = s
y = y0(s) = d0.

(4.13)

We can solve Equation 4.12 without concerning about occlusion:

fs− vd0 − ft = 0 =⇒ s =
vd0

f
+ t. (4.14)

The light field spectrum can be derived as:

Lc(Ωt,Ωv) =
∫∫

lc(t, v)e−jΩtt−jΩvvdtdv

=
∫∫

l0

[
vd0

f
+ t,

3π

2
− tan−1

(v

f

)]
e−jΩtt−jΩvvdtdv

≈
∫∫

l0(s, θ)e−jΩt(s−φd0)−jΩvφffdsdθ

= fL0(Ωt, d0Ωt − fΩv)ej 3π
2

(d0Ωt−fΩv) (4.15)

We can see that the spectrum of the light field at constant depth is a rotated version of

the SPF spectrum, with some constant factor in magnitude and some shift in phase. The

rotation angle is determined by the scene depth d0 and the focal length f .

If the object surface is Lambertian, we have L0(Ωs,Ωθ) = L0s(Ωs)δ(Ωθ) as stated in

Equation 4.4. Therefore:

Lc(Ωt,Ωv) = fL0(Ωt, d0Ωt − fΩv)ej 3π
2

(d0Ωt−fΩv)

= fL0s(Ωt)δ(d0Ωt − fΩv)ej 3π
2

(d0Ωt−fΩv). (4.16)

This is a tilted line in the (Ωt,Ωv) space, which is the same conclusion as that in [16].

49

v vΩ

v

t

(b) (c)

(d) (e) tΩ

t
tΩ

Object at
constant depth

x

y

v

t

f
0d

(a)

vΩ

Figure 4.3: Spectrum of Lambertian and non-Lambertian scenes at constant depth. (a) A
scene at constant depth; (b) the EPI of the light field when the scene is Lambertian; (c) the
Fourier transform of (b); (d) the EPI of the light field when the scene is non-Lambertian;
(e) the Fourier transform of (d).

50

When the object surface is non-Lambertian but the SPF is band-limited, we have

L0(Ωs,Ωθ) ≈ L0(Ωs,Ωθ)IB0(Ωθ) as in Equation 4.5. Consequently,

Lc(Ωt,Ωv) = fL0(Ωt, d0Ωt − fΩv)ej 3π
2

(d0Ωt−fΩv)

≈ fL0(Ωt, d0Ωt − fΩv)ej 3π
2

(d0Ωt−fΩv)IB0(d0Ωt − fΩv). (4.17)

The spectrum is also tilted, but this time it has a finite width 2B0√
d2
0+f2

perpendicular to the

tilted spectrum (or 2B0
d0

horizontally) because of the indicator function.

The above analysis is illustrated in Figure 4.3. A scene at constant depth has two

sinusoids (different frequency) pasted on it as texture, as shown in Figure 4.3(a). Figure

4.3(b) is the epipolar image (EPI, which is an image composed of light rays using the camera

line t and focal line v as its two axes) when the scene is Lambertian. Figure 4.3(c) is its

Fourier transform. The spectrum has several peaks because the texture on the scene object

is pure sinusoids. It basically lies on a tilted line with some small horizontal and vertical

windowing artifact that is due to the truncation of the range of s and θ. We ignored the

windowing artifacts in our analysis for simplicity. Figure 4.3(d) shows the EPI for a non-

Lambertian case at the same depth, which is generated by adding a point light source near

the scene and assuming a Phong surface reflection model [109]. It can be seen that because

of the non-Lambertian property, its Fourier transform in Figure 4.3(e) is expanded. The

direction of the expansion is determined by the depth of the point light source, which will

also affect the SPF bandwidth.

4.2.2 Scene on a titled line

We next study a scene on a tilted line, as shown in Figure 4.4. We write the surface equation

as: {
x = x0(s) = s cos ϕ + x0

y = y0(s) = s sinϕ + y0
(4.18)

51

v
vΩ

(b) (c)
t

tΩ

x

y

v

t

f

Object on
a tilted line

ϕ

(a)

Figure 4.4: Spectrum of a tilted planar scene with a sinusoid pasted as texture. (a) The
scene on a tilted line; (b) the EPI of the lightfield; (c) the Fourier transform of (b).

where 0 ≤ ϕ < π is an angle that is known. Assuming no occlusion, we can solve Equation

4.12 as:

f(s cos ϕ + x0)− v(s sinϕ + y0)− ft = 0 =⇒

s =
ft− fx0 + vy0

f cos ϕ− v sinϕ
. (4.19)

To guarantee that within each captured image the parameter s is continuous, ϕ cannot be

arbitrary. If −v0 ≤ v ≤ v0, we can have constraint that f cos ϕ− v0| sin ϕ| > 0.

52

The light field spectrum is:

Lc(Ωt,Ωv) =
∫∫

lc(t, v)e−jΩtt−jΩvvdtdv

=
∫∫

l0

[
ft− fx0 + vy0

f cos ϕ− v sinϕ
,
3π

2
− tan−1

(v

f

)]
e−jΩtt−jΩvvdtdv

≈
∫∫

l0(s, θ)e−jΩt

[
s(cos ϕ−φ sin ϕ)+(x0−φy0)

]
−jΩvφf

·(cos ϕ− φ sin ϕ)fdsdθ. (4.20)

Unfortunately, even for a scene as simple as a line, Equation 4.20 is too complex to solve.

Here we consider a case where Equation 4.20 can be further simplified. Let the scene be

Lambertian, i.e., as in Equation 4.4. We have:

Lc(Ωt,Ωv) ≈
∫∫

l0(s, θ)e−jΩt

[
s(cos ϕ−φ sin ϕ)+(x0−φy0)

]
−jΩvφf

·(cos ϕ− φ sinϕ)fdsdθ.

=
∫∫

l0s(s)e−jΩt

[
s(cos ϕ−φ sin ϕ)+(x0−φy0)

]
−jΩvφf

·(cos ϕ− φ sinϕ)fdsdθ.

=
∫

L0s

[
Ωt(cos ϕ− φ sinϕ)

]
e−jΩt(x0−φy0)−jΩvφf

·(cos ϕ− φ sinϕ)fdθ. (4.21)

If we have a sinusoid pasted as the texture, e.g., l0s(s) = sin(Ω0s). Its Fourier transform is:

L0s(Ωs) =
1
2j

[
δ(Ωs − Ω0)− δ(Ωs + Ω0)

]
. (4.22)

Due to symmetry, let us consider the magnitude of Lc(Ωt,Ωv) when Ωt > 0 and Ωs > 0.

From Equation 4.21, by changing the integration variable from θ to φ we have:

∣∣Lc(Ωt,Ωv)
∣∣ ≈ 1

2

∣∣∣∣∣
∫ v0

f

− v0
f

δ
[
Ωt(cos ϕ− φ sinϕ)− Ω0

]
e−jΩt(x0−φy0)−jΩvφf

·(cos ϕ− φ sinϕ)fdφ

∣∣∣∣∣
=

{
Ω0f

2Ω2
t | sin ϕ| , when Ω0f

f cos ϕ+v0| sin ϕ| ≤ Ωt ≤ Ω0f
f cos ϕ−v0| sin ϕ| ;

0, otherwise.
(4.23)

53

Figure 4.4(a) shows a scene on a line with ϕ = π
6 . A single sinusoid is pasted on the

line as texture. Figure 4.4(b) is the EPI of the light field, and Figure 4.4(c) is its Fourier

transform. Notice that our analysis matches very well with the example. For example,

the spectrum is non-zero only between certain Ωt thresholds. In the non-zero region, the

spectrum decays when |Ωt| increases. The spectrum is bounded for Ωv due to the minimum

and maximum depth of the scene, as was described in [16]. One thing we may notice in

this example is that compared with the original SPF (which is just a sinusoid), a scene as

simple as a tilted line can cause the IBR spectrum to spread a lot. Considering the fact

that light rays from a certain surface point tend to change slowly in the real world, we may

conclude that the spectrum spreading in real world scenes is mainly caused by its irregular

shape, including the occluding effects which we will discuss in Section 4.2.3.

There are two practical considerations. First, the geometry of the scene may be very

difficult to obtain. When the geometry is unknown, we may approximate the scene geometry

with piecewise constant depths, as discussed in Section 4.3. Following the ”truncating

windows” analysis there, we may obtain first-order approximations of the spectrum, even

if the scene is non-Lambertian. Second, given the scene geometry, sometimes an analytical

expression associating the spectrum of SPF and that of IBR representation may not exist.

To solve for such scenes, numerical methods may be applied. For example, by replacing

l0(s, θ) with the inverse Fourier transform of L0(Ωs,Ωθ), Equation 4.20 could be solved

numerically.

4.2.3 Occlusions between objects

When occlusion happens, IBR spectral analysis becomes very difficult due to the disconti-

nuity at the occlusion boundary. In fact, any occlusion will simply cause the IBR spectrum

to be band-unlimited. In this subsection, we analyze occluded scenes under certain assump-

tions, and give some insights on the formation of the spectrum of such scenes.

With SPF, solving for occluded scenes means finding the closest cross point among mul-

tiple solutions for Equation 4.12. We first assume that objects do not occlude themselves.

54

Marchand-Maillet [79] once derived the no-occlusion condition for functional surfaces. Sim-

ilarly, in our notation, no occlusion requires:

max
s

∣∣∣ y′i(s)
x′i(s)

∣∣∣ <
f

v0
. (4.24)

where y′i(s) and x′i(s) are first order derivatives. Equation 4.24 simply means that the slope

of the surface should not be greater than that of any possible light rays captured. This

assumption is, however, hard to justify. We treat this as an example where occlusion can

be solved under our parameterization. In the meantime, in practice mutual occlusions are

often more significant than self-occlusions2, and self occluded objects can sometimes be

decomposed into smaller objects so that the occlusions become mutual.

When objects do not occlude themselves, their spectrums can be obtained through

previously mentioned methods, as there are no occlusions. Let the number of objects in the

scene be N . Let lc(i)(t, v), 0 ≤ i ≤ N−1 be the N light fields and Lc(i)(Ωt,Ωv), 0 ≤ i ≤ N−1

be their Fourier transforms. We also define a silhouette light field for each object i as:

γc(i)(t, v) =
{

1, when light ray (t, v) can be traced back to object i, 0 ≤ i ≤ N − 1;
0, otherwise.

(4.25)

Their Fourier transforms are denoted as Γc(i)(Ωt,Ωv), 0 ≤ i ≤ N − 1. Notice that the

silhouette’s spectrum can be obtained by setting li(s, θ) ≡ 1 on object i’s surface.

We are now ready to find the spectrum of the occluded scene. Since Fourier transform is

linear, the overall spectrum is simply the sum of individual objects’ spectrums. If an object

is not occluded, we can just add its spectrum to the overall one. Otherwise, let object i

be occluded by K other objects (K < N − 1). Denote the K occluding objects’ silhouette

light fields as γc(ik)(t, v), 0 ≤ k ≤ K − 1. The contribution object i has to the overall light

field can be written as:

locc
c(i)(t, v) = lc(i)(t, v)

K−1∏
k=0

[
1− γc(ik)(t, v)

]
(4.26)

2We claim mutual occlusion is more significant than self-occlusion because the former often causes a
sharp boundary/edge in the EPI, while self-occlusion often does not if the surface normal changes slowly.

55

v vΩ

(b) (c)
t

tΩ

x

y

v

t

f0d

(a)

Object 0

Object 2

Object 1

1d2d

Figure 4.5: Spectrum of an occluded scene. (a) Three objects on different constant depths;
(b) the EPI of the light field; (c) the Fourier transform of (b).

where locc
c(i)(t, v) is the occluded light field of object i. Its Fourier transform is:

Locc
c(i)(Ωt,Ωv) = Lc(i)(Ωt,Ωv)⊗

[
δ(Ωt,Ωv)− Γc(i0)(Ωt,Ωv)

]
⊗ · · · ⊗

[
δ(Ωt,Ωv)− Γc(iK−1)(Ωt,Ωv)

]
(4.27)

where ⊗ stands for convolution, δ(Ωt,Ωv) is the Fourier transform of constant 1. From

Equation 4.27 we can see that the spectrum of an occluded object is its unoccluded spectrum

modulated by all the occluding objects’ silhouette spectrum. This modulation will bring

some additional components to the overall spectrum.

Figure 4.9(a) shows an example Lambertian scene that has three objects. Each object is

at a constant depth and has two sinusoids pasted as texture. Therefore, from what we had in

Section 4.2.1, if no occlusion is considered, for 0 ≤ i ≤ 2, Lc(i)(Ωt,Ωv) and Γc(i)(Ωt,Ωv) both

56

tΩ

vΩ

tΩ

vΩ

0max =Ω−Ω vt fd

0min =Ω−Ω vt fd

0=Ω−Ω vtopt fd

(a) (b)B∆

Optimal rendering
depth determined
by: π

π−

π

π−

Figure 4.6: Best rectangular sampling of a non-occluded and Lambertian scene, as in [16].
(a) Frequency support of a scene with no occlusion and Lambertian surface; (b) the Optimal
rectangular compacting and the corresponding reconstruction filter.

lie on a tilted line whose slope is di
f , where di is the depth of object i. Since objects at larger

depth are occluded by closer objects, we will notice additional modulated components along

larger slope lines. Moreover, the additional modulated components will be along smaller

slopes corresponding to the closer object. This is clearly shown in Figure 4.9(c).

4.3 Analysis of Scenes with Unknown Geometry

The surface plenoptic function is defined on the scene’s geometry. It may cause the misun-

derstanding that the above analysis is not applicable when the scene geometry is unknown.

In this section, we show how such scenes can be analyzed with the ”truncating windows”

analysis [16] and the conclusions obtained above.

We know that it is possible to approximate a complex scene with multiple constant depth

layers dj , 0 ≤ j ≤ J−1. In [16], Chai et al. adopted such assumption and gave a ”truncating

windows” analysis for non-Lambertian scenes. They showed that if there is no occlusion, the

spectrum support of each layer looks like a narrow ellipse. The overall spectrum is simply

the sum of the spectrums for all the layers. As a first order approximation, the overall

spectrum will be between two slopes—one determined by the minimum scene depth dmin

and the other determined by the maximum scene depth dmax. This is drawn in Figure 4.6(a).

57

tΩ

vΩ

π

π−
tΩ

vΩ
0max =Ω−Ω vt fd

0min =Ω−Ω vt fd

0=Ω−Ω vtopt fd

Optimal rendering
depth determined
by:

EB

(a) (b)

π

π−

Figure 4.7: Best rectangular sampling of a non-Lambertian scene. (a) The spectrum is
expanded from the Lambertian case; (b) the optimal rectangular compacting and the cor-
responding reconstruction filter.

Without loss of generality we assume in this paper that the spectrum is mainly bounded

by the resolution of the camera, and the unit of the v axis is 1, so that −π ≤ Ωv < π. If

rectangular sampling is applied, at minimum sampling rate the spectrum is replicated as in

Figure 4.6(b). The corresponding maximum sampling distance is:

∆tmax =
2

f
(

1
dmin

− 1
dmax

) , (4.28)

where f represents the focal length. The authors of [16] also proposed to use

dopt =
2(

1
dmin

+ 1
dmax

) , (4.29)

as the best depth to render the scene, which can be easily obtained through Figure 4.6(b).

If the scene is non-Lambertian, it is clear that the ”truncating windows” analysis is

still valid except that for each layer, the spectrum support becomes a ”fatter” ellipse. This

causes the original fan-like spectrum to be expanded. If the SPF is band-limited along

Ωθ as in Equation 4.5, the light field bandwidth expansion is also limited, as is shown in

Figure 4.7(a). The dotted region stands for the extra spectrum support caused by the

non-Lambertian surface. A conservative estimation of the amount of expansion is:

BE = max
j

Bj

dj
(4.30)

58

on each side of the spectrum along the horizontal axis Ωt, based on the discussion after

Equation 4.17. Here Bj and dj represent the bandwidth of SPF and depth for object depth

layer j. Therefore, with rectangular sampling, the best way to compact the spectrum is as

Figure 4.7(b), and the sampling rate of non-Lambertian scenes has to be increased.

In practice, the effect of non-Lambertian property in expanding the spectrum is often

difficult to observe because the light rays from the same surface point change radiance often

very slowly. We next show an example where we have to take more images in order to

render correctly because of the non-Lambertian property. We render two spheres (Figure

4.8(a) and (b))—one is Lambertian and the other is a purely reflective surface. Meanwhile,

we assume that we have a 6-bit depth map of the scene. According to the sampling curve

proposed in [16], the number of images required for rendering the scene is reduced if we have

an accurate depth map. We found that at a certain sampling rate, we are able to reconstruct

the Lambertian scene very well as in Figure 4.8(c). However, if we use the same sampling

rate for the reflective surface, the reconstruction is very bad (Figure 4.8(d)). This means

that we need to sample more images to reconstruct the latter surface. In Figure 4.8(e) and

(f), we show the EPI of both scenes (center row, at a much higher sampling rate along t for

illustration purpose). The red dashed lines are interpolation directions determined by the

sphere geometry. Obviously, the rendering or interpolation of the reflective surface is along

a wrong direction, or using a wrong geometry, which causes its poor quality.

The ”truncating windows” analysis can be applied to more complex scenes if occlusions

have to be considered. When the scene is heavily occluded, far layers will be blocked by close

layers, which causes a spectrum modulation as in Equation 4.27. In worst case, the major

occluding objects are at dmin, which generates additional modulated components along the

slope dmin
f , where f is the focal length. The corresponding spectrum is given in Figure

4.9(a). The dotted support is the additional modulated components. If we still apply the

rectangular sampling strategy, the spectrum can be compacted as in Figure 4.9(b). Notice

that we have to increase the minimum sampling rate by a factor of 2. Or, the maximum

59

(a) (b)

(c) (d)

t t

vv

(e) (f)

Figure 4.8: An example of the minimum sampling rate for non-Lambertian surface. (a) A
Lambertian sphere; (b) a purely reflective sphere; (c) at a certain sampling rate, we are
able to reconstruct the scene very well for the Lambertian sphere; (d) at the same sampling
rate, the reconstruction is very bad for the reflective surface; (e) EPI of the Lambertian
sphere scene (center row); (f) EPI of the reflective surface scene (center row).

