
 
 

 

 
 

 
 

 
 
 

 
 

 
 

Active Scene Capturing for Image-Based Rendering  
with a Light Field Setup 

 
Cha Zhang and Tsuhan Chen 

Advanced Multimedia Processing Lab 
 

 
 

 
Technical Report AMP 03-02 

March 2003 
 
 
 

Electrical and Computer Engineering 
Carnegie Mellon University 

Pittsburgh, PA 15213 



 2

Abstract 
 
With image-based rendering (IBR) one can render 3D scenes from multiple images with or without geometry. 

Various approaches to IBR have been proposed to render the scene given a set of regularly or non-regularly 

pre-captured images. In this paper, we propose an algorithm to capture the images actively. Based on the im-

ages that have been taken, the system intelligently determines where to pose the next camera for best rendering 

performance. This results in non-uniform but optimal capturing of the scene.  We also propose a local-

consistency voxel coloring algorithm that can find 3D geometry for non-Lambertian scenes. The full active 

capturing algorithm combines the above two components and is able to render better quality images compared 

with traditional methods.  

 

1. Introduction 
 
Image-based rendering (IBR) has received much attention in the last few years. Unlike traditional rendering 

techniques where the 3D geometry is known, IBR can render 3D scenes directly from captured images. Geome-

try information can be incorporated into IBR but it is no longer the dominant factor.  

Previous work has been focused on different IBR representations and rendering methods [1]. When dense 

image samples are available, new views can be rendered by interpolation, such as plenoptic modeling [2], light-

field [3], Lumigraph [4] and concentric mosaics [5]. 3D correspondence was used in several IBR approaches, 

e.g., view interpolation [6], view morphing [7] and 3D modeling from images [8]. When some sort of geometry 

information is known, it can be incorporated into IBR as well. Representative works are 3D warping [9], lay-

ered depth image [10], view-dependent texture mapping [11] and unstructured lumigraph [12].  

Although the images used during the rendering are captured in different ways, the literature has extensively 

focused on how to render the scene given a set of images, with or without geometry. However, little work has 

been performed on the capturing process, which is as important as the rendering process. Recently there has 

been some work on the minimum sampling requirement of IBR [13][14]. When less images than the minimum 

requirement are captured, ghosting effects or aliasing will take place during the rendering. Although aliasing 

can always be avoided by capturing more than enough images, in reality we have to constrain the number of 

images being captured due to storage concerns. It is thus important to know where to pose our cameras for the 

best overall rendering quality.  

We use two criteria to measure the rendering quality in this paper. The first is the worst-case quality, i.e., 

the worst image quality when we move around the virtual camera during the rendering. The second measure is 



 3

the variance of the image qualities during the rendering. A large variance means that the image qualities are 

very unstable, which causes bad experience to the viewer. The above two criteria can be both optimized with 

one approach, i.e., to always capture images at places where the rendering image quality is the worst. This is 

the key idea of active capturing for image-based rendering (AIBR).  

v

us

t

(u0,v0)

(s0,t0)

light ray

z

ObjectFocal plane

Camera plane

 

Figure 1 Lightfield parameterization. 

Albeit the diversity of IBR representations, we consider a scenario similar to the lightfield [3]. As shown in 

Figure 1, we constrain that the cameras are on a common camera plane (indexed by (s,t)), and they share the 

same focal plane. While in lightfield the cameras are arranged on a regular grid, we allow the camera to be any 

where on the plane. From the signal processing point of view, we employ non-uniform sampling to lightfield 

instead of the uniform sampling in the regular lightfield. The extra freedom makes it possible to capture the 

scene better than the conventional approach.  

We also build a voxel model for the scene. This is similar to Lumigraph [4][12], where geometry informa-

tion is used to improve the rendering performance. Instead of the octree construction algorithm in [4], we use a 

modified voxel coloring algorithm [15] to recover the geometry, as will be shown in Section 3-C. The voxel 

model is also used to estimate the rendering quality for AIBR, as is shown in Section 3-A.  

Our AIBR algorithm iterates between two stages. In the first stage, we fix the geometry and determine 

where to capture more images. This is based on the color consistency verification for the given voxel model. 

The second stage refines the voxel model if necessary. A modified voxel coloring algorithm based on local 

consistency is proposed to find the voxel model of the scene even when it is highly non-Lambertian.  

The paper is organized as follows. In Section 2 we describe some previous work that is related to our ap-

proach. Section 3 presents the details of our proposed method. Experimental results are shown in Section 4. 

Conclusions and future work are given in Section 5.  

 

 

 



 4

2. Related Work 
 

Our capturing and rendering process is very similar to the Lumigraph [4] and unstructured Lumigraph [12]. 