60

(a)

tΩ

vΩ

B∆

(b)

tΩ

vΩ

0min =Ω−Ω vt fd

0max =Ω−Ω vt fd 0min =Ω−Ω vt fd

Optimal rendering
depth determined
by:

(c)

π−

(d)

tΩ

0=Ω−Ω vtocc fd

tΩ

vΩ vΩ
ππ

π−

Figure 4.9: Best rectangular sampling of occluded scenes. (a) The most conservative esti-
mation of the spectrum when the object at dmin causes the major occlusions; (b) the optimal
rectangular sampling strategy for compacting (a); (c) the spectrum given that the object
at docc is the main source of occlusions; (d) the optimal rectangular sampling strategy for
compacting (c).

sampling distance is:

∆tmax =
1

f
(

1
dmin

− 1
dmax

) . (4.31)

Meanwhile, from Figure 4.9(b) we see that the optimal rendering depth becomes dmin instead

of dopt in Equation 4.29. In general, when the major occluding objects are at distance docc,

the spectrum is shown in Figure 4.9(c). After the most compact rectangular sampling, the

spectrum is shown in Figure 4.9(d). The minimum sampling rate and the optimal rendering

depth both depend on docc.

We give an example to verify the above analysis. In Figure 4.10 we show an OpenGL

scene composed of 3×3×3 cubes. The cubes stay on a 3D regular grid and the front cubes

61

(a) (b)

Figure 4.10: An example of the minimum sampling rate for occluded surface. (a) At a
certain sampling rate, rendered with dopt; (b) same as (a) but rendered with dmin.

() 0, =ϕrSi

θ

β

α

ϕ

R

Or ()
()⎩

⎨
⎧

=
=

s

srr

i

i

ϕϕ

Figure 4.11: The concentric mosaics parameterization with surface plenoptic function.

occlude most regions of the back cubes. The renderings are done through depth-corrected

bilinear interpolation assuming a constant depth. Figure 4.10(a) and (b) show the rendered

scene with rendering depth dopt and dmin, respectively. Obviously, Figure 4.10 (b) is much

more pleasing because the foreground cubes are rendered at hight quality. The background

cubes are occluded and do not contribute too much to the overall visual quality.

62

4.4 Analysis for the Concentric Mosaics

The proposed analysis can also be applied to concentric mosaics. Concentric mosaics is

captured by rotating a camera along a circle, as is shown in Figure 4.11. Let the circle

radius be R. We index concentric mosaics by two angles, α and β. −α0 ≤ α ≤ α0

represents the angle between the light ray and the camera optical axis; β denotes where

the camera is on the circle. For concentric mosaics, we use polar coordinates instead of

rectangular coordinates. The object surfaces are represented as:

Si(r, ϕ) = 0 or
{

r = ri(s)
ϕ = ϕi(s)

. (4.32)

The light ray line indexed by pair (β, α) is:

r − R sinα

sin(α + β − ϕ)
= 0. (4.33)

Equation 4.33 is fairly complex if we want to solve for α and β from r and ϕ. Provided

that in practice the FOV of the cameras is often limited3, we let sinα ≈ α. Because of the

setup of concentric mosaics, the objects in the scene must be outside the capturing circle,

we have |α + β−ϕ| < |α|. Therefore, we can also let sin(α + β−ϕ) ≈ α + β−ϕ. Equation

4.33 is thus simplified as:

r(α + β − ϕ)−Rα ≈ 0. (4.34)

We also have simple relationship:

α + β + π = θ. (4.35)

Similar to the analysis in light field, light ray (β, α) should be traced back to a cross point

on the object surface, whose arc length s can be obtained through solving:
r = ri(s)
ϕ = ϕi(s)
r(α + β − ϕ)−Rα ≈ 0

(4.36)

Equation 4.36 is in great similarity to Equation 4.12. Therefore, discussions on light field

can be borrowed directly. Here we only give a simple example by considering a scene at
3When the FOV is about 40◦, i.e., α0 ≈ π

9
. Making sin α ≈ α has 2% maximum error. Notice that in

concentric mosaics we have the same linearization error as in light field (Equation 4.11).

63

constant depth. A constant depth concentric mosaics scene is described as:{
r = ri(s) = r0

ϕ = ϕi(s) = s
r0

(4.37)

where r0 is the depth of the scene. We can easily solve Equation 4.36:

r0

(
α + β − s

r0

)
−Rα ≈ 0 =⇒ s ≈ r0(α + β)−Rα. (4.38)

The concentric mosaic spectrum can be derived as:

Lc(Ωβ ,Ωα) =
∫∫

lc(β, α)e−jΩββ−jΩααdβdα

≈
∫∫

l0
[
r0(α + β)−Rα, α + β + π

]
e−jΩββ−jΩααdβdα

=
∫∫

l0(s, θ)e−jΩβ
s+(r0−R)(π−θ)

R
−jΩα

r0θ−s−πr0
R

1
R

dsdθ

=
1
R

L0

[Ωβ − Ωα

R
,
r0Ωα − (r0 −R)Ωβ

R

]
e−jΩβ

(r0−R)π
R

+jΩα
πr0
R (4.39)

Again, the spectrum is a rotated version of that of SPF, plus some magnitude change and

phase shift. If the scene is Lambertian, or L0(Ωs,Ωθ) = L0s(Ωs)δ(Ωθ), we further have:

Lc(Ωβ,Ωα) =
1
R

L0

[Ωβ − Ωα

R
,
r0Ωα − (r0 −R)Ωβ

R

]
e−jΩβ

(r0−R)π
R

+jΩα
πr0
R

=
1
R

L0s

(Ωβ − Ωα

R

)
δ
[r0Ωα − (r0 −R)Ωβ

R

]
e−jΩβ

(r0−R)π
R

+jΩα
πr0
R (4.40)

The spectrum lies on a line that has slope

Ωα

Ωβ
=

r0 −R

r0
. (4.41)

Since r0 > R, the slope is always less than 45◦.

Figure 4.12(a) shows an example scene at constant depth with two sinusoids pasted as

texture. In Figure 4.12(b) the coordinates α and β are at different scale so the slope does

not map to the true value. However, the spectrum in Figure 4.12(c) is obviously along a

line. If the scale between α and β is the same, the line will achieve maximum slope when

the depth of the scene becomes infinite.

64

αΩ

(b) (c) βΩβ

α

Camera trajactory

R

0r

Object at
constant depth

(a)

Figure 4.12: Spectrum of a Lambertian scene at constant depth for concentric mosaics. (a)
A scene at constant depth with sinusoids pasted as texture; (b) the EPI of the concentric
mosaics when the scene is Lambertian. (c) The Fourier transform of (b).

4.5 Summary

In this chapter, we presented a new approach to analyzing the IBR spectrum. We first

defined the surface plenoptic function, then showed that any IBR representation can be

studied if we can find the light ray mapping from the SPF to the IBR representation. We

showed examples where the mapping can be done for light field and concentric mosaics. Non-

Lambertian property, scene depth variations and occlusions fit naturally into our approach

and we were able to analyze the effects of them as long as certain assumptions are satisfied.

We believe that this approach greatly improves the understanding of IBR spectral analysis.

Spectrum analysis is the first but not the last step of IBR uniform sampling analysis.

Knowing the spectrum of the scene, it is also important to know how should we sample the

65

signal. Rectangular sampling was used in the light field application as it is straightforward.

In the next chapter, we will apply generalized sampling theory to such a task and compare

its performance with rectangular sampling.

Chapter 5

Uniform Sampling: Generalized
IBR Sampling

In this chapter, we apply generalized sampling (GS) theory [31] to image-based rendering

(IBR) data, more specifically, the light field. Based on the analysis in the last chapter,

concentric mosaics share similar spectrum with light field, thus the following analysis will

also apply. We show that in theory the lowest sampling rate of light field when we use

generalized sampling can be as low as half of that when we use rectangular sampling (RS).

However, in practice rectangular sampling has several advantages over generalized sampling.

We analyze the pros and cons for each sampling approach, and explain why in practice

rectangular sampling is still more preferable.

5.1 Generalized Sampling for Light Field Data

In the spectrum analysis of IBR data in Chapter 4, we used rectangular sampling to demon-

strate that more samples are needed when the scene is non-Lambertian or occluded. While

the conclusions drawn there are still valid, rectangular sampling is not the best sampling

strategy in high-dimensional space, which is a well-known fact in multi-dimensional signal

processing theory [31]. Hexagonal sampling, for instance, is known as the best sampling

strategy for a circularly band-limited 2D signal, which outperforms rectangular sampling

for about 13.4% in sampling efficiency.

66

67

tΩ

vΩ

π

π−

(a)

tΩ

vΩ

π

π−

(b)

B∆

Figure 5.1: Generalized sampling of light field. (a) The most compact way to pack the light
field spectrum; (b) reduce the sampling rate such that GS has the same efficiency as RS in
Figure 4.6(b).

Figure 5.1(a) shows how we can compact the light field frequency support and the

replicas better with generalized sampling theory. We ignored non-Lambertian and occlusion

effects in this example. With this sampling strategy, the sampling efficiency can be improved

by a factor of 2 compared with Figure 4.6(b), which means we only need 50% of the samples.

The reconstruction filter is marked in bold contour in Figure 5.1(a), which is a tilted fan-like

filter. For detailed information about the generalized sampling theory, we refer the reader

to [31].

There are several problems to be concerned for the GS approach. First, the correspond-

ing sampling lattice in the spatial domain for Figure 5.1(a) may not be consistent with how

we take images for the scene. We propose to sample the scene with RS at a higher sampling

rate and then down-sample it to the required lattice. Interpolation may be required during

the down-sampling process. Of course, interpolation will introduce extra errors in practice.

This is what GS has to pay to achieve a lower sampling rate.

Second, during the rendering, there can be two approaches to reconstruct the continuous

light field signal from the GS sampled data. One is to introduce a preprocessing stage before

rendering. At this stage we up-sample the data to a rectangular grid by a discrete fan-

like reconstruction filter. During the rendering we can simply apply depth-driven bilinear

68

interpolation as before. This approach requires huge amount of memory to store the up-

sampled data, but has a fast rendering speed. Another approach is to use a continuous fan-

like reconstruction filter directly for rendering. Since it is difficult to find the best continuous

filter given its finite support (which is required in rendering due to speed consideration), we

design a discrete optimal reconstruction filter first and interpolate it to get the continuous

filter. To speed up the rendering, look-up tables can be used to store the filter values. We

adopt the second approach in the follow sections because it does not need much memory to

store the up-sampled data.

Third, in theory we may be able to design an ideal fan-like reconstruction filter to get

back the original light-field signal without losing any information; in practice, however,

we cannot design a filter without any transition band. We choose to reduce the sampling

density for the ease of filter design. To give a fair comparison between GS and RS, we let

them have the same sampling density, as is shown in Figure 4.6(b) and Figure 5.1(b). We

will focus on the optimal discrete reconstruction filter design for these two cases.

Assume we start with a RS sampled data at a sampling rate that is much higher than

the minimum requirement. Its discrete Fourier transform is shown in Figure 5.2(a), where

the two slopes kmin and kmax are determined by the minimum and maximum depths of

the scene. If we down-sample the data with RS to its minimum sampling rate, we get

a new spectrum as in Figure 5.2(b). If we down-sample it to the same rate with GS,

we have Figure 5.2(c)1. Figure 5.2(d) and (e) are up-sampling filter specifications for (b)

and (c), respectively. S, T and P stand for stop-band, transition-band and pass-band,

respectively. We can observe that the transition-band of the up-sampling filter for RS is

very narrow for high frequency components, but very wide for low frequency components.

On the other hand, the transition-band of the filter for GS has constant width along all

the frequencies. This observation implies that RS is better for scenes that has less high-

frequency components, while GS is better otherwise.

We use the eigenfilter approach [145] to design the filters in Figure 5.2(d) and (e). Let
1Strictly speaking, Figure 5.2(c) is a transformed version of the original discrete Fourier transform. We

perform this transform so that we can compare the filter specifications of the two sampling strategies. Please
refer to [31] for details about such transforms.

69

π

π

π−

π−

π

π

π−

π−

π

π

π−

π−

(a) (b) (c)

maxk mink

tω

vω

π

π

π−

π−

π

π

π−

π−

(d) (e)

P

P

T T

P

P S

S

T
T

S

S tω

vω

tω

vω

tω

vω

tω

vω

Figure 5.2: Filter design for light field reconstruction. (a) The Fourier transform of the
original discrete signal; (b) the Fourier transform of the signal with minimum sampling rate
for RS; (c) the Fourier transform of the signal with the same sampling rate for GS; (d)
up-sampling filter specification for RS; (e) up-sampling filter specification for GS.

D(ωt, ωv) be the desired frequency response in the pass-band, H(ωt, ωv) be the filter we try

to design. The Eigenfilter approach finds:

arg min
H(ωt,ωv)

E = arg min
H(ωt,ωv)

{
αEP + βES

}
= arg min

H(ωt,ωv)

{
α

∫∫
P

∣∣D(ωt, ωv)−H(ωt, ωv)
∣∣2dωtdωv

+β

∫∫
S

∣∣H(ωt, ωv)
∣∣2dωtdωv

}
(5.1)

where E is the overall square error measured by the weighted sum of the pass-band error EP

and the stop-band error ES ; α and β are weighting constants which control the accuracies

of the approximation. In a normal setup, we often have D(ωt, ωv) = 1 within the pass-band.

Eigenfilter is optimal for filter design itself, but it is not necessarily optimal in terms of

70

the reconstruction error for a certain signal. Let the down-sampled signal spectrum (such

as Figure 5.2(b) and (c)) be X(ωt, ωv). We try to find the optimal reconstruction filter

through:

arg min
H(ωt,ωv)

Er = arg min
H(ωt,ωv)

{
Er

P + Er
S}

= arg min
H(ωt,ωv)

{∫∫
P
|X(ωt, ωv)|2

∣∣D(ωt, ωv)−H(ωt, ωv)
∣∣2dωtdωv

+
∫∫

S

∣∣X(ωt, ωv)
∣∣2∣∣H(ωt, ωv)

∣∣2dωtdωv

}
, (5.2)

where Er is the overall reconstruction error, Er
P and Er

S are the reconstruction errors in pass-

band and stop-band, respectively. Equation 5.2 can still be solved through the eigenfilter

approach, as it differs from Equation 5.1 only by a weighting function. Notice that the

optimal filter is related with the signal X(ωt, ωv). In our experiments in the next section,

we show that by using the Fourier transform of a first order auto-regressive (AR-1) signal

to model X(ωt, ωv), we get better reconstruction than the regular eigenfilter approach.

5.2 Experimental Results

We next show some experimental results on the two different sampling approaches. In order

to have full control on the scenes and the cameras, we choose two scenes rendered from 3D

models with texture. These scenes are shown in Figure 5.3, where scene (i) and (ii) are

named Duck and Containers, respectively. We take the center horizontal lines to construct

the epipolar images (EPIs). Figure 5.3(i-a) and (ii-a) are snapshots of the scenes; (i-b)

and (ii-b) are their EPIs; (i-c) and (ii-c) are the Fourier transform of the EPIs. Although

occlusions can be observed in the scenes, we ignore them in our analysis since they are not

significant in these two examples.

From the Fourier transform of the scenes in Figure 5.3, we can find the corresponding

sampling rate and compact the spectrum to Figure 4.6(b) and Figure 5.1(b). One thousand

random images are then rendered for each scene with different reconstruction filters. These

images are also synthesized through a 3D model rendering engine. The difference between

71

(i-a) (i-b) (i-c)

(ii-a) (ii-b) (ii-c)

Figure 5.3: Test scenes for generalized sampling of light field. (i) The scene Duck ; (ii)
the scene Containers; (a) the scene snapshot; (b) the EPI constructed from the center
horizontal slits; (c) Fourier transform of (b).

the synthesized images and the rendered images is used to measure the quality of the

sampling process. In our experiments, PSNR is used to measure such differences.

The experimental results are shown in Table 5.1. We test the regular eigenfilter (REF)

and the optimal reconstruction filter (ORF) presented in the last section for both RS and

GS. To design the ORF, we model each replica of the Fourier spectrum as the Fourier

transform of an AR-1 signal with ρ = 0.9 along ωv, and constant along ωt. For example,

the replica centered at ωv = ωt = 0 is represented as:∣∣X(ωt, ωv)
∣∣
P

=

∣∣∣∣∣ 1
1− ρejωv

∣∣∣∣∣ (5.3)

where the subscript P simply means that it is valid only in the pass-band. We also list

depth-driven bilinear interpolation for RS in Table 5.1 for comparison. Several conclusions

can be drawn from the above table. RS REF performs much worse than GS REF. This is

because the specification for RS REF design has a zero transition-band at high frequency

72

Table 5.1: Rendering image qualities for different sampling methods and reconstruction
filters (PSNR: dB).

Approach Duck Container

RS, regular eigenfilter 33.99 20.44
RS, optimal reconstruction filter 35.89 21.81

GS, regular eigenfilter 35.68 22.04
GS, optimal reconstruction filter 36.06 22.21

RS, bilinear interpolation 36.10 21.67

components, which is hard to design. In all cases, ORF is significantly better than designing

a general-purpose filter. This is because extra knowledge was employed during the ORF

design process. With ORF, the difference between RS and GS becomes very small, which

again shows the power of ORF. Interestingly, the simple approach that uses RS with bilinear

interpolation gives comparable performance as GS with optimal filter for reconstruction.

This is unexpected but was verified in some other scenes we tested. Comparing the two test

scenes, there is more improvement by using GS for the scene Containers, because Containers

has more high frequency components in its spectrum. This is consistent with our analysis

in the last section.

Real world scenes often has weak high frequency components and strong low frequency

components. Thus for a typical light field, RS is usually more suitable than GS. Even for

the Containers scene, the improvement by using GS is minor, which cannot justify the

increased complexity in GS. Since GS is inconsistent with how the images are taken, the

required re-sampling may introduce extra error. The rendering speed is another concern.

Unless we build a huge look-up table for the reconstruction filter and always do simple

rounding when searching for a filter value, bilinear interpolation is required to get the filter

values at arbitrary viewpoints. Even if the designed reconstruction filter has the same size

of support as bilinear interpolation, the filter interpolation will slow down the rendering by

a factor of 4. Therefore, we conclude that in practice rectangular sampling is preferable to

non-rectangular sampling for light field.

73

5.3 Summary

In this chapter, we presented the idea of applying generalized sampling theory to light

filed. When there is no occlusion and the scene is Lambertian, we showed that in theory

the sampling density in the spatial domain could be half of that when we use rectangular

sampling. We found that using such theory we may achieve higher reconstruction quality

at the same sampling rate when the scene has much high frequency components. However,

for typical scenes, such improvement cannot justify the complexity increase. We conclude

that rectangular sampling and bilinear interpolation is still the most preferable approach

for light field.

Chapter 6

Freeform Sampling and Active
Sampling: A New Sampling
Framework

In Chapter 4 and 5, we have studied the uniform sampling of image-based rendering data us-

ing the traditional sampling analysis method. Such analysis may provide a general guidance

on how a scene should be sampled. For instance, if a scene has non-Lambertian surface or

occluded regions, more samples are needed. However, in applications such as IBR, uniform

sampling can be a big constraint on the sampling efficiency one can achieve. In general, a

real world scene is composed of Lambertian and non-Lambertian surfaces. The Lambertian

surface may need a low sampling rate, while the non-Lambertian surface may need a high

sampling rate. Uniformly sampling the scene without concerning about the regional surface

property may easily cause over-sampling of the Lambertian surface or under-sampling of

the non-Lambertian surface.

In this chapter, we propose a new framework for sampling, namely the freeform sampling

framework. In contrast to the traditional uniform sampling approach, where samples have

to be taken according to a fixed sampling pattern, freeform sampling allows the sample

locations to be irregular or nonuniform. Such freedom may greatly improve the sampling

efficiency, which allows a signal to be reconstructed from much fewer samples.

74

75

6.1 The Freeform Sampling Problem

Consider a function in the form of y = f(x),x ∈ X, where X is the region of support

(ROS). Here x can be a variable, a vector, a matrix, or anything else that is meanful. For

example, in the scenario of IBR sampling, y is the light rays captured at x, where x may

include a 3D vector representing the camera position as well as a 2D vector representing

the directions of the light rays.

To find out what the unknown function f(x) is, one may take a set of samples in the

ROS X. Let the sample set be Xs ⊂ X. In freeform sampling, this sample set can be

irregularly distributed. The sample set values, denoted as f̃(Xs), may subject to some

noise n(Xs):

f̃(Xs) = f(Xs) + n(Xs). (6.1)

Given such a sample set and its values, the original signal can be reconstructed. For any

given x ∈ X, we denote the reconstructed signal value as:

f̂
(
x
∣∣∣(Xs, f̃(Xs)

)
,R

)
, (6.2)

where R is the reconstruction method. Notice that when we choose different reconstruction

methods, the above equation may present different results. In many cases, the reconstructed

signal may be different from the original function value, thus an error function e(x),x ∈ X

can be defined. The concrete form of the error function is user or application dependent.

For example, one possible error function is the squared error:

e(x) =

∥∥∥∥∥f(x)− f̂
(
x
∣∣∣(Xs, f̃(Xs)

)
,R

)∥∥∥∥∥
2

. (6.3)

The general freeform sampling problem can thus be defined as:

Definition 6.1.1. Given a function y = f(x),x ∈ X, which is either known or unknown,

find a set of sample locations Xs ⊂ X, such that the reconstruction of y from the sample

set Xs using method R meets certain error requirement Q
(
e(x)

)
on a reconstruction set

Xr ⊆ X.

76

x

)(xf

LL
x

δ<

ε<

True function
Reconstructed function from samples

Figure 6.1: Illustration of Condition 6.1.2 with a 1D example.

Xr can be the whole ROS X or a subset of it. This error requirement is again user or

application dependent. For instance, we may let Q
(
e(x)

)
be:

e
(
x
∣∣∣(Xs, f̃(Xs)

)
,R

)
< ε,∀x ∈ Xr, (6.4)

in which case we know that the reconstruction error in the reconstruction sample set should

be bounded by ε.

The definition of freeform sampling above differs from the traditional uniform sampling

problem in many ways. First and most distinguishably, the sample set Xs is in freeform

instead of being uniformly distributed. Second, we consider the reconstruction method as

an important factor which will affect the sampling process, because different reconstruction

methods may produce different reconstructions. Third, when we take the sample, there is a

noise term. In practice, observations always have noises, and these noises cannot be easily

eliminated. Lastly, we introduce the reconstruction sample set Xr. If Xr 6= X, the best

sampling strategy can also be set Xr dependent. This inspires our view-dependent freeform

sampling of IBR in Section 7.3.1.

Another important thing to notice, is that given the reconstruction method, since in-

finitely many functions can have the same value on a sample set Xs and meet the error

requirement, the above sampling problem is meaningful only by adding constraints on f(x).

In the traditional uniform sampling theory, a common constraint is that f(x) has band-

limited Fourier spectrum [143, 3]. That is, the Fourier transform of f(x) is non-zero only

77

on a finite support. As Fourier transform does not maintain any local information in the

spacial domain, such a constraint is not suitable for freeform sampling. Instead, we propose

to use local constraints to limit the solution space. More specifically, we constrain that:

Condition 6.1.2. ∀ε,x ∈ Xr, ∃δ, such that as long as d
(
x,ΦN (x)

)
< δ, Q

(
e(x)

)
is

satisfied.

Here ΦN (x) ⊂ Xs is the nearest N neighbors of x in Xs. d
(
x,ΦN (x)

)
is the maximum

distance from x to these neighbors:

d
(
x,ΦN (x)

)
= max

xs
i∈ΦN (x)

‖x− xs
i‖ (6.5)

The neighborhood size N is often application dependent. The above condition is illustrated

with a 1D example in Figure 6.1. In this example N = 3. Condition 6.1.2 states that as

long as the maximum distance from a reconstruction sample x to its 3 closest neighboring

samples is less than a threshold δ, the reconstructed function value is guaranteed to have

an error less than ε.

The above condition implies that the local variation of function f(x) is limited. If we

sample the signal at a sampling density that is high enough, we are guaranteed to satisfy

the sampling error requirement. On the other hand, it is permissible to take samples at

a lower density, as long as the error requirement is fulfilled. This gives us the freedom of

performing nonuniform sampling of the signal.

6.2 Solutions of the Freeform Sampling Problem

Depending on the application scenario, solutions to the above freeform sampling problem

can in general be classified into three categories: decremental sampling, incremental sam-

pling and rearranged sampling.

6.2.1 Decremental sampling

In decremental sampling, we assume there is already a dense set of samples available that

fulfills the error requirement. This sample set might be too large, thus decremental sampling

78

Initial dense
samples

Any sample can be
decimated?

No

Yes

Decimate that
sample

Exit

Figure 6.2: The flow of decremental sampling.

can be used to reduce the size, yet still keep the error within the requirement. Figure 6.2

shows the general flow of decremental sampling. Starting with the dense set of samples,

decremental sampling first identifies which sample can be removed without having problem

with the error requirement. If such sample exists, it decimates this sample, and continue

with the next one. Otherwise, it exits.

One example of decremental sampling is the JPEG image compression standard [108].

In JPEG, blocks of images are first transformed by DCT, followed by quantization and

entropy coding. Only the DCT coefficients that are non-zero after quantization will be coded

into the bitstream, and all the other coefficients will be decimated. In this example, the

reconstruction set is all the DCT coefficients, and the sample set is the remained coefficients

after quantization (quantization introduces sample noise here). The error requirement is

that the difference between the reconstructed DCT coefficients and the original ones are

less than the quantization step size. Therefore this is a decremental sampling scheme in the

DCT domain. Similar ideas have been widely used in the compression of video [92], mesh

model [46, 68], Lumigraph [163], etc.

In more general sense, feature selection is another example. In pattern classification,

one often need to reduce the dimension of the feature vector in order to avoid the curse of

dimensionality [30] or to integrate prior knowledge. For instance, in face recognition, the

well-known eigenface approach [142] obtained a low dimensional feature vector from face

79

Initial sampling or
prior knowledge

Reconstruction error
verification

Stopping criterion
met?

Yes

Exit

No

Sample the
next data

Figure 6.3: The flow of incremental sampling.

images which may have thousands of pixels through principle component analysis (PCA).

The selection of eigenfaces is a process of decremental sampling in the sense that after PCA

it only keeps several dominate eigenvectors.

6.2.2 Incremental sampling

In incremental sampling, the samples are taken one by one incrementally. The stopping cri-

terion is either a limit on the overall number of samples one can take, or an error requirement

that the sampling process must achieve.

As shown in Figure 6.3, the general flow of incremental sampling starts with an initial

sampling, which might be uniform or random following a certain prior probability distribu-

tion. This initial sampling may also be skipped if other prior knowledge is available. Given

the set of initial samples or prior knowledge, it then verifies the reconstruction error on the

reconstruction sample set. If the error requirement is not met on some of the reconstruction

samples, more samples will be taken in the next step to improve the reconstruction of these

samples. This process loops until the error requirement is met or the maximum allowable

samples have been taken.

In the recent wavelet based image compression algorithms such as the SPIHT algorithm

80

Sample the
signal

Measure
errors

Determine
new sample

locations

Figure 6.4: The flow of rearranged sampling.

[118] and the new JPEG 2000 standard [137], the wavelet coefficients are encoded bitplane

by bitplane. Therefore, coefficients with greater magnitudes will be sampled first, and those

with smaller magnitudes will be encoded later. This can be considered as an incremental

sampling scheme which samples important coefficients first and tries to minimize the energy

difference between the original image and the encoded one. A nice property of incremental

sampling is that one can stop at any time during the sampling process, thus here the

compressed bitstream is embedded or scalable.

6.2.3 Rearranged sampling

In rearranged sampling, the total number of samples is limited. The goal of rearranged

sampling is to position these samples at their best locations, such that certain accumulated

reconstruction error is minimized on the reconstruction sample set, or the reconstruction

error satisfies a given condition.

The flow of rearranged sampling is shown in Figure 6.4. Again we start with sampling

the signal. Given the sampled data, the error of the reconstruction sample set is analyzed.

After such analysis, rearranged sampling identifies a new set of sample locations which may

possibly reduce the accumulated reconstruction error or cause the error to fit better to the

given distribution. It then samples the data at these new locations, which completes a loop.

For a static signal, the above loop repeats until the sample locations do not change any

more, which results in the most critical set of samples that can be used to represent the

81

whole signal. For a dynamic signal, the above loop repeats until the end of the capturing,

which ought to provide better reconstruction quality than a passive sampling approach.

Obviously, for dynamic signals, the relocation of the samples should be faster than the

signal changes, such that it is reasonable to use the error analysis performed for the last

sampling to determine the new sample locations.

Vector quantization (VQ) can be considered as a very good example of rearranged

sampling. The goal of VQ is to represent a large set of data points with a small set

of codewords. Therefore the codewords form the sample set, the large data set is the

reconstruction set. The reconstruction method is to use the nearest codewords to represent

the points in the reconstruction set. The error requirement is that such reconstruction

has minimum accumulated error. Furthermore, the popular LBG algorithm [73], which is

an iterative algorithm to solve VQ, matches very well with the general flow of rearranged

sampling in Figure 6.4. One thing to mention is, depending on the initialization, the LBG

algorithm may be trapped in local minimum during the iteration, so do all the other VQ

algorithms. Therefore, rearranged sampling in general may not always achieve the optimal

result due to such inherent problems, but it still has a fairly large chance to beat a fixed

sampling pattern strategy such as uniform sampling, if the initialization is reasonable.

6.3 Active Sampling

In the examples we presented in the last section, we know the function values on the recon-

struction set. For example, in image compression, the original image (or its transformed

version) is the reconstruction set and we know it before sampling. This allows us to easily

calculate the reconstruction error given any sample set, and verify if the reconstruction error

fulfills the error requirement. Unfortunately, in some other applications (see later in this

section for examples), the function values on the reconstruction set is unknown. Therefore

to perform freeform sampling, one must estimate what is the reconstruction error and guess

if the error requirement has been fulfilled. Such prediction can only be performed based on

samples that have been taken and certain prior knowledge one might have. We term this

82

kind of freeform sampling strategy as active sampling. The general solutions of incremental

sampling and rearranged sampling is still valid in active sampling. Decremental sampling,

however, is not applicable any more because we do not have the starting dense sample set.

Despite the difficulty in estimating the reconstruction errors, active sampling have been

used in several applications in the literature. There are some shared characteristics of

these applications. First, the to-be-sampled function is often unpredictable, thus no fixed

sampling pattern can be used to guarantee that the error requirement will be fulfilled, unless

a very dense sampling is used. Second, taking a sample in these applications is often very

expensive or time consuming. To save the cost or to speed up the sampling process while

still fulfilling the error requirement, active sampling becomes the best choice. Below we list

some of these application that employs active sampling.

Next best view In automated surface acquisition, using range sensors to obtain the

object surface is a labor intensive and time-consuming task. Moreover, no fixed sampling

pattern can be used because the captured objects often have irregular shape. The main

purpose of the next best view (NBV) algorithm is to ensure that all scannable surfaces of

an object will be scanned, and determine when to stop scanning [110, 116]. Incremental

sampling was used in NBV, where one often determines the next sampling position based on

the 3D geometry reconstructed and merged from the previous samples. The error function

predicted is usually the holes exhibited in the current geometric model.

Active learning For many types of machine learning algorithms, one can find the statis-

tically “optimal” way to select the training data. The pursuing of the “optimal” way by the

machine itself was referred to as active learning [21, 58, 44]. For example, a classification

machine may determine the next training data as the one that is most difficult for it to

classify. Notice in this application, the sample set is the training data, the reconstruction

set is the objects in the whole database (or maybe some cross-validation set), the value of

each sample is the label of classification. The error function is predicted as the certainty of

the classification. Recently active learning has been applied to the annotation of database

83

for retrieval [157], which can save a lot of human laboring or annotation.

Motion estimation Motion estimation is an important component in modern video com-

pression algorithms [92]. A full search of the motion vector can provide the best motion

vectors, but it may be too slow. Various other search algorithms have been proposed, among

them the most famous ones are such as the three-step search (TSS) [57] and the four-step

search (FSS) [60] algorithms. These searching algorithms first measure the matching error

for a subset of possible motion vectors. Only the ones that are promising to be the true

motion vector will be refined (more motion vectors will be tested around them and the

best one among the tested will be chosen as the final result). This is a good example of

sampling—analyzing—sampling loop in incremental sampling.

6.4 The Proposed Algorithms for Active Sampling

When the values of the reconstruction set are known, one can easily measure the reconstruc-

tion error, thus the performance of freeform sampling can be largely guaranteed. However,

in active sampling such reconstruction error must be estimated. The key to the success of

active sampling thus lies in how good we can perform such error prediction.

Since the form of reconstruction error varies from application to application, it is gener-

ally not possible to present an algorithm that is suitable to all applications. In this section,

we make certain assumptions about the applications and present some algorithms that are

widely applicable, particularly for the case of image-based rendering.

6.4.1 Active Incremental Sampling

We first add some structure to the incremental sampling process. Assume neighboring

samples in the sample set can be organized into cliques, as shown in Figure 6.5. Here we

give three representative cliques: rectangle, triangle and sample pair. As samples in the

same clique are close to each other, we assume their sample values should share certain

local property. If, for some reason, we believe the local property is not fulfilled, we shall

84

(i-a)

(ii-a)

(iii-a)

(i-b)

(ii-b)

(iii-b)

Figure 6.5: Cliques and their subdivision. (i) rectangle; (ii) triangle; (iii) sample pair; (a)
original clique; (b) subdivided clique.

increase the sampling rate by subdividing the clique to smaller ones, as shown in Figure

6.5(b). This incremental sampling structure naturally leads to nonuniform sampling of the

sampled signal. Notice in the above incremental sampling procedure, the local property of

the cliques is the key in determining the final sample set. As in active sampling, the final

goal is to fulfill the error requirement on the reconstruction set, we shall associate the local

property of cliques with the reconstruction method and the reconstruction set.

In many practical applications, it is preferable to have a reconstruction method that is

simple, so that the reconstruction can be performed in real time. Here simplicity is two-fold.

First, if the function value at a certain location is reconstructed, only a few samples nearby

will be involved. Second, the algorithm used for reconstruction is often as simple as some

weighted interpolation of the nearby samples. The assumption behind such a reconstruction

method, is that albeit a signal can vary violently in large scale, within a small neighborhood

it should change slowly.

85

Initial sampling or
prior knowledge

Calculate local
consistency score

for each clique

Stopping criterion
met?

Yes

Exit

No

Subdivide the
clique with the
lowest score

Figure 6.6: The flow of active incremental sampling.

Under the same assumption above, we hereby claim the following local consistency prin-

ciple for active sampling:

Principle 6.4.1. Given a to-be-reconstructed sample location, the consistency of the sample

values of the nearby samples may serve as a good indicator of its reconstruction error.

In particular, the consistency of the sample values in a clique may be used to determine

whether it should be subdivided or not. Several things should be noticed in the above

principle. First, the concrete form of local consistency between samples may still vary

from application to application. Second, the above principle applies only when some to-be-

reconstructed sample location is given. If a clique of samples is never used in reconstructing

any samples in the reconstruction set, it shall never be subdivided no matter how inconsis-

tent they are. Third, although the local consistency is a good indicator, it cannot be 100%

accurate due to the spacing between samples and the sample noise introduced in Equa-

tion 6.1. Therefore, the sample noise and the size of the clique should both be considered

while measuring the local consistency. For instance, The accuracy often improves when the

samples in the clique get closer.

We therefore detail the flow chart of incremental sampling in Figure 6.3 with the clique

86

sampling structure and the local consistency principle above in Figure 6.6. After the initial

sampling, we calculate for each clique its local consistency score. Afterwards, we test if any

stopping criterion has been met, e.g., if we have reached the specified maximum number of

samples, or if all the cliques have score higher than a certain threshold. If such stopping

criterion is not met, we subdivide the clique with the lowest score. This at least helps in

reducing the worst case error if the local consistency reflects the error well enough.