Both the previous approaches employed non-uniform sampling. In [4], a user interface was developed to dis-

play the current and previous camera position on a viewing sphere. It is the user’s responsibility to determine 

where more images are needed. The unstructured Lumigraph [12] was rendered from video sequences captured 

by hand-held camera with an arbitrary camera path. Such capturing methods suffer in the rendering stage be-

cause depending on where the images were captured, the rendering image quality can be very unstable. There 

is no guarantee about the worst rendering quality, either.  

Another related work is the voxel coloring algorithm [15]. For a Lambertian scene, voxel coloring algorithm 

states that a voxel belonging to the scene surface should be color invariant across all the visible images. As 

presented in Section 3-0, we find that such color consistency property is essential to image-based rendering, 

too. In Section 3-0, we also extend their work to non-Lambertian scenes for the second stage of AIBR.  

Active capturing for image-based rendering is very much related to the so-called “next best view” (NBV) 

problem in the automated surface acquisition literature [16][17]. Both AIBR and NBV try to determine the 

next best position (and orientation) of the sensor so that minimum number of images is required, or best per-

formance is achieved at given number of images. However, they are yet very different problems. A range sen-

sor is often used in NBV problems, while we take pictures for the scene in AIBR. The benefit of taking one 

more range image can be well predicted based on the holes in the current surface model and the sensor posi-

tion/orientation, but the advantage of taking one more image for IBR is not obvious. Most importantly, the final 

goal of NBV problem is to recover the object surface. In AIBR, we do not care too much about how accurate 

the voxel model is for the scene. Instead, we care about the rendering image quality.  

AIBR is also related to the active learning approach in the machine learning literature [18][19][20]. For 

many types of machine learning algorithms, one can find the statistically “optimal” way to select the training 

data. The pursuing of the “optimal” way by the machine itself was referred to as active learning. For example, 

a classification machine may determine the next training data as the one that is most difficult for it to classify. 

AIBR has the same favor because it always puts the next camera to places where it has the worst rendering 

quality.   

 

3. Active Capturing for Image-Based Rendering 
 

As we mentioned in Section 1, we allow the camera to be anywhere on the camera plane during the capturing. 

As shown in Figure 2, assume that the capturing cameras are within a rectangular range determined by (0,0) 



 5

and (smax, tmax). We initialize the active capturing process by a reasonably dense uniform sampling. Define 

quadruple as the group of four images that form a unit rectangle. Each time when we capture some new im-

ages, we split one of the quadruples into four. In the example shown in Figure 2, five new images are taken 

during the split. The organization of the images in AIBR is thus very similar to a quadtree. This data structure 

is very helpful for the capturing and rendering process, which will be addressed later. AIBR recursively per-

forms the above split until the constrained number of images is reached or some rendering quality criteria are 

satisfied.  

s

t

Split

Quadruple

tmax

smax

0

: Newly captured images during the split
 

Figure 2 The capturing pattern of AIBR.  

In this section we first discuss the color consistency criterion, which helps us to estimate the rendering im-

age quality for each quadruple given a voxel model of the scene. When the scene geometry is known, AIBR is 

as simple as iteratively choosing the worst quality quadruples and splitting them. When the geometry is un-

known, we propose a local-consistency voxel coloring approach for generic scenes including non-Lambertian 

ones. The full two-stage AIBR algorithm is the combination of the above components.    

 

A.  The color consistency criterion 
When the scene is Lambertian, light rays from the same object surface point should have the same color. This 

is referred as the color consistency criterion in this paper. Color consistency has found many applications in 

geometry reconstruction problems, such the voxel coloring algorithm [15] and various stereo algorithms 

[21][22].  

We notice that color consistency is also critical for image-based rendering. Consider the depth-driven render-

ing approach similar to [12], as shown in Figure 3. C1, C2, …, C6 are views that have been captured. To render 

the virtual view C, we split it into many light rays. For each light ray, e.g., CP, we trace it to a point on the ob-

ject surface, in this example, P. We then project point P to all the nearby captured views. The intensity of the 

light ray CP is approximated by weighted interpolation of the nearby light rays such as C3P, C4P, etc. If the 

scene is Lambertian, the nearby light rays should have the same color. That is, they should be color consistent. 

In practice, these light rays may have different colors for many reasons, such as the poor depth information of 

P, the non-Lambertian property of the surface, occlusions, sensor noise, etc.  Most ghosting or aliasing effects 



 6

in IBR rendering are due to the violation of the color consistency principle during the interpolation. Fortu-

nately, these bad effects can always be eliminated by taking more sample images around C.  

Virtual View

Captured Views

C1

C6

C5C4
C3

C2 C

P
Object Surface

 

Figure 3 The depth-driven IBR rendering scheme.  