6.4.2 Active Rearranged Sampling

In rearranged sampling, the number of samples in the sample set is fixed. One must move

these samples so that certain error requirement is fulfilled on the reconstruction set. For

instance, one may require that the accumulated reconstruction error be minimized, or that

the worst reconstruction error be minimized. In both cases, rearranged sampling can be

solved using a technique similar to vector quantization.

Assume at a certain instance, we have captured a set of samples in the sample set. The

reconstruction errors of the samples in the reconstruction set can thus be estimated by the

local consistency principle. Samples with lower consistency scores may have larger recon-

struction error, thus some sample set samples should move toward them to form a denser

sampling. In contrast, if some reconstruction set samples have high consistency scores,

the sample set samples could be relocated away from them to form a sparser sampling.

The final result of such rearrangement is to have the reconstruction error close to uniform

everywhere.

Depending on the distribution of the local consistency scores of the reconstruction set

samples, we discuss two algorithms for active rearranged sampling: local rearrangement

and global rearrangement.

In local rearrangement, we assume that the local consistency scores of the reconstruction

set samples have been close to uniform. Only small local adjustments need to be performed

on the sample set. The movement of the sample set samples resembles the movement of the

centroids in the LBG vector quantization algorithm [73]. That is, for each sample in the

87

sample set, we consider all the samples in the reconstruction set that treat it as one of their

neighboring samples. The local consistency scores of them will determine the new location

of that sample set sample.

Sometimes when we give an initial sampling in rearranged sampling, the local consistency

scores may vary a lot. It may take the above local rearrangement algorithm quite a while

to converge to some result that is reasonable. To avoid such situation, we may choose

to perform a global rearrangement. Essentially, a global rearrangement is a recast of the

samples in the sample set by considering both their current position and the local consistency

score distribution. Unlike the local rearrangement algorithm above, where samples in the

sample set often move with small size steps, a global rearrangement algorithm may move

some samples dramatically just to increase the sampling density at certain regions that are

highly inconsistent.

6.5 Summary

In this chapter, we have presented a framework for freeform sampling and active sampling.

Freeform sampling, as the name implies, allows the sample locations to be distributed in

freeform instead of a regular uniform pattern. This gives us the possibility to efficiently

sample signals that are highly complex or non-stationary, which may save many samples

from the traditional uniform sampling. The freeform sampling approaches are often based

on measuring the reconstruction errors of samples in a given reconstruction set. If such

error measuring is not available, active sampling takes the place, which performs freeform

sampling using estimated errors. We described several active sampling algorithm, which

often aim at reducing the worst case reconstruction errors. In the next chapter, we will show

several examples in applying active sampling to the application of image-based rendering.

Chapter 7

Active Sampling: Applications in
IBR

In this chapter we will apply the active sampling framework in Chapter 6 for image-based

rendering. We first discuss the local consistency score of IBR applications in Section 7.1.

We then discuss both active incremental sampling and active rearranged sampling in various

IBR applications, such as the light field and the concentric mosaics. We show that active

sampling outperforms uniform sampling in all the scenes we tested.

7.1 The Local Consistency Score

The key to active sampling, is how to define the local consistency score for estimating

the reconstruction errors. We mentioned that such consistency score should be related to

the reconstruction method, the reconstruction set, the sample noise, and the confidence of

applying the consistency measure as the reconstruction error, etc.

The most widely used reconstruction method in IBR is through weighted interpolation

of nearby captured light rays [66, 128, 11]. In [11], eight goals were proposed for IBR,

which led to a weighted interpolation algorithm that considers angular difference, resolution

sensitivity and field of view (FOV). As shown in Figure 7.1, let OP be a light ray to be

rendered. Cameras C1, C2, · · · , CK are the K nearest cameras to that light ray in terms

of their angular difference to OP , which are denoted as α1, α2, · · · , αK . Typically K = 4

88

89

Virtual view

Capturing viewsC1

C2
CK

1α

2α

P

O

...

Figure 7.1: Interpolation weight calculation using angular difference.

is good enough. Light rays CkP, k = 1, 2, · · · ,K will then be used to interpolate OP . We

define the weight for angular difference as:

wang
k =

1
ε + αk

, k = 1, 2, · · · ,K (7.1)

where ε is a small number (e.g., 10−10) to avoid division by zero. If the 3D point P projects

to image captured by Ck as (xk, yk), the weight for FOV wfov
k , k = 1, 2, · · · ,K is defined as 1

if (xk, yk) is inside the FOV, and 0 if it’s outside. A narrow region is defined along the FOV

boundary to create a smooth transition from 1 to 0. In our current implementations, since

the capturing cameras basically lie on a circle as in the concentric mosaics or a plane as in the

light field, the weight for resolution can be ignored and fixed as wres
k ≡ 1, k = 1, 2, · · · ,K.

The overall weight for the light ray CkP is the multiplication of the three factors:

wk = wang
k × wfov

k × wres
k , k = 1, 2, · · · ,K. (7.2)

These weights are then normalized to make sure they sum up to 1 for a given light ray OP .

Although our weight definition is different from that in [11], which used a penalty-based

weighting scheme, our experiments show that the rendering quality is not sensitive to how

the weights are specified, as long as it satisfies the other more basic requirements such as

continuity and epipole consistency [11].

The local consistency score of the light rays CkP, k = 1, 2, · · · ,K can be defined in

various ways [126, 10]. Let their color intensity be lk, k = 1, 2, · · · ,K. The simplest yet

90

Virtual view

Capturing views

C1

C2
CK

O

...

P
Non-Lambertian

surface

Virtual view

Capturing views

C1

C2
CK

O

...

P

Virtual view

Capturing views
C2

CK

O

...

P

C1

True geometry

Assumed geometry

(a) (b) (c)

Figure 7.2: Cases that will cause a low local consistency score. (a) Non-Lambertian surface;
(b) occlusions; (c) inaccurate geometry.

widely used technique is to make use of their intensity variance σ:

C =
1
σ

, where σ =

√√√√ 1
K

K∑
k=1

(lk − l)2, (7.3)

here l = 1
K

∑K
k=1 lk is the average intensity of lk’s. The above measure essentially as-

sumes the surface is Lambertian and not occluded, and reflects the likelihood of the light

ray intensities being independent and identical Gaussian distribution as a stochastic vari-

able. On the other hand, under several situations one will obtain a low consistency score:

non-Lambertian surface, occluded objects or inaccurate geometry, as shown in Figure 7.2.

According to the uniform sampling theory in Chapter 4, all these cases in fact requires a

sampling rate that is higher than normal. In active sampling, regions with low consistency

score implies higher reconstruction error and will be sampled denser, thus it is consistent

with the previous conclusions.

If one particular light ray’s reconstruction error is concerned, such as the light ray OP

in Figure 7.1, we may apply a slightly modified variation assuming the sensor noise is

negligible:

C =
1
σ′ , where σ′ =

√√√√ K∑
k=1

wk(lk − l
′)2, (7.4)

here l
′ =

∑K
k=1 wklk is the weighted average intensity. Notice the wk’s should have been

normalized to sum to 1. Compared with the standard variance definition in Equation 7.3,

91

the above weighted variation takes the reconstruction method into consideration, and may

better reflect the actual interpolation quality of the given light ray for non-Lambertian or

occluded objects.

The confidence of applying the consistency measure as the reconstruction error is the

most difficult thing to integrate into active sampling. It requires certain prior knowledge

about the sampled signal. Our solution is to adjust the consistency score obtained in

Equation 7.3 and 7.4 with a penalty multiplication factor f(α), where α can be the average

angular difference α = 1
K

∑K
k=1 αk. The larger the α, the smaller the multiplication factor

f(α), the lower the resultant consistency score. f(α) can be considered as a tuning factor

which prevents the active sampling from being too aggressive at some local region, thus

increases the robustness of active sampling. It can also be thought of as determining the

tradeoff between uniform sampling and active sampling, because if f(α) gives too much

penalty for large α, the final sampling result will tend to have the same α everywhere,

which becomes uniform sampling. In the following discussions, we will not worry about the

above problem and show only the raw performance of active sampling.

7.2 IBR Active Incremental Sampling

In this section, we apply active incremental sampling on IBR. We will use the light field

and the concentric mosaics as examples.

7.2.1 Active incremental sampling for the light field

In the original light field setup [66], the cameras are positioned on a regular grid of the

camera plane. For active sampling, we still assume that the cameras are on the camera

plane, but they can be arranged non-uniformly. As shown in Figure 7.3, assume that the

capturing cameras are within a rectangular range determined by (0, 0) and (smax, tmax). We

initialize the active capturing process by a reasonably dense uniform sampling. We use the

rectangular clique in Figure 6.5(i) for the subdivision process. That is, each time when we

capture some new images, we subdivide one of the cliques into four. In the example shown in

92

s

t

Subdivide

Clique

tmax

smax

0

: Newly captured images during the subdivision

Figure 7.3: Active incremental sampling for the light field setup.

Figure 7.3, five new images are taken during the subdivision. It is always the clique that has

the lowest accumulated consistency score of all the corresponding light rays (Equation 7.3)

is subdivided, thus in this example we improve the worst case rendering quality through

active sampling. The sampling process recursively performs the above subdivision until

certain limit on the number of images is reached or the local consistency scores of all the

cliques have been smaller than a given threshold.

The above active incremental sampling strategy is tested on a synthetic scene Earth,

as shown in Figure 7.4(a). Earth is a near-Lambertian scene, whose geometry is known

and represented as a 96×96×64 volumetric model. We initialize our active incremental

sampling algorithm by 7×7 uniform sampling, and the overall number of images is limited

to be less than or equal to 169. The result is compared to a 13×13 uniform sampling

approach. Figure 7.4(b) shows the final camera arrangements on the camera plane using

active incremental sampling. For comparison, (c) shows that of uniform sampling. Each

dot represents a camera being there and taking one image. It can be observed that active

incremental sampling puts more cameras at the top-right portion of the camera plane.

Figure 7.4(d) is an example view captured in active incremental sampling (red circled in

(b)). Uniform sampling did not sample that view. Figure 7.4 (e) is what can be rendered

from the sampled images in uniform sampling. As a comparison, Figure 7.4 (f) is a view

captured in uniform sampling (red circled in (c)). It is not captured in active incremental

sampling but can be rendered as (g). Obviously we would prefer to sample (d) instead of

93

(a) (b) (c)

(d) (e)

(f) (g)

Figure 7.4: Active incremental sampling of a light field Earth. (a) A snapshot of the Earth
scene; (b) camera map using active incremental sampling; (c) camera map using uniform
sampling; (d) an image captured by active incremental sampling, but not by uniform sam-
pling; (e) rendered image of the same image in (d) from uniform sampling; (f) an image
captured by uniform sampling but not by active incremental sampling; (g) rendered image
of the same image in (f) from active incremental sampling.

94

Table 7.1: Performance comparison between uniform sampling and active incremental sam-
pling on light field scene Earth.

Uniform sampling Active incremental sampling
Avg. PSNR of 30 worst center views 32.8dB 33.2dB
PSNR Var. of 1000 rendered images 3.14dB 2.61dB

(f) because the quality degradation from (d) to (e) is more obvious than that from (f) to

(g). Therefore active incremental sampling has made the right decision.

To measure the improvement of active incremental sampling over the uniformly sampled

light field, we employ two objective measures. The first is the worst-case quality. From the

cliques formed by both approaches, we render the virtual views at their centers. As the

center views are the farthest from the sampled images, most likely they will have the worst

quality. Our first measure is the average peak signal-to-noise ratio (PSNR) of the worst 30

center views. Notice that we are able to measure the PSNRs because we are using synthetic

scenes and we have the real rendered images as our ground-truth. The second measure is

the PSNR variance of rendered images. We randomly render 1000 images on the camera

plane and measure the variance of the PSNRs. The results are shown in Table 7.1. It can

be observed that active IBR has a better worst-case quality and a smaller variance, which

is what we expected by performing active sampling.

We may also perform active incremental sampling with triangle cliques, as was shown

in Figure 6.5(ii). The independent work by Schirmacher et al. [121] was such an example

despite some difference in detailed implementation. The same technique may also be applied

for spherical light field [47] if the cliques are defined on the spherical surface.

7.2.2 Active incremental sampling for the concentric mosaics

In concentric mosaics, the cameras are arranged on a circle. Here we present the active

incremental sampling for a inward-looking concentric mosaics1, as shown in Figure 7.5.

The sample pair subdivision structure of Figure 6.5(iii) is adopted, as shown in Figure

7.5(b).
1Sometimes this is also referred as orbital motion in computer vision.

95

Subdivide

Object Object

Camera path Camera path

(a) (b)

Figure 7.5: Active incremental sampling for the concentric mosaics setup.

(i-a) (i-b)

(ii-a) (ii-b)

Figure 7.6: Concentric mosaics scenes: (i) Reflective cone; (ii) Hemisphere bowl; (a) scene
snapshot; (b) used scene geometry.

96

The above algorithm is applied on two synthetic scenes: the Reflective cone (RC) and

the Hemisphere bowl (HB), whose snapshots are shown in Figure 7.6. In the RC scene, we

assume that the geometry model of the scene is known, as in Figure 7.6(i-b). A reflective

cone is positioned at the center of the scene, which requires more samples than usual objects

as it is highly non-Lambertian (Chapter 4). The HB scene is a hollow hemisphere similar

to a bowl. We assume that we do not have its true geometric model, but only its visual hull

[61], as in Figure 7.6(ii-b). This example is to show that more samples should be placed at

the side where the geometry is wrong, as will be done by active sampling.

We first apply both active incremental sampling and uniform sampling on the scene RC.

The number of overall images is constrained to be 96. In active incremental sampling, 24

images are used as the initial set that are uniformly sampled. The experimental results are

shown in Figure 7.7. Figure 7.7(a) and (b) show the camera distribution of active incre-

mental sampling and uniform sampling. Each small yellow sphere represents the camera

position of a certain captured image. The front side towards the reader corresponds to view

positions that can see the reflective cone. It is obvious that active incremental sampling

puts a lot more effort on this side. Figure 7.7(c) and (d) are the variance of all the corre-

sponding light rays between neighboring images (σ in Equation 7.3). The horizontal axis is

the captured camera’s view direction; the vertical axis is the variance. Figure 7.7(c) corre-

sponds to active incremental sampling; (d) corresponds to uniform sampling. Despite the

fact that the subdivision of the angles is non-uniform in Figure 7.7(c), active incremental

sampling has more uniform variance, which can be translated to more uniform rendering

image quality. Figure 7.7(e) and (f) show the rendering results of a certain view position

where active incremental sampling to sample a lot more than uniform sampling. Notice the

double edge in (f) does not show up in (e). Figure 7.7(g) and (h) show the rendering results

of another view position where active incremental sampling captured much less images than

uniform. No noticeable difference can be observed from these two images.

The scene HB is also captured with 96 images. Active incremental sampling uses 24

images as initialization. The results are shown in Figure 7.8. Active incremental sampling

in this example decided to capture more images on the side where the geometry information

97

(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 7.7: Active incremental sampling results on concentric mosaics scene RC. (a) Camera
distribution for active incremental sampling; (b) camera distribution for uniform sampling;
(c) the local inconsistency scores (variance) after active incremental sampling; (d) the local
inconsistency scores after uniform sampling; (e)(g) rendering result for active incremental
sampling. (f)(h) Rendering result for uniform sampling.

was wrong. Notice the final variance distribution of uniform sampling in Figure 7.8(d) vary

much more than that of (c). From Figure 7.8(e) and (f), we see the ghosting effect in the

uniform sampling rendered image is greatly reduced in active incremental sampling. On

the other hand, less samples on the other side does not cause any quality degradation, as

shown in Figure 7.8(g) and (h).

To give more insights on why the sample images should be nonuniformly arranged for

the above two scenes, we show some of their EPIs in Figure 7.9. Figure 7.9 (a) and (b)

98

(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 7.8: Active incremental sampling results on concentric mosaics scene HB. (a) Camera
distribution for active incremental sampling; (b) camera distribution for uniform sampling;
(c) the local inconsistency scores (variance) after active incremental sampling; (d) the local
inconsistency scores after uniform sampling; (e)(g) rendering result for active incremental
sampling. (f)(h) Rendering result for uniform sampling.

show the RC scene and one of its EPIs that cross the reflective cone. Figure 7.9 (c) and (d)

are almost the same scene but the cone is non-reflective. As we are performing geometry-

assisted rendering, the edge directions in (d) can tell what are the interpolation directions

during the rendering. However, when the cone is reflective, the edge directions in (b) is

very different from (d), which results in a bad reconstruction. In the back side of the

scene, however, the edge directions are the same, so not much samples are needed. Figure

7.9 (e) and (f) are about the HB scene. Figure 7.9 (g) and (h) are a hemisphere scene,

99

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.9: Comparison of EPIs for different scenes. (a) The RC scene; (b) EPI of (a) (row
140), which includes the cone; (c) same scene as (a) but the cone is not reflective; (d) EPI
of (c) (row 140); (e) the HB scene; (f) EPI of (a) (row 130, which is about the center row);
(g) a hemisphere scene; (h) EPI of (g) (row 130).

thus the geometry in Figure 7.6 (ii-b) is a perfect match with the scene content. The edge

directions of Figure 7.9 (h) thus imply the interpolation directions when using a hemisphere

as the rendering geometry. Obviously the edge directions in Figure 7.9 (f) is very different

from (h), particularly at the left-most and right-most of the EPI, which suggests a higher

sampling rate there.

7.3 IBR Active Rearranged Sampling

Active rearranged sampling is applicable when the overall number of images one can keep

is limited. We again apply it to both the light field and the concentric mosaics. Recall in

100

Section 6.4.2 we mentioned that there are two algorithms for active rearranged sampling—

local rearrangement and global rearrangement. As local rearrangement is generally slow,

we focus on global rearrangement in this section. A local rearrangement algorithm will be

presented in Section 8 for our mobile camera array.

7.3.1 Active rearranged sampling for the light field

Similar to Section 7.2.1, in this study we assume the capturing cameras are arranged on

the camera plane, and they can freely move around. We assume that there are altogether

N cameras on the camera plane. The goal of active rearranged sampling is thus to arrange

these N cameras such that the reconstructed virtual views have higher worst-case quality

and smaller quality jittering, as was done through active incremental sampling in Section

7.2.1. This problem is not difficult to solve using the general strategy presented in Section

6.4.2.

To show the full capability of freeform sampling and active sampling, here we make

some further assumptions and demonstrate the case where the reconstruction set becomes

a subset of the whole plenoptic function. We assume during the camera rearrangement

there are P viewers who are watching the scene. The goal changes to arranging these N

cameras such that the P views can be rendered at their best worst-case quality. Notice

that with this assumption, the reconstruction set effectively changes to the light rays to be

synthesized in the P virtual views.

Figure 7.10 shows the setup of our example with a single virtual view (P = 1). The

capturing cameras are on the camera plane. The virtual view is at O. During the rendering,

we assume a certain rendering geometry, and interpolate each light ray (such as OP in

Figure 7.10) through its nearby captured views, as described in Section 7.1. Following

the discussion around Equation 7.4, we know the local consistency score of each light ray

can easily be calculated. In most cases these consistency scores will vary a lot if the initial

camera distribution is uniform or random. We next describe an algorithm to perform global

rearrangement of these capturing cameras.

101

Camera plane Rendering geometry

Capturing cameras

Rendering Camera
Neighboring images

for the light ray

A light ray to be
rendered

P

O

Figure 7.10: The setup of active rearranged sampling for the light field.

At time instance k, let the cameras’ positions on the camera plane be ck
j , j = 1, 2, · · · , N .

For the P views being rendered, we may split them into totally L light rays. Denote them

as li, i = 1, 2, · · · , L. The intersection of the light rays and the camera plane are denoted as

xi, i = 1, 2, · · · , L. Notice the distance from a camera position cj to a light ray intersection

xi is an indication of how close the camera is to the light ray. For each light ray, a local

consistency score can be calculated as Equation 7.4, denoted as Ck
i , i = 1, 2, · · · , L. The

problem is, given Ck
i and ck

j , if xi does not change, how we position the cameras at the

next time instance k +1, i.e., how to obtain ck+1
j , j = 1, 2, · · · , N , so that the virtual views’

worst case quality can be improved.

To solve the above problem, we introduce auxiliary weights on the light rays wk
i , i =

1, 2, · · · , L, which are normalized as
∑L

i=1 wk
i = 1. These weights represent how close the

corresponding light rays require their closest cameras to be. As a result, we determine the

camera positions at the next time instance k + 1 as2:{
ck+1

j , j = 1, · · · , N
}

= arg min
{cj ,j=1,··· ,N}

L∑
i=1

wk
i min

j=1,··· ,N
‖xi − cj‖ (7.5)

which is in the form of a weighted vector quantization (VQ) problem. Equation 7.5 tries
2This formulation was developed step-by-step in [162].

102

s

1

ξ

ς

ksksmin
ksmax

Scaling factor

Figure 7.11: Scaling factor for updating the auxiliary weights.

to find the set of camera positions at time instance k + 1, such that the sum of all the

(weighted) distances from the light ray intersections to their nearest capturing cameras

are minimized. The problem of updating the camera locations becomes the updating of

these auxiliary weights. Notice in the above minimization problem, the current camera

positions ck
j , j = 1, · · · , N is not explicitly involved. These positions and the captured

images at instance k are only used when calculating the color consistency of the light

rays and updating the auxiliary weights wk
i , i = 1, 2, · · · , L. If a certain light ray has a

bad reconstruction quality at instance k, its weight should be increased, so that after the

weighted VQ the cameras will move closer to that light ray, which will subsequently reduce

the distances from the light ray to the nearby cameras and increase the rendering quality

of that light ray; otherwise, its weight should be decreased. We thus associate the weight

updating with the local consistency scores. Let:

sk
i = − log Ck

i = log σ′k
i , (7.6)

where σ′k
i was defined in Equation 7.4. Let sk

min and sk
max be the minimum and maximum

value of sk
i , i = 1, · · · , L. sk be the average value of sk

i . The weight wk
i at time instance k

is updated from those wk−1
i at time instance k − 1 as:

wk
i =


[
1 + (ξ − 1) sk−sk

i

sk−sk
min

]
wk−1

i , sk
i ≤ sk;[

1 + (ζ − 1) sk
i −sk

sk
max−sk

]
wk−1

i , sk
i > sk.

(7.7)

where ξ and ζ are the minimum and maximum weight scaling factor. They are set as 0.5 and

103

4 respectively in the current implementation. The relationship between the scaling factor

and sk
i is plotted in Figure 7.11. It basically says that if the variance of the projections

to the neighboring images for a light ray is greater than the average (thus the local color

consistency is bad), its weight will be increased. In fact any scaling factor that satisfies this

condition can be employed here. During the weighted VQ, the camera positions will then

move closer to that light ray. Otherwise, the camera positions will move away. Notice that

after the weight update with Equation 7.7, one should normalize the new weights such that∑L
i=1 wk

i = 1. The initial values of the weights w0
i , i = 1, 2, · · · , L can be rather arbitrary,

as it will not affect too much after the second round of updating. For example, we may

simply set:

w0
i =

1
L

, i = 1, 2, · · · , L. (7.8)

After the weights have been updated, we solve the weighted VQ problem in Equation 7.5

using a slightly modified LBG algorithm [73], which is based on the following two criteria:

1. Nearest neighbor condition:

xi ∈ Rj , if ‖xi − cj‖ ≤ ‖xi − cj′‖,∀j′ = 1, · · · , N (7.9)

where Rj is the neighborhood region of centroid cj .

2. Centroid condition:

cj =

∑
xi∈Rj

wixi∑
xi∈Rj

wi
, j = 1, · · · , N (7.10)

The above weighted VQ algorithm iteratively applies Equation 7.9 and Equation 7.10 to

find the solution of Equation 7.5. The initial centroid cj of the above algorithm can either

be the current camera positions or a random set. In fact to avoid local minimum solution,

multiple initial positions can be tried and the best result can be selected. Notice that during

the weighted VQ, the capturing cameras do not need to move until we obtain the converged

solution of the centroids.

We verify the effectiveness of the proposed active rearranged sampling algorithm with a

static synthetic scene, as shown in Figure 7.12. The scene is named Teapot and is captured

by 64 cameras. A single virtual view is used whose position is off the camera plane. In

104

(i-a) (i-b) (ii-a) (ii-b)

(i-c) (i-d) (ii-c) (ii-d)

(i-e) (i-f) (ii-e) (ii-f)

Figure 7.12: Active rearranged sampling results of a light field Teapot. (i) View rendered
with the depth plane at its mouth; (ii) view rendered with the depth plane around the lid.
(a)(b) Uniform sampling and its camera distribution. (c)(d) After one iteration of weighted
VQ and the corresponding camera distribution. (e)(f) After 3 iterations.

Figure 7.12(i-a), we use a constant depth plane at the teapot’s mouth as the rendering

geometry. The body and lid of the teapot are thus blurred due to the inaccurate geometry.

Figure 7.12(i-b) shows the projections of the cameras’ positions to the rendered view (red

dots). The white triangles are used during the rendering for texture mapping, however the

corner of the triangles have the same depth since we do not have the scene geometry. Figure

7.12(i-c) and (i-d) are the active rearranged sampling results after one iteration of weighted

VQ. The rendering quality improvement is very obvious. Notice that the camera positions

are moving towards the body and lid of the teapot, where the rendering quality was bad.

Figure 7.12(i-e) and (i-f) are the results after 3 iterations. More samples are around the

lid because that is the place that has the wrongest geometry. Figure 7.12(ii-a) to (ii-f) is

another set of results when the rendering depth is around the lid. Notice that the active

105

Object

Camera path

...
Rendering camera
Capturing camera

Densely arranged
rendering cameras

on the circle

Figure 7.13: The setup of active rearranged sampling for the concentric mosaics.

rearranged sampling scheme automatically moves the cameras to the regions of body and

mouth.

7.3.2 Active rearranged sampling for the concentric mosaics

Active rearranged sampling can be done for the concentric mosaics setup in a way very

similar to the algorithm we presented in Section 7.3.1. As shown in Figure 7.13, we assume

N capturing cameras are placed on a circle. We also assume there are P virtual views to be

rendered. These P views are uniformly distributed on the same circle. Here P can be very

large, so that the P views can be considered as a good approximation of the whole region

of support of the plenoptic function in concentric mosaics.

Active rearranged sampling for concentric mosaics is a one-dimensional problem. At

time instance k, let the camera positions be ck
j , j = 1, 2, · · · , N , and the P virtual views be

at xi, i = 1, 2, · · · , P , where ck
j and xi can both be angle in the unit of degree on the circle.

For each virtual view, an accumulated local consistency score can be calculated, similar to

that in Section 7.2.2. Denote them as Ck
i , i = 1, 2, · · · , P . The goal of active rearranged

sampling in this case is to arrange the N capturing cameras such that the P virtual views

have the best worse case quality.

This time we introduce a weight for each view, i.e., wk
i , i = 1, 2, · · · , P . The next

106

(a) (b)

Figure 7.14: Active rearranged sampling results of concentric mosaics scene Hemisphere
bowl. (a) Uniform sampling; (b) Active rearranged sampling after two iterations of weight
update.

positions of the cameras are obtained through:

ck+1
j = arg min

cj

P∑
i=1

wk
i min

j=1,··· ,N
|xi − cj | (7.11)

which is again a weighted vector quantization problem. Let:

sk
i = − log Ck

i , (7.12)

and we may again use Equation 7.7 to update the weights.

We tested the algorithm on the scene Hemisphere bowl in Figure 7.6(ii). The number of

capturing cameras is N = 96. Figure 7.14(b) shows the camera and error distribution after

two iterations of weight update in active rearranged sampling. Compared with the uniform

sampling results in Figure 7.14(a), the improvement is significant.

7.4 Summary

In this chapter, we demonstrated the applications of active sampling in image-based render-

ing. In either a light field setup or a concentric mosaics setup, active sampling outperforms

the traditional uniform sampling approach in terms of the worst case rendering quality. The

scenes we tested in this chapter are all synthetic scenes. In the next chapter, we present

a mobile camera array for capturing real-world scenes, and we will show more examples of

active sampling.

Chapter 8

The Self-Reconfigurable Camera
Array

In this chapter, we presents a self-reconfigurable camera array system, which captures video

sequences from an array of mobile cameras, renders novel views on the fly and reconfigures

the camera positions to achieve better rendering quality. Our system is composed of 48

cameras mounted on mobile platforms. Compared with the previous work reviewed in Sec-

tion 2.3.4, the contribution of our work is twofold. First, we propose an efficient algorithm

that is capable of rendering high-quality novel views from the captured images in real-time.

The algorithm involves the reconstruction of the scene geometry as an adaptive 2D mesh,

which is yet another example of active incremental sampling. Second, we present an active

rearranged sampling algorithm for the system, which moves the cameras in order to show

better rendering results.

Compared with a single moving camera which follows the viewer’s instruction and move

around, a camera array has the clear benefit that its captured images can be used by thou-

sands of viewers to view the scene simultaneously and from arbitrary view positions. In addi-

tion, the viewers are free to move their virtual viewpoint around without worrying about the

mechanical speed of the single moving camera. Our work also added self-reconfigurability

to the camera array, which can give a better rendering quality than a normal static camera

array, as shown later in this chapter.

107

108

Figure 8.1: Our self-reconfigurable camera array system with 48 cameras.

8.1 System Overview

8.1.1 Hardware

As shown in Figure 8.1, our self-reconfigurable camera array system is composed of inex-

pensive off-the-shelf components. There are 48 (8×6) Axis 205 network cameras placed on

6 linear guides. The linear guides are 1600 mm in length, thus the average distance between

cameras is about 200 mm. Vertically the cameras are 150 mm apart. They can capture up

to 640×480 pixel2 images at maximally 30 fps. The cameras have built-in HTTP servers,

which respond to HTTP requests and send out motion JPEG sequences. The JPEG image

quality is controllable. The cameras are connected to a central computer through 100Mbps

Ethernet cables.

The cameras are mounted on a mobile platform, as shown in Figure 8.2. Each camera

is attached to a pan servo, which is a standard servo capable of rotating for about 90

degrees. They are mounted on a platform, which is equipped with another sidestep servo.

The sidestep servo is a hacked one, and can rotate continuously. A gear wheel is attached

to the sidestep servo, which allows the platform to move horizontally with respect to the

linear guide. The gear rack is added to avoid slippery during the motion. The two servos

109

Figure 8.2: The mobile camera unit.

on each camera unit allow the camera to have two degrees of freedom—pan and sidestep.

However, the 12 cameras at the leftmost and rightmost columns have fixed positions and

can only pan.

The servos are controlled by the Mini SSC II servo controller [91]. Each controller

is in charge of no more than 8 servos (either standard servos or hacked ones). Multiple

controllers can be chained, thus up to 255 servos can be controlled simultaneously through

a single serial connection to a computer. In the current system, we use altogether 11 Mini

SSC II controllers to control 84 servos (48 pan servos, 36 sidestep servos).

Unlike any of the existing camera array systems mentioned in Section 2.3.4, our whole

system uses only one single computer. The computer is an Intel Xeon 2.4 GHz dual proces-

sor machine with 1GB of memory and a 32 MB NVIDIA Quadro2 EX graphics card. As

will be detailed in Section 8.3, our rendering algorithm is so efficient that the ROI identifica-

tion, JPEG image decompression and camera lens distortion correction, which were usually

performed with dedicated computers in previous systems, can all be conducted during the

rendering process for a camera array at our scale. On the other hand, it is not difficult

to modify our system and attribute ROI identification and image decoding to dedicated

computers, as was done in the MIT distributed light field camera [155].

Figure 8.3(a) shows a set of images about a static scene captured by our camera array.

The images are acquired at 320×240 pixel2. The JPEG compression quality is set to be

110

(a)

(b) (c)

(d) (e)

Figure 8.3: Images captured by our camera array. (a) All the images; (b–e) sample images
from selected cameras.

111

30 (0 being the best quality and 100 being the worst quality). Each compressed image

is about 12-18 Kbytes. In a 100 Mbps Ethernet connection, 48 cameras can send such

JPEG image sequences to the computer simultaneously at 15-20 fps, which is satisfactory.

Several problems can be spotted from these images. First, the cameras have severe lens

distortions, which have to be corrected during the rendering. Second, the colors of the

captured images have large variations. The Axis 205 camera does not have flexible lighting

control settings. We use the “fixed indoor” white balance and “automatic” exposure control

in our system. Third, the disparity between cameras is large. As will be shown later, using

constant depth assumption to render the scene will generate images with severe ghosting

artifacts. Finally, the captured images are noisy (Figure 8.3 (b)–(e)). Such noises are from

both the CCD sensors of the cameras and the JPEG image compression. These noises bring

extra challenges to the scene geometry reconstruction.

The Axis 205 cameras cannot be easily synchronized. We make sure that the rendering

process will always use the most recently arrived images at the computer for synthesis.

Currently we ignore the synchronization problem during the geometry reconstruction and

rendering, though it does cause problems while rendering fast moving objects, as might

have been observed in the submitted companion video files.

8.1.2 Software Architecture

The system software runs as two processes, one for capturing and the other for rendering.

The capturing process is responsible for sending requests to and receiving data from the

cameras. The received images (in JPEG compressed format) are directly copied to some

shared memory that both processes can access. The capturing process is often lightly loaded,

consuming about 20% of one of the processors in the computer. When the cameras start

to move, their external calibration parameters need to be calculated in real-time. Camera

calibration is also performed by the capturing process. As will be described in the next

section, calibration of the external parameters generally runs fast (150–180 fps).

112

Figure 8.4: Locate the feature corners of the calibration pattern.

The rendering process runs on the other processor. It is responsible for ROI identifica-

tion, JPEG decoding, lens distortion correction, scene geometry reconstruction and novel

view synthesis. Details about the rendering process will be described in Section 8.3.

8.2 Camera Calibration

Since our cameras are designed to be self-reconfigurable, calibration must be performed in

real-time. Fortunately, the internal parameters of the cameras do not change during their

motion, and can be calibrated offline. We use a large planar calibration pattern for the

calibration process (Figure 8.3). Bouguet’s calibration toolbox [9] is used to obtain the

internal camera parameters.

To calibrate the external parameters, we first need to extract the features on the checker-

board. We assume that the top two rows of feature points will never be blocked by the

foreground objects. The checkerboard boundary is located by searching for the red strips of

the board in the top region of the image. Once the left and right boundaries are identified

(as shown in Figure 8.4), we locate the top two rows of features by using a simple 5×5

113

linear filter:

h1 =


1 0 0 0 −1
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
−1 0 0 0 1

 (8.1)

If the output of the above filter has an absolute value larger than a threshold, it is considered

as a candidate feature location. After non-maximum suppression of the candidates, we

further use a 9×9 linear filter to confirm their validity:

h2 =



1 1 1 0 0 0 −1 −1 −1
1 1 1 0 0 0 −1 −1 −1
1 1 1 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 −1 −1 0 0 0 1 1 1
−1 −1 −1 0 0 0 1 1 1
−1 −1 −1 0 0 0 1 1 1


(8.2)

A feature is valid only if the result of filter h2 (absolute value) is also above a threshold. The

above algorithm assumes that the calibration pattern is almost frontal in all the captured

views. The thresholds of the two filters are chosen empirically.

The feature positions are then refined to sub-pixel accuracy by finding the saddle points,

as in [9]. The corners below the second row are then extracted row by row. At each row,

we predict the feature locations based on its previous two rows of features. The accurate

position of the features are then found through the same approach above. The results of

such feature extraction is shown in Figure 8.4. Notice that if the corner detector cannot

find a feature along a column for a certain row due to various reasons such as occlusions, it

will stop finding features below that row in that column.

Finally, to obtain the 6 external parameters (3 for rotation and 3 for translation) of

the cameras, we use the algorithm proposed by Zhang [165]. The Levenberg-Marquardt

method implemented in MinPack [93] is adopted for the nonlinear optimization. The above

calibration process runs very fast on our processor (150–180 fps at full speed). As long as

there are not too many cameras moving around simultaneously, we can perform calibration

114

Virtual
viewpoint

2D mesh on the
imaging plane 2D mesh with depth

= a restricted 3D mesh

Figure 8.5: The multi-resolution 2D mesh with depth information on its vertices.

on-the-fly during the camera movement. In the current implementation, we constrain that at

any instance at most one camera on each row can sidestep. After a camera has sidestepped,

it will pan if necessary in order to keep the calibration board in the middle of the captured

image.

8.3 Real-Time Rendering

8.3.1 Flow of the rendering algorithm

In this paper, we propose to reconstruct the geometry of the scene as a 2D multi-resolution

mesh (MRM) with depths on its vertices, as shown in Figure 8.5. The 2D mesh is positioned

on the imaging plane of the virtual view, thus the geometry is view-dependent (similar to

that in [156, 130, 82]). The MRM solution significantly reduces the amount of computation

spent on depth reconstruction, making it possible to be implemented efficiently in software.

The flow chart of the rendering algorithm is shown in Figure 8.6. A novel view is

rendered when there is an idle callback or the user moves the viewpoint. We first construct

an initial sparse and regular 2D mesh on the imaging plane of the virtual view, as is shown

in Figure 8.7. For each vertex of the initial 2D mesh, we first look for a subset of images

that will be used to interpolate its intensity during the rendering. Once such information

has been collected, it is easy to identify the ROIs of the captured images and decode them

when necessary. The depths of the vertices in the 2D mesh are then reconstructed. If a

115

Idle callback
or viewpoint move

Yes

No

Find neighboring images
for the 2D mesh vertices

Find ROI of the captured
images and JPEG decode

2D mesh depth recon., mesh
subdivision if necessary

Novel view
synthesis

Exit

Rendering
process

Capturing
process

Shared
memory

Figure 8.6: The flow chart of the rendering algorithm.

certain triangle in the mesh bears large depth variation, subdivision is performed to obtain

more detailed depth information. After the depth reconstruction, the novel view can be

synthesized through multi-texture blending, similar to that in the unstructured Lumigraph

rendering (ULR) [11]. Lens distortion is corrected in the last stage, although we also

compensate the distortion during the depth reconstruction stage. Details of the proposed

algorithm will be presented next.

8.3.2 Finding close-by images for the mesh vertices

Each vertex on the 2D mesh corresponds to a light ray that starts from the virtual viewpoint

and passes the vertex on the imaging plane. During the rendering, it will be interpolated

from several light rays of some nearby captured images. We need to identify these nearby

images for selective JPEG decoding and the scene geometry reconstruction. Unlike the

ULR [11] and the MIT distributed light field camera [155] where the scene depth is known,

we do not have such information at this stage, and cannot locate the neighboring images by

116

The virtual
viewpoint

The virtual imaging plane

Considered light ray

Capturing
cameras

C2

C3 C4

Minimum depth plane

Maximum depth plane

Testing depth
planes

Testing depth plane #m

.

.

.

the initial sparse and
regular 2D mesh

on the imaging plane

C1

C5d1

d5

d2 d3

d4

Figure 8.7: Locate the neighboring images for interpolation and depth reconstruction
through plan sweeping.

angular differences of the light rays1. Instead, we adopted the distance from the cameras’

center of projection to the considered light ray as the criterion. As shown in Figure 8.7,

the capturing camera C2, C3 and C4 have smaller distances, and will be selected as the

3 closest images. As our cameras are roughly arranged on a plane and point to roughly

the same direction, when the scene is at a reasonably large depth, such distance is a good

approximation of the angular difference used in the literature, yet it does not require the

scene depth information.

8.3.3 ROI Identification and JPEG decoding

On the initial regular coarse 2D mesh, if a triangle has a vertex that select input image #n

as one of the nearby cameras, the rendering of this triangle will need image #n. In other

words, once all the vertices have found their nearby images, given a certain input image

#n, we will be able to tell what are the triangles that need it during the rendering. Such

information is used to identify the ROIs of the images that need to be decoded.

As shown in Figure 8.8, take image #n as an example. We back-project the triangles
1Although it is possible to find the neighboring images of the light rays for each hypothesis depth planes,

we found such an approach too much time-consuming.

117

The virtual
viewpoint

The virtual
imaging plane

Minimum depth plane

Maximum depth plane

The capturing camera #n

ROI

Figure 8.8: Determine the ROI of a certain input image.

(indicated in yellow) that need image #n for rendering from the virtual imaging plane to

the minimum depth plane and the maximum depth plane, and then project the resultant

regions to image #n. The ROI of image #n is the smallest rectangular region that includes

both the projected regions. Afterwards, the input images that do not have an empty ROI

will be JPEG decoded (partially).

8.3.4 Scene depth reconstruction

We reconstruct the scene depth of the light rays passing through the vertices of the 2D

mesh using a plane sweeping method. Such method has been used in a number of previous

algorithms [22, 126, 155], although they all reconstruct a dense depth map of the scene. As

illustrated in Figure 8.7, we divide the world space into multiple testing depth planes. For

each light ray, we assume the scene is on a certain depth plane, and project the scene to the

nearby input images obtained in Section 8.3.2. If the assumed depth is correct, we expect

to see consistent colors among the projections. The plane sweeping method sweeps through

all the testing depth planes, and obtain the scene depth as the one that gives the highest

consistency.

Care must be taken in applying the above method. First, the location of the depth

118

planes should be equally spaced in the disparity space instead of in depth. Let dmin be the

minimum scene depth, and dmax be the maximum scene depth, M be the number of depth

planes used. The #m depth plane (m = 0, 1, · · · ,M − 1) is located at:

dm =
1

1
dmax

+ m
M−1(1

dmin
− 1

dmax
)

(8.3)

Equation 8.3 is a direct result from the sampling theory by Chai et al. [16]. In the same

paper they also developed a sampling theory on the relationship between the number of

depth planes and the number of captured images, which is helpful in selecting the number

of depth planes. Second, when projecting the test depth planes to the neighboring images,

lens distortions must be corrected. Third, to improve the robustness of the color consis-

tency matching among the noisy input images, a patch on each nearby image is taken for

comparison. The patch window size relies heavily on the noise level in the input images. In

our current system, the input images are very noisy. We have to use an 18×18 patch win-

dow to accommodate the noise. The patch is first down-sampled horizontally and vertically

by a factor of 2 to reduce some computational burden. Different patches in different input

images are then compared to give an overall color consistency score. Fourth, as our cameras

have large color variations, color consistency measures such as SSD do not perform very

well. We applied mean-removed correlation coefficient for the color consistency verification

(CCV). The normalized mean-removed inner products of all pairs of nearby input images

are first obtained. Given a pair of nearby input images, e.g., #i and #j, the correlation

coefficient of the two patches is defined as:

rij =
∑

k(Iik − Īi)(Ijk − Īj)√[∑
k(Iik − Īi)2

][∑
k(Ijk − Īj)2

] (8.4)

where Iik and Ijk are the kth pixel intensity in the patch #i and #j, respectively. Īi

and Īj are the mean of pixel intensities in the two patches. Equation 8.4 was widely

used in traditional stereo matching algorithms [33]. The overall CCV score of the nearby

input images is one minus the average correlation coefficient of all the image pairs. The

depth plane resulting in the lowest CCV score will be selected as the scene depth. Since

119

1md

2md
3md

Figure 8.9: Subdivision of a mesh triangle.

the calculation of Equation 8.4 is very computationally expensive, we may perform early

rejection if the intensities of the patches differ too much.

The depth recovery process starts with an initial regular and sparse 2D mesh, as was

shown in Figure 8.7. The depths of its vertices are obtained with the above mentioned

method. The sparse mesh with depth can serve well during the rendering if the scene does

not have much depth changes. However, if the scene depth does change, a dense depth map

is needed around those regions for satisfactory rendering results. We subdivide a triangle

in the initial mesh if its three vertices have a large depth variation. As shown in Figure 8.9,

let the depths of a triangle’s three vertices be dm1 , dm2 and dm3 , where m1, m2, m3 are the

indices of the depth planes. We subdivide this triangle if:

max
p,q∈{1,2,3},p6=q

|mp −mq| > T (8.5)

where T is a threshold set as 1 in the current implementation. During the subdivision, the

midpoint of each edge of the triangle is selected as the new vertices, and the triangle is

subdivided into 4 smaller ones. The depths of the new vertices are reconstructed under the

constraints that they have to use neighboring images of the three original vertices, and their

depth search range is limited to the minimum and maximum depth of the original vertices.

Other than Equation 8.5, the subdivision may also stop if the subdivision level reaches a

certain preset limit.

Real-time, adaptive conversion from dense depth map or height field to a mesh repre-

sentation has been studied in literature [74, 12]. However, these algorithms assumed that

a dense depth map or height field was available before hand. Therefore, they are similar

120

to the freeform sampling solutions discussed in Section 6.2. In contrast, our algorithm

reconstructs a multi-resolution mesh model directly during the rendering, and belongs to

the active incremental sampling. Szeliski and Shum [134] proposed a motion estimation

algorithm based on a multi-resolution representation using quadtree splines, which could be

considered as active incremental sampling too. Two dimensional splines are used to inter-

polate between control points; while we connect the mesh vertices with triangles. They used

the residual flow for the subdivision of quadtree, which is applicable for two-view stereo.

In comparison, our method is for multi-views. In addition, the geometry we reconstruct is

view dependent, while the quadtree splines based method is for one of the stereo views.

The size of the triangles in the initial regular 2D mesh cannot be too large, since oth-

erwise we may miss certain depth variations in the scene. A rule of thumb is that the size

of the initial triangles/grids should match that of the object features in the scene. In the

current system, the initial grid size is about 1/25 of the width of the input images. Triangle

subdivision is limited to no more 2 levels.

8.3.5 Novel view synthesis

After the multi-resolution 2D mesh has been obtained, novel view synthesis is easy. Our

rendering algorithm is very similar to the one in the ULR [11] except that our imaging

plane has already been triangulated. The basic idea of ULR is to assign weights to nearby

images for each vertex, and render the scene through multi-texture blending. In our im-

plementation, the weights of the nearby images are assigned as Equation 7.2. During the

multi-texture blending, only the ROIs of the input images will be used to update the texture

memory when a novel view is rendered. As the input images of our system have severe lens

distortions, we cannot use the 3D coordinates of the mesh vertices and the texture matrix

in graphics hardware to specify the texture coordinates as in [11]. Instead, we perform

the projection with lens distortion correction ourselves and provide 2D texture coordinates

to the rendering pipeline. Fortunately, such projections to the nearby images have already

been calculated during the depth reconstruction stage and can simply be reused.

121

8.3.6 Rendering results on synthetic scenes

We first report some rendering results of the proposed algorithm on some synthetic static

scenes, wineglass and skyvase, as shown in Figure 8.10. Both scenes are synthesized with

POV-Ray [111]. They have 64 input images, arranged regularly on a 2D plane as light field.

Wineglass exhibits huge depth variation, transparency, shadowing and heavy occlusion, thus

it is very challenging for geometry reconstruction. The skyvase scene features two semi-

reflective walls which have their own textures and also reflect the vase in the foreground.

Theoretically, no geometry reconstruction algorithm could work for this scene, because there

are virtually two depths existing on the wall.

Figure 8.10 (a)–(c) are the rendering results when using a sparse mesh, a dense depth

map and an adaptive mesh, all being view-dependent. The rendering position is at the

center of four nearby capturing cameras (forming a rectangle) on the camera plane. As

synthetic scenes has no noise, we use patch window 5× 5 during the geometry reconstruc-

tion. Eight depth planes are used here for plane sweeping. (d)–(f) shows the geometric

models we reconstructed. Both (b) and (c) have very good rendering quality, thanks to

the view-dependent geometry reconstruction and the local color consistency verification.

Most importantly, we reconstruct depth for 5437 vertices for the wineglass scene and 4507

vertices for the skyvase scene in the adaptive mesh approach, which are both much fewer

than 76800 vertices if a per-pixel dense depth map is reconstructed.

8.3.7 Rendering results on real-world scenes

We have used our camera array system to capture a variety of scenes, both static and

dynamic. The speed of rendering process is about 4-10 fps, depending on many factors such

as the number of testing depth planes used for plane sweeping, the patch window size for

CCV, the initial coarse regular 2D mesh grid size, the number of subdivision levels used

during geometry reconstruction and the scene content. For the scenes we have tested, the

above parameters can be set to fixed values. For instance, our default setting is 12 testing

depth planes for depth sweeping, 18×18 patch window size, 1/25 of the width of the input

122

(i-a) (i-b) (i-c)

(i-d) (i-e) (i-f)

(ii-a) (ii-b) (ii-c)

(ii-d) (ii-e) (ii-f)

Figure 8.10: Synthetic scenes rendered with our proposed algorithm. (i) Scene wineglass;
(ii) scene skyvase; (a)(d) use a sparse mesh to render; (b)(e) use a per-pixel depth map to
render; (c)(f) use the proposed adaptive mesh to render.

123

images as initial grid size, and maximally 2 level of subdivision.

The time spent on each step of the rendering process under default setting is as follows.

Finding neighboring images and ROI of them takes less than 10 ms. JPEG decoding takes

15-40 ms. Geometry reconstruction takes about 80-120 ms. New view synthesis takes about

20 ms.

The rendering results of some static scenes are shown in Figure 8.11. In these results the

cameras are evenly spaced on the linear guide. The rendering positions are roughly on the

camera plane but not too close to any of the capturing cameras. Figure 8.11(a)(b)(c) are

results rendered with the constant depth assumption. The ghosting artifacts are very severe,

because the spacing between our cameras is larger than most previous systems [155, 95].

Figure 8.11(d) is the result from the proposed algorithm. The improvement is significant.

Figure 8.11(e) shows the reconstructed 2D mesh with depth information on its vertices. The

grayscale intensity represents the depth – the brighter the intensity, the closer the vertex.

Like many other geometry reconstruction algorithms, the geometry we obtained contains

some errors. For example, in the background region of scene toys, the depth should be flat

and far, but our results have many small ”bumps”. This is because part of the background

region has no texture, which is prone to error for depth recovery. However, the rendered

results are not affected by these errors because we use view-dependent geometry and the

local color consistency always holds at the viewpoint.

Figure 8.12 gives the comparison of the rendering results using a dense depth map and

our adaptive mesh, similar to that in Figure 8.10 but for real-world scenes. Again, using

adaptive mesh produces rendering images at almost the same quality as using dense depth

map, but with a much smaller computational cost.

8.3.8 Discussions

Our current system has certain hardware limitations. For example, the images captured

by the cameras are at 320×240 pixel2 and the image quality is not very high. This is

mainly constrained by the throughput of the Ethernet cable. Upgrading the system to

124

(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d) (iii-d) (iv-d)

(i-e) (ii-e) (iii-e) (iv-e)

Figure 8.11: Scenes captured and rendered with our camera array. (i) Scene toys; (ii)
scene train; (iii) scene girl and checkerboard ; (iv) scene girl and flowers; (a) rendering
with a constant depth at the background; (b) rendering with a constant depth at the
middle object; (c) rendering with a constant depth at the closest object; (d) rendering with
the proposed method; (e) multi-resolution 2D mesh with depth reconstructed on-the-fly,
brighter intensity means smaller depth.

125

(i-a) (i-b)

(i-c) (i-d)

(ii-a) (ii-b)

(ii-c) (ii-d)

Figure 8.12: Real-world scenes rendered with our proposed algorithm. (i) Scene train; (ii)
scene toys; (a)(c) use a per-pixel depth map to render; (b)(d) use the proposed adaptive
mesh to render.

126

Gigabit Ethernet or using more computers to handle the data could solve this problem. For

dynamic scenes, we notice that our system cannot catch up with very fast moving objects.

This is due to the fact that the cameras are not synchronized.

We find that when the virtual viewpoint moves out of the range of the input cameras,

the rendering quality degrades quickly. Similar effect was reported in [155, 136]. The poor

extrapolation results are due to the lack of scene information in the input images during

the geometry reconstruction.

Since our geometry reconstruction algorithm resembles the traditional window-based

stereo algorithms, they share some limitations. For instance, when the scene has large

depth discontinuity, our algorithm does not perform very well along the object boundary

(especially when both foreground and background objects have strong textures). In the

current implementation, our correlation window has very large size (18×18) in order to

tolerate the noisy input images. Such a big correlation window tends to smooth the depth

map. Figure 8.13 (i-d) and (iii-d) shows the rendering results of two scenes with large

depth discontinuity. Notice the artifacts around the boundaries of the objects. To solve

this problem, one may borrow ideas from the stereo literature [51, 53], which will be our

future work2. Alternatively, since we have built a reconfigurable camera array, we may

reconfigure the arrangement of the cameras, as will be described in the next section.

8.4 Self-Reconfiguration of the Cameras

In Section 7.3.1 we have presented an active rearranged sampling algorithm using global

rearrangement. In that work we assumed that all the capturing cameras can move freely

on the camera plane. Such assumption is very difficult to implement in practical systems.

In this section, we present a local rearrangement algorithm for the self-reconfiguration of

the cameras, given that they are constrained on the linear guides.

127

(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d)

(iii-d) (iv-d)

Figure 8.13: Scenes rendered by reconfiguring our camera array. (i) Scene flower, cam-
eras are evenly spaced; (ii) scene flower, cameras are self-reconfigured (6 epochs); (iii)
scene Santa, cameras are evenly spaced; (iv) scene Santa, cameras are self-reconfigured
(20 epochs); (a) the camera arrangement; (b) reconstructed depth map, brighter intensity
means smaller depth; (c) the CCV score of the mesh vertices and the projection of the
camera positions to the virtual imaging plane (red dots), darker intensity means better
consistency; (d) rendered image.

128

Camera plane

Y1

Y2

Y3

Y4

Y5

Y6

The virtual viewpoint

(xi , yi)

B31 B32 B3k B37

Capturing cameras

The virtual imaging plane

Figure 8.14: Self-reconfiguration of the cameras.

8.4.1 The proposed local rearrangement algorithm

Figure 8.13 (i-c) and (iii-c) shows the local inconsistency score obtained while reconstructing

the scene depth (Section 8.3.4). They are directly used for our active rearrange sampling

algorithm. It is obvious that if the consistency is bad (high score), the reconstructed depth

tends to be wrong, and the rendered scene tends to have low quality. Our camera self-

reconfiguration (CSR) algorithm will thus move the cameras to where the score is high.

Our CSR algorithm contains the following steps:

1. Locate the camera plane and the linear guides (as line segments on the camera plane).

The camera positions in the world coordinate are obtained through the calibration process.

Although they are not strictly on the same plane, we use an approximated one which

is parallel to the checkerboard. The linear guides are located by averaging the vertical

positions of each row of cameras on the camera plane. As shown in Figure 8.14, denote the

vertical coordinates of the linear guides on the camera plane as Yj , j = 1, · · · , 6.

2. Back-project the vertices of the mesh model to the camera plane. Although during

the depth reconstruction the mesh can subdivided, during this process we only make use

of the initial sparse mesh (Figure 8.7). In Figure 8.14, one mesh vertex was back-projected

as (xi, yi) on the camera plane. Notice such back-projection can be performed even if there

are multiple virtual views to be rendered, thus the proposed CSR algorithm is applicable
2I am working on this problem right now, and hopefully I can get some result before the defense.

129

to situations where there exist multiple virtual viewpoints.

3. Collect CCV score for each pair of neighboring cameras on the linear guides. The

capturing cameras on each linear guide naturally divide the guide into 7 segments. Let

them be Bjk, where j is the row index of the linear guide, k is the index of bins on that

guide, 1 ≤ j ≤ 6, 1 ≤ k ≤ 7. If a back-projected vertex (xi, yi) satisfies

Yj−1 < yi < Yj+1 and xi ∈ Bjk, (8.6)

the CCV score of the vertex is added to the bin Bjk. After all the vertices have been

back-projected, we obtain a set of accumulated CCV scores for each linear guide, denoted

as Sjk, where j is the row index of the linear guide, k is the index of bins on that guide.

5. Determine which camera to move on each linear guide. Given a linear guide j, we look

for the largest Sjk, 1 ≤ k ≤ 7. Let it be SjK . If the two cameras forming the corresponding

bin BjK are not too close to each other, one of them will be moved towards the other (thus

reducing their distance). Notice each camera is associated with two bins. To determine

which one of the two cameras should move, we check their other associated bin and move

the camera with a smaller accumulated CCV score in its other associated bin.

6. Move the cameras. Once the moving cameras have been decided, we issue them

commands such as ”move left” or ”move right”3. Once the cameras are moved, the process

waits until it is confirmed that the movement has finished and the cameras are re-calibrated.

Then it jumps back to step 1 for the next epoch of movement.

8.4.2 Results

We show results of the proposed CSR algorithm in Figure 8.13. In Figure 8.13 (i) and (iii),

the capturing cameras are evenly spaced on the linear guide. Figure 8.13(i) is rendered

behind the camera plane, and Figure 8.13(iii) is rendered in front of the camera plane. Due

to depth discontinuities, some artifacts can be observed from the rendered images (Figure

8.13 (i-d) and (iii-d)) along the object boundaries. Figure 8.13(b) is the reconstructed depth
3We can only send such commands to the sidestep servos, because the servos were hacked for continuous

rotation. The positions of the cameras after movement is unpredictable, and can only be obtained through
the calibration process.

130

of the scene at the virtual viewpoint. Figure 8.13(c) is the CCV score obtained during the

depth reconstruction. It is obvious that along the object boundaries, the CCV score is

high, which usually means wrong/uncertain reconstructed depth, or bad rendering quality.

The red dots in Figure 8.13(c) are the projections of the capturing camera positions to the

virtual imaging plane.

Figure 8.13 (ii) and (iv) shows the rendering result after CSR. Figure 8.13 (ii) is the

result of 6 epochs of camera movement, and Figure 8.13 (iv) is after 20 epochs. It can

be seen from the CCV score map (Figure 8.13(c) that after the camera movement, the

consistency generally gets better. The cameras have been moved, which is reflected as the

red dots in 8.13(c). The cameras moves towards the regions where the CCV score is high,

which effectively increases the sampling rate for the rendering of those regions. Figure 8.13

(ii-d) and (iv-d) shows the rendering results after self-reconfiguration, which is much better

than 8.13 (i-d) and (iii-d).

8.4.3 Discussions

The major limitation of our self-reconfigurable camera array is that the motion of the

cameras are generally slow. When the computer write a command to the serial port, the

command will be buffered in the Mini SSC II controller for ∼15 ms before sending to the

servo. After the servo receives the command, there is also a long delay (hundreds of ms)

before it moves enough distance. Therefore, during the self-reconfiguration of the cameras,

we have to assume that the scene is either static or moving very slowly, and the viewer

is not changing his/her viewpoint all the time. During the motion of the cameras, since

the calibration process and the rendering process run separately, we observe some jittering

artifacts of the rendered images when the moved cameras have not been fully calibrated.

There is no collision detection in the current system while moving the cameras. Although

the calibration process is very stable and gives fairly good estimation of the camera positions,

collision could still happen. In 8.4.1, we have a threshold for verifying whether two cameras

are too close to each other. The current threshold is set as 10 cm, which is reasonably safe

131

in all our experiments.

8.5 Summary

We have presented a self-reconfigurable camera array in this paper. Our system was large

scale (48 cameras), and had the unique characteristic that the cameras were mounted on

mobile platforms. A real-time rendering algorithm was proposed, which is highly efficient

and flexible to be implemented in software, thanks to the active incremental sampling based

geometry reconstruction algorithm. We also proposed a novel self-reconfiguration algorithm

to move the cameras based on active rearranged sampling, and achieved better rendering

quality compared with static camera arrays.

Chapter 9

Conclusions and Future Work

This dissertation set out to address the following two questions:

How many images are needed for IBR? If such number is limited, where shall

we capture these images?

In this final chapter we summarize the contributions we have presented to answer this

question. We also describe some new directions for future work that these contributions

raise.

9.1 Contributions

There are three major contributions of this thesis.

Uniform IBR sampling analysis. We proposed a novel method to analyze the Fourier

spectrum of IBR scenes, which is able to handle both non-Lambertian surface and occlu-

sions. We showed that in both cases the required sampling rate is higher than Lambertian

and non-occluded ones. Considering that the IBR sampling problem is a multi-dimensional

sampling problem, we also applied the generalized sampling theorem for IBR sampling.

We are able to reduce the sampling rate by a factor of 50% in theory, and achieve better

rendering quality for complex scenes. We also concluded that rectangular sampling is still

preferable for most scenes thanks to its simplicity.

132

133

A very general framework on freeform sampling and active sampling. Compared

with the traditional uniform sampling theorem, the freeform sampling framework has more

practical considerations such as the reconstruction method, the reconstruction set, the sam-

pling noise, etc. General solutions of freeform sampling were described in this dissertation,

including decremental sampling, incremental sampling and rearranged sampling. We also

presented active sampling as a special case of freeform sampling, where the function values

of the sampled signal on the reconstruction set is unknown. We applied it to IBR and

designed several algorithms, which demonstrated that active sampling is superior to the

traditional uniform sampling method.

The self-reconfigurable camera array. We built the world’s first self-reconfigurable

camera array, where the cameras are mobile. We developed a very efficient algorithm for the

real-time rendering of dynamic scenes. Active sampling was widely used in the algorithm to

improve the rendering speed. The source code of the rendering algorithm was distributed

online1 to inspire more work along this direction. We also showed that by moving the

cameras around for active sampling, we can improve the rendering quality, especially at

object boundaries.

9.2 Future Work

This dissertation opens up some new interesting directions for further research in various

topics. For instance:

IBR sampling analysis with scene geometry. When part of the scene geometry is

known or reconstructed, it is not clear what the real minimum sampling rate is. The-

oretically, the minimum sampling rate should be determined only by the scene content.

However, as discussed in Chapter 6, in practice, the sampling rate will be determined by

the reconstruction/rendering algorithm as well. On the other hand, if we are free to apply
1http://amp.ece.cmu.edu/projects/MobileCamArray/

134

the best possible reconstruction/rendering algorithm, what will be the minimum sampling

rate? Discovery of such theory is very important for guiding the construction of practical

IBR systems.

Real-time processing of dynamic IBR data. While the extension of IBR from static

scenes to dynamic scenes seems straightforward, many new research problems arise. For

instance, dynamic IBR requires all its stages to be ”real-time”, as the scene is constantly

changing. This includes real-time capturing, real-time storage, real-time calibration, real-

time tracking, real-time rendering, real-time compression/streaming, etc. Some of these

problems have already been studied in the literature. For example, the Stanford multi-

camera array [149] is capable of capturing and storing videos from many cameras at 30

fps to SCSI disk arrays. They used a dedicated hardware board to perform MPEG-2

compression of the captured videos. A relatively complete survey on IBR compression

algorithms is available in [161]. Online streaming of light field/concentric mosaics has been

studied in [163, 164, 115]. In Chapter 8, we have discussed some solutions for the real-time

calibration and rendering from multiple mobile cameras. However, more work is needed,

such as a better geometry reconstruction algorithm for heavily occluded scenes. Using our

camera array to track moving objects is another problem that is very interesting.

Vision sensor network. We strongly believe that it is beneficial to add more and more

functionalities to the sensor (camera), such as compression, networking and mobility. Such

migration in functionality from the central computer to the sensors not only reduces the

load of the central computer, making the whole system more scalable, but also allow the

sensors to distribute in a wider area, making it a true vision sensor network. In practice, due

to bandwidth constraints, we expect to have limited resolution on the vision sensors. Syn-

thesizing high-quality novel views from such low-resolution vision sensors is a new problem,

and may borrow ideas from the super-resolution literature. The active sampling framework

proposed in this dissertation may also be used to figure out the best distribution of these

vision sensors.

135

Multi-view image/video processing. The multiple views captured for a scene can not

only be used to perform rendering but also many other tasks. Most current image/video

processing research topics can benefit from the availability of multiple views of the same

object. To name a few, they include image/video compression, image/video restoration,

image/video segmentation, image/video scene analysis, pattern recognition, etc.

Other applications of active sampling. As a very general framework, active sampling

may be used in many other applications. Recently there has been increasing interest in

the application of active sampling in information retrieval. We have proposed to use active

learning for hidden annotation [157]. Tong and Chang have also applied support vector

machine (SVM) based active learning for obtaining the user’s concept of query [141].

Naphade et al. [96] also used SVM for the active annotation of video databases. Another

application of active sampling may be in the area of computer tomography (CT). In CT,

one circle of scanning might only cover a small area of the scene in order to improve the

precision. Due to the huge cost of storage and reconstruction, active sampling can be applied

to select regions that are of most importance, or guarantee that all the scanned regions have

the same reconstruction quality. In image-based relighting [104], active sampling may be a

good choice to reduce the number of light patterns applied for the scene in order to achieve

relighting from arbitrary lighting conditions.

Bibliography

[1] E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vi-
sion, M. Landy and J. A. Movshon (Edt), Computational Models of Visual Processing,
The MIT Press, Cambridge, MA (1991), 3–20.

[2] G. Agarwal, D. Rathi, P. K. Kalra, and S. Banerjee, A system for image based ren-
dering of walk-throughs, Computer Graphics International, 2002.

[3] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-
invariant spaces, SIAM Review 43 (2001), no. 4, 585–620.

[4] D. G. Aliaga and I. Carlbom, Plenoptic stitching: a scalable method for reconstructing
3d interactive walkthroughs, Proc. SIGGRAPH, 2001, pp. 443–450.

[5] S. Avidan and A. Shashua, Novel view synthesis in tensor space, Proc. CVPR, 1997.

[6] T. Beier and S. Neely, Feature-based image metamorphosis, Proc. SIGGRAPH, 1992,
pp. 35–42.

[7] J. F. Blinn and M. E. Newell, Texture and reflection in computer generated images,
Communications of the ACM 19 (1976), no. 10, 542–546.

[8] S. Borman and R. L. Stevenson, Super-resolution from image sequences - a review,
Midwest Symposium on Circuits and Systems, 1998.

[9] J.-Y. Bouguet, Camera calibration toolbox for matlab,
http://www.vision.caltech.edu/bouguetj/calib doc/, 1999.

[10] A. Broadhurst and R. Cipolla, A statistical consistency check for the space carving
algorithm, Proc. 11th British Machine Vision Conference, 2000.

136

137

[11] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen, Unstructured
lumigraph rendering, Proc. SIGGRAPH, 2001, pp. 425–432.

[12] S. Sethuraman C. B. Bing and H.S. Sawhney, A depth map represen-tation for real-
time transmission and view-based rendering of a dy-namic 3d scene, 1st Intl. Sympo-
sium on 3D Data Processing Visualization and Transmission, 2002.

[13] B. Cabral, M. Olano, and P. Nemec, Reflection space image based rendering, Proc.
SIGGRAPH, 1999, pp. 165–171.

[14] E. Camahort and D. Fussell, A geometric study of light field representations, Tech. Re-
port TR99-35, Department of Computer Sciences, The University of Texas at Austin,
1999.

[15] E. Camahort, A. Lerios, and D. Fussell, Uniformly sampled light fields, 9th Euro-
graphics Workshop on Rendering, 1998.

[16] J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, Plenoptic sampling, Proc. SIG-
GRAPH, 2000, pp. 307–318.

[17] C. Chang, G. Bishop, and A. Lastra, Ldi tree: a hierarchical representation for image-
based rendering, Proc. SIGGRAPH, 1999, pp. 291–298.

[18] S. E. Chen, Quicktime vr - an image-based approach to virtual environment navigation,
Proc. SIGGRAPH, 1995, pp. 29–38.

[19] S. E. Chen and L. Williams, View interpolation for image synthesis, Proc. SIG-
GRAPH’93, 1993, pp. 279–288.

[20] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk, Light field mapping: effi-
cient representation and hardware rendering of surface light fields, Proc. SIGGRAPH,
2002, pp. 447–456.

[21] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, Active learning with statistical models,
Journal of Artificial Intelligence Research 4 (1996), 129–145.

[22] R. T. Collins, A space-sweep approach to true multi-image matching, Proc. CVPR,
1996.

[23] T. N. Cornsweet, Visual perception, Academic Press, 1971.

[24] IPIXr Internet Pictures Corp., http://www.ipix.com/.

http://www.ipix.com/

138

[25] P. Debevec, Rendering synthetic objects into real scenes: bridging traditional and
image-based graphics with global illumination and high dynamic range photography,
Proc. SIGGRAPH, 1998, pp. 189–198.

[26] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, Acquiring
the reflectance field of a human face, Proc. SIGGRAPH, 2000, pp. 145–156.

[27] P. Debevec, C. J. Taylor, and J. Malik, Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based approach, Proc. SIGGRAPH, 1996,
pp. 11–20.

[28] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, and T. Hawkins, A lighting
reproduction approach to live-action compositing, Proc. SIGGRAPH, 2002, pp. 547–
556.

[29] P. Debevec, Y.-Z. Yu, and G. Borshukov, Efficient view-dependent image-based ren-
dering with projective texture-mapping, 9th Eurographics Rendering Workshop, 1998.

[30] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2 ed., Wiley-
Interscience, 2000.

[31] D. E. Dudgeon and R.M. Mersereau, Multidimensional digital signal processing,
Prentice-hall signal processing series, Prentice Hall, 1984.

[32] P. Eisert, E. Steinbach, and B. Girod, 3-d shape reconstruction from light fields using
voxel back-projection, Vision, Modeling and Visualization Workshop, 1999.

[33] O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron, L. Moll,
G. Berry, J. Vuillemin, P. Bertin, and C. Proy, Real time correlation-based stereo:
Algorithm, implementations and applications, Technical Report 2013, INRIA (1993).

[34] S. Fleishman, D. Cohen-Or, and D. Lischinski, Automatic camera placement for
image-based modeling, Computer Graphics Forum, 2000.

[35] J. Foote and D. Kimber, Flycam: practical panoramic video, Proc. ICME, 2000.

[36] D. A. Forsyth and J. Ponce, Computer vision: A modern approach, Prentice Hall,
2002.

[37] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The lumigraph, Proc.
SIGGRAPH, 1996, pp. 43–54.

139

[38] N. Greene and P. Heckbert, Creating raster omnimax images from multiple perspec-
tive views using the elliptical weighted average filter, IEEE Computer Graphics and
Applications 6 (1986), no. 6, 21–27.

[39] N. Greene and M. Kass, Approximating visibility with environment maps, Tech. Re-
port 41, Apple Computer, 1994.

[40] LadybugTM Point Grey, http://www.ptgrey.com/products/ladybug/index.html.

[41] X. Gu, S. J. Gortler, and M. Cohen, Polyhedral geometry and the two-plane parame-
terization, 8th Eurographics Rendering Workshop, 1997.

[42] R. Gupta and R. I. Hartley, Linear pushbroom cameras, IEEE Trans. on PAMI 19
(1997), no. 9, 963–975.

[43] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge
University Press, 2000.

[44] M. Hasenjäger, H. Ritter, and K. Obermayer, Active learning in self-organizing maps,
E. Oja and S. Kaski (Edt), Kohonen Maps, Elsevier, Amsterdam (1999), 57–70.

[45] H. Hirschmüller, Improvements in real-time correlation-based stereo vision, CVPR
2001 Stereo Workshop/IJCV 2002, 2001.

[46] H. Hoppe, Progressive meshes, Proc. SIGGRAPH, 1996, pp. 99–108.

[47] I. Ihm, S. Park, and R. Lee, Rendering of spherical light fields, Pacific Graphics, 1997.

[48] CBS Broadcasting Inc., http://www.cbs.com/.

[49] A. Isaksen, L. McMillan, and S. J. Gortler, Dynamically reparameterized light fields,
Proc. SIGGRAPH, 2000, pp. 297–306.

[50] 360 One VRTM Kaidan, http://www.kaidan.com/.

[51] Takeo Kanade and Masatoshi Okutomi, A stereo matching algorithm with an adaptive
window: theory and experiment, IEEE Trans. on PAMI 16 (1994), no. 9, 920–932.

[52] S.B. Kang, R. Szeliski, and P. Anandan, The geometry-image representation tradeoff
for rendering, Proc. ICIP, 2000.

[53] Sing Bing Kang, Richard Szeliski, and Jinxiang Chai, Handling occlusions in dense
multi-view stereo, Proc. CVPR, 2001.

http://www.ptgrey.com/products/ladybug/index.html
http://www.cbs.com/
http://www.kaidan.com/

140

[54] A. Katayama, K. Tanaka, T. Oshino, and H. Tamura, Viewpoint-dependent stereo-
scopic display using interpolation of multi-viewpoint images, Proc. SPIE, vol. 2409,
1995.

[55] H. Kawasaki, K. Ikeuchi, and M Sakauchi, Light field rendering for large-scale scenes,
Proc. CVPR, 2001.

[56] D. Kimber, J. Foote, and S. Lertsithichai, Flyabout: spatially indexed panoramic video,
Proc. ACM Multimedia, 2001.

[57] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, Motion-compensated
interframe coding for video conferencing, Proc. NTC, 1981.

[58] A. Krogh and J. Vedelsby, Neural network ensembles, cross vali-dation, and active
learning, G. Tesauro, D. Touretzky and T. Leen (Edt), Advances in Neural Informa-
tion Processing Systems, 7, the MIT Press, Cambridge, MA (1995), 231–238.

[59] A. Kubota and K. Aizawa, A novel image-based rendering mehtod by linear filtering
of multiple focused images acquired by a camera array, Int. Conf. Image Processing,
2003.

[60] M. P. Lai and W. C. Ma, A novel four-step search algorithm for fast block motion
estimation, IEEE Trans. CASVT 6 (1996), no. 3, 313–317.

[61] A. Laurentini, The visual hull concept for silhouette based image understanding, IEEE
trans. on PAMI 16 (1994), no. 2, 150–162.

[62] S. Laveau and O. Faugeras, 3-d scene representation as a collection of images and
fundamental matrices, Tech. Report 2205, INRIA, 1994.

[63] S. Lee, K.-Y. Chwa, J. Hahn, and S.Y. Shin, Image morphing using deformation
techniques, Journal of Visualization and Computer Animation 7 (1996), no. 1, 3–23.

[64] J. Lengyel, The convergence of graphics and vision, IEEE Computer 31 (1998), no. 7,
46–53.

[65] H. Lensch, Techniques for hardware-accelerated light field rendering, Master’s thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 1999.

[66] M. Levoy and P. Hanrahan, Light field rendering, Proc. SIGGRAPH, 1996, pp. 31–42.

141

[67] M. Lhuillier and L. Quan, Image interpolation by joint view triangulation, Proc.
CVPR, 1999.

[68] J. Li and J. Kuo, Progressive coding of 3d graphics models, Proceedings of the IEEE
86 (1998), no. 6, 1052–1063.

[69] J. Li, K. Zhou, Y. Wang, and H.-Y. Shum, A novel image-based rendering system with
a longitudinally aligned camera array, Proc. EUROGRAPHICS, 2000.

[70] M. Li, M. Magnor, and H.-P. Seidel, Hardware-accelerated visual hull reconstruction
and rendering, Proc. Graphics Interface, 2003.

[71] Z. C. Lin and H. Y. Shum, On the number of samples needed in light field rendering
with constant-depth assumption, Proc. CVPR, 2000.

[72] Z.-C. Lin, T.-T. Wong, and H.-Y. Shum, Relighting with the reflected irradiance field:
representation, sampling and reconstruction, International Journal of Computer Vi-
sion 49 (2002), no. 2-3, 229–246.

[73] Y. Linde, A. Buzo, , and R. Gray, An algorithm for vector quantizer design, IEEE
Trans. on Communications 28 (1980), no. 1, 84–95.

[74] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, and N. Faust, Real-time, contin-
uous level of detail rendering of height fields, Proc. SIGGRAPH, 1996, pp. 109–118.

[75] A. Lippman, Movie maps: an application of the optical videodisc to computer graphics,
Proc. SIGGRAPH, 1980, pp. 32–43.

[76] D. Lischinski and A. Rappoport, Image-based rendering for non-diffuse synthetic
scenes, Rendering Techniques, 1998.

[77] B. Lok, Online model reconstruction for interactive visual environments, Proc. Sym-
posium on Interactive 3D Graphics, 2001.

[78] W. Lorensen and H. Cline, Marching cubes: a high resolution 3-d surface construction
algorithm, Proc. SIGGRAPH, 1987, pp. 163–169.

[79] D. Marchand-Maillet, Sampling theory for image-based rendering, Master’s thesis,
EPFL, 2001.

[80] W. R. Mark, L. McMillan, and G. Bishop, Post-rendering 3d warping, Proc. 1997
Symposium on Interactive 3D Graphics, 1997.

142

[81] V. Masselus, P. Peers, P. Dutre, and Y. D. Willems, Relighting with 4d incident light
fields, Proc. SIGGRAPH, 2003, pp. 613–620.

[82] W. Matusik, C. Buehler, and L. McMillan, Polyhedral visual hulls for real-time ren-
dering, Proceedings of Eurographics Workshop on Rendering, 2001.

[83] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, Image-based visual
hulls, Proc. SIGGRAPH, 2000, pp. 369–374.

[84] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. McMillan, Image-
based 3d photography using opacity hulls, Proc. SIGGRAPH, 2002, pp. 427–437.

[85] L. McMillan, An image-based approach to three-dimensional computer graphics, Ph.D.
thesis, Department of Computer Science, University of North Carolina at Chapel Hill,
1997.

[86] L. McMillan and G. Bishop, Plenoptic modeling: an image-based rendering system,
Proc. SIGGRAPH, 1995, pp. 39–46.

[87] J. Meehan, Panoramic photograph, Watson-Guptill, 1990.

[88] D. L. Milgram, Computer methods for creating photomosaics, IEEE Trans. on Com-
puters 24 (1975), no. 11, 1113–1119.

[89] G. Miller, E. Hoffert, S. E. Chen, E. Patterson, D. Blackketter, S. Rubin, S. A. Aplin,
D. Yim, and J. Hanan, The virtual museum: interactive 3d navigation of a multimedia
database, The Journal of Visualization and Computer Animation 3 (1992), no. 3, 183–
197.

[90] G. Miller, S. Rubin, and D. Ponceleon, Lazy decompression of surface light fields for
precomputed global illumination, Eurographics Rendering Workshop, 1998.

[91] MiniSSC-II, Scott edwards electronics inc., http://www.seetron.com/ssc.htm.

[92] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, Mpeg video: Com-
pression standard, Kluwer Academic Publishers, 1996.

[93] J. J. Moré, The levenberg-marquardt algorithm, implementation and theory, G. A.
Watson, editor, Numerical Analysis, Lecture Notes in Mathematics 630 (1977), 105–
116.

143

[94] J. Mulligan, V. Isler, and K. Daniilidis, Trinocular stereo: a real-time algorithm and
its evaluation, IEEE Workshop on Stereo and Multi-Baseline Vision, 2001.

[95] T. Naemura, J. Tago, and H. Harashima, Real-time video-based modeling and ren-
dering of 3d scenes, IEEE Computer Graphics and Applications 22 (2002), no. 2,
66–73.

[96] M. R. Naphade, C. Y. Lin, J. R. Smith, B. Tseng, and S. Basu, Learning to annotate
video databases, SPIE Conference on Storage and Retrieval on Media databases, 2002.

[97] S. Nayar, Catadioptric omnidirectional camera, Proc. CVPR, 1997.

[98] U. Neumann, T. Pintaric, and A. Rizzo, Immersive panoramic video, Proc. ACM
Multimedia, 2000.

[99] T. Nishita, T. Fujii, and E. Nakamae, Metamorphosis using bézier clipping, 1st Pacific
Conference on Computer Graphics and Applications, 1993.

[100] M. Oliveira, Image-based modeling and rendering techniques: a survey, RITA - Revista
de Informática Teórica e Aplicada IX (2002), no. 2, 37–66.

[101] M. Oliveira and G. Bishop, Relief textures, Tech. Report TR99-015, Dept. of Computer
Science, University of North Carolina, 1999.

[102] A. V. Oppenheim, A. S. Willsky, S. N. Nawab, S. H. Nawab, H. Nawad, and S. H.
Nawab, Signals and systems, 2 ed., Prentice Hall, 1996.

[103] J. O’Rourke, Art gallery theorems and algorithms, The International Series of Mono-
graphs on Computer Science, Oxford University Press, 1987.

[104] P. Peers and P. Dutré, Wavelet environment matting, Proc. 14th Eurographics Work-
shop on Rendering, 2003.

[105] S. Peleg and M. Ben-Ezra, Stereo panorama with a single camera, Proc. CVPR, 1999.

[106] S. Peleg and J. Herman, Panoramic mosaics by manifold projection, Proc. CVPR,
1997.

[107] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet, Mosaicing on adaptive manifolds,
IEEE Trans. on PAMI 22 (2000), no. 10, 1144–1154.

[108] W. B. Pennebaker and J. L. Mitchell, Jpeg: Still image data compression standard, 1
ed., Kluwer Academic Publishers, 1993.

144

[109] B. T. Phong, Illumination for computer generated pictures, Communications of the
ACM 18 (1975), no. 6, 311–317.

[110] R. Pito, A solution to the next best view problem for automated surface acquisition,
IEEE Trans. on PAMI 21 (1999), no. 10, 1016–1030.

[111] Pov-Ray, http://www.povray.org.

[112] P. Rademacher, View-dependent geometry, Proc. SIGGRAPH, 1999, pp. 439–446.

[113] P. Rademacher and G. Bishop, Multiple-center-of-projection images, Proc. SIG-
GRAPH, 1998, pp. 199–206.

[114] R. Ramamoorthi and P. Hanrahan, A signal-processing framework for inverse render-
ing, Proc. SIGGRAPH, 2001, pp. 117–128.

[115] P. Ramanathan, M. Kalman, and B. Girod, Rate-distortion optimized streaming of
compressed light fields, Proc. ICIP, 2003.

[116] M. K. Reed, Solid model acquisition from range images, Ph.D. thesis, Columbia Uni-
versity, 1998.

[117] D. G. Ripley, Dvi-a digital multimedia technology, Communications of the ACM 32
(1989), no. 7, 811–822.

[118] A. Said and W. A. Pearlman, A new fast and efficient image codec based on set
partitioning in hierarchical trees, IEEE Trans. on CSVT 6 (1996), no. 3, 243–250.

[119] H. S. Sawhney and R. Kumar, True multi-image alignment and its application to
mosaicing and lens distortion correction, IEEE Trans. PAMI 21 (1999), no. 3, 235–
243.

[120] D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms, International Journal of Computer Vision 47 (2002),
no. 1/2/3, 7–42.

[121] H. Schirmacher, W. Heidrich, and H. P. Seidel, Adaptive acquisition of lumigraphs
from synthetic scenes, Proc. EUROGRAPHICS, 1999.

[122] , High-quality interactive lumigraph rendering through warping, Graphics In-
terface, 2000.

145

[123] H. Schirmacher, M. Li, and H.-P. Seidel, On-the-fly processing of generalized lumi-
graphs, Proc. EUROGRAPHICS, 2001.

[124] S. M. Seitz and C. R. Dyer, Physically-valid view synthesis by image interpolation,
Proc. Workshop on Representation of Visual Scenes, 1995.

[125] , View morphing, Proc. SIGGRAPH, 1996, pp. 21–30.

[126] , Photorealistic scene reconstruction by voxel coloring, Proc. CVPR, 1997.

[127] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, Layered depth images, Proc. SIG-
GRAPH, 1998, pp. 231–242.

[128] H.-Y. Shum and L.-W. He, Rendering with concentric mosaics, Proc. of SIGGRAPH,
1999, pp. 299–306.

[129] H.-Y. Shum, L.-F. Wang, J.-X. Chai, and X. Tong, Rendering with manifold hopping,
International Journal of Computer Vision 50 (2002), no. 2, 185–201.

[130] G. G. Slabaugh, R. W. Schafer, and M. C. Hans, Image-based photo hulls, Tech.
Report HPL-2002-28, HP Labs, 2002.

[131] P. P. Sloan, M. F. Cohen, and S. J. Gortler, Time critical lumigraph rendering, Sym-
posium on Interactive 3D Graphics, 1997.

[132] R. Swaminathan and S.K. Nayar, Polycameras: camera clusters for wide angle imag-
ing, Tech. Report CUCS-013-99, Columbia University, 1999.

[133] R. Szeliski, Image mosaicing for tele-reality applications, Tech. Report CRL94/2, DEC
Cambridge Research Lab, 1994.

[134] R. Szeliski and H.-Y. Shum, Motion estimation with quadtree splines, IEEE Trans.
PAMI 18 (1996), no. 12, 1199–1210.

[135] , Creating full view panoramic image mosaics and texture-mapped models,
Proc. SIGGRAPH, 1997, pp. 251–258.

[136] Richard Szeliski, Prediction error as a quality metric for motion and stereo, Proc.
ICCV, 1999.

[137] D. S. Taubman and M. W. Marcellin, Jpeg2000: Image compression fundamentals,
standards, and practice, Kluwer Academic Publishers, 2001.

146

[138] TotalViewTM Be Here Technologies, http://www.behere.com/.

[139] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and N. Master,
Calibrated, registered images of and extended urban area, International Journal of
Computer Vision 53 (June 2003), 93–107.

[140] Carnegie Mellon Goes to the Super Bowl, http://www.ri.cmu.edu/events/sb35/tksuperbowl.html.

[141] S. Tong and E. Chang, Support vector machine active learning for image retrieval,
Proc. ACM Multimedia, 2001.

[142] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuro-
science 3 (1991), no. 1, 71–86.

[143] M. Unser, Sampling - 50 years after shannon, Proceedings of the IEEE 88 (2000),
no. 4, 569–587.

[144] M. Uyttendaele, A. Eden, and R. Szeliski, Eliminating ghosting and exposure artifacts
in image mosaics, Proc. CVPR, 2001.

[145] P. P. Vaidyanathan and T. Q. Nguyen, Eigenfilters: a new approach to least-squares
fir filter design and applications including nyquist filters, IEEE Trans. on CAS 34
(1987), no. 1, 11–23.

[146] S. Vedula, S. Baker, and T. Kanade, Spatio-temporal view interpolation, 13th ACM
Eurographics Workshop on Rendering, 2002.

[147] T. Werner, R. D. Hersch, and V. Hlavác, Rendering real-world objects using view
interpolation, Proc. ICCV, 1995.

[148] T. Werner, V. Hlavác, A. Leonardis, and T. Pajdla, Selection of reference views for
image-based representation, Proc. ICPR, 1996.

[149] B. Wilburn, M. Smulski, H.-H. K. Lee, and M. Horowitz, The light field video camera,
Proc. of Media Processors, 2002.

[150] G. Wolberg, Digital image warping, IEEE Computer Society Press, 1990.

[151] T.-T. Wong, C. W. Fu, P.-A. Heng, and C.-S. Leung, The plenoptic illumination
function, IEEE Trans. on Multimedia 4 (2002), no. 3, 361–371.

http://www.behere.com/
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html

147

[152] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin,
and W. Stuetzle, Surface light fields for 3d photography, Proc. SIGGRAPH, 2000,
pp. 287–296.

[153] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin, Multiper-
spective panoramas for cel animation, Proc. SIGGRAPH, 1997, pp. 243–250.

[154] Y. Xiong and K. Turkowski, Creating image-based vr using a self-calibration fisheye
lens, Proc. CVPR, 1997.

[155] Jason C. Yang, Matthew Everett, Chris Buehler, and Leonard McMillan, A real-time
distributed light field camera, Eurographics Workshop on Rendering, 2002.

[156] R. Yang, G. Welch, and G. Bishop, Real-time consensus-based scene reconstruction
using commodity graphics hardware, Proc. Pacific Graphics, 2002.

[157] C. Zhang and T. Chen, An active learning framework for content-based information
retrieval, IEEE Trans. on Multimedia 4 (2002), no. 2, 260–268.

[158] , Active scene capturing for image-based rendering, Tech. Report AMP03-02,
Carnegie Mellon University, 2003.

[159] , Non-uniform sampling of image-based rendering data with the position-
interval error (pie) function, Proc. VCIP, 2003.

[160] , Spectral analysis for sampling image-based rendering data, IEEE Trans. on
CSVT 13 (2003), no. 11, 1038–1050.

[161] , A survey on image-based rendering - representation, sampling and compres-
sion, EURASIP Signal Processing: Image Communication 19 (2004), no. 1, 1–28.

[162] , View-dependent non-uniform sampling for image-based rendering, Proc. ICIP,
2004.

[163] C. Zhang and J. Li, Compression of lumigraph with multiple reference frame (mrf)
prediction and just-in-time rendering, IEEE Data Compression Conference, 2000.

[164] , Interactive browsing of 3d environment over the internet, Proc. VCIP, 2001.

[165] Z. Zhang, A flexible new technique for camera calibration, Technical Report, MSR-
TR-98-71 (1998).

148

[166] Z.-P. Zhang, L.-F. Wang, B.-N. Guo, and H.-Y. Shum, Feature-based light field mor-
phing, Proc. SIGGRAPH, 2002, pp. 457–464.

[167] Z.-Y. Zhang, Image-based geometrically-correct photorealistic scene/object modeling
(ibphm): a review, Asian Conference on Computer Vision, 1998.

[168] J. Y. Zheng and S. Tsuji, Panoramic representation of scenes for route understanding,
Proc. ICPR, 1990.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Objective and Approaches
	Contributions
	Guide to the Thesis

	A Survey on IBR Techniques
	Introduction
	Constraining the Viewing Space
	Introducing Source Descriptions
	Summary

	Previous Work on IBR Sampling
	Uniform Sampling
	Nonuniform Sampling
	Summary

	Uniform Sampling: Spectral Analysis of IBR Data
	The Surface Plenoptic Function
	Analysis for the Light Field
	Analysis of Scenes with Unknown Geometry
	Analysis for the Concentric Mosaics
	Summary

	Uniform Sampling: Generalized IBR Sampling
	Generalized Sampling for Light Field Data
	Experimental Results
	Summary

	Freeform Sampling and Active Sampling: A New Sampling Framework
	The Freeform Sampling Problem
	Solutions of the Freeform Sampling Problem
	Active Sampling
	The Proposed Algorithms for Active Sampling
	Summary

	Active Sampling: Applications in IBR
	The Local Consistency Score
	IBR Active Incremental Sampling
	IBR Active Rearranged Sampling
	Summary

	The Self-Reconfigurable Camera Array
	System Overview
	Camera Calibration
	Real-Time Rendering
	Self-Reconfiguration of the Cameras
	Summary

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