 

The above discussion implies that color consistency verification can be a useful tool to estimate the render-

ing image quality. Consider an arbitrary quadruple q in Figure 2. Let Ij, j=1,2,3,4 be the four corner images of 

q. Let V be the voxel model of the scene, and vi, i=1,2,…,N be its occupied voxels sorted layer by layer from 

near to far. We measure the inconsistency score of q as follows. Take the occupied voxels vi, i=1,2,…,N in se-

quence and project them to the four corner images. The variances of the projected pixel colors are accumu-

lated. The final inconsistency score is defined as the average variance of all the visible voxels. To handle pos-

sible occlusions, we maintain mask images Mj, j=1,2,3,4 as in the standard voxel coloring algorithm. Whenever 

a voxel is projected to the images, the projected pixels are marked in the mask images. If later another voxel is 

projected to the same position in a certain image, it has to be ignored because the latter voxel is occluded by 

the previous one from that viewpoint. The pseudo code of the above algorithm is shown in Figure 4.  

In the above algorithm, we introduced single projection penalty  for voxels that have only one valid projec-

tion. This is because we are not very confident about the color of that voxel if we have only one observation. 

The penalty is heuristically determined as a constant value in the current implementation. The returned incon-

sistency score is the average variance of the projected pixel colors for all the visible voxels. Clearly, the higher 

the inconsistency score, the worse the rendering quality. Measures other than variance can also be easily incor-

porated into the algorithm, e.g., χ2 statistics [23], F distribution [23][24], etc.  



 7

Figure 4 Algorithm for estimating the rendering quality of light rays passing through quadruple q.  

Notice that if we strictly follow the rendering scheme in Figure 3, the four corner images may not be the 

closest captured images when the rendered light ray is inside the rectangle of the quadruple. Neighboring quad-

ruples may have been split and there may be captured images at the edges of the rectangle. Although we do 

consider such cases during the rendering, we ignore them in the performance estimation stage for simplicity. 

Another concern is whether the algorithm will over-estimate the rendering quality. The answer is positive, be-

cause if the intensities of the light rays changes fast within the quadruple, our estimation can be very wrong. 

This is similar to the aliasing effect in signal processing. To reduce the risk caused by over-estimation, we ini-

tialize our active capturing with a uniform sampling that is reasonably dense. An alternative solution might be 

to integrate the rectangle area of the quadruple into the quality measurement. When the area is relatively large, 

there is higher chance for over-estimation.  

 

B.  Active capturing when geometry is known   
Although getting the geometry information about the scene is very difficult, in this subsection we assume the 

geometry is known. For example, it can be obtained from the images captured so far. Subsection 0 will present 

function score = InconsistencyScore (q) 

   sum = 0, count = 0; 

   Reset the mask images Mj to 0;   

   for i=1,…,N 

       project vi to Ij, j=1,2,3,4; 

      check the validity of the projections by Mj; 

      switch (# of valid projections)  

         case 0: continue;  

         case 1:  

            sum += single projection penalty, count++;  

         case 2,3,4:  

            sum += variance of the valid projected pixels; 

            count ++;  

      end switch 

      Mark the valid projected pixels in Mj; 

   end for 

   score = sum/count; 

   return score;   



 8

a voxel coloring algorithm for generic scenes. In worst case, we may simply assume that the scene lies at a 

constant depth. This is widely used in the literature when the geometry is hard to recover [4][5][12].  

Figure 5 AIBR for known geometry.  

When the geometry is known, active capturing is very straightforward. We measure the inconsistency score 

for each quadruple with the algorithm in Figure 4, and then split the quadruple that has the highest score or 

worst estimated rendering quality. The algorithm ActiveIBR_KG (where KG stands for Known Geometry) is 

shown in Figure 5, where qk, k=1,2,…,K represent all the current existing quadruples.  

In Figure 5, the algorithm runs recursively. There are two stopping criteria. One is when the number of cap-

tured images reached a predefined limit. The other is when the inconsistency scores of all the quadruples are 

all less than a certain threshold, which guarantees the rendering quality to some degree. As the captured images 

are organized in a quadtree manner, in each loop only the newly generated quadruples need to be measured for 

their rendering quality, which is very time-efficient.  

 

C.  Voxel coloring for non-Lambertian scenes 
Voxel coloring [15] has been a very useful tool for recovering scene geometry from a set of images. A survey 

on various volumetric scene reconstruction algorithms including voxel coloring can be found in [25]. A com-

mon assumption in these algorithms is that the scene is Lambertian, or near-Lambertian. Various color consis-

tency measures [23][24] have been proposed under this assumption. When the scene has a lot of noise or is 

non-Lambertian, variable threshold may be used, or we can apply some probabilistic consistency function for 

voxel coloring [26][27]. The problem with the probabilistic approaches is that they assume light rays from the 

same surface point follows a Gaussian distribution. Although it might be able to handle noises well, the Gaus-

sian distribution is not a reasonable assumption for highly reflective surfaces. Moreover, these methods are 

very time-consuming compared with simple color consistency measures in the Lambertian case.  

function ActiveIBR_KG () 

start: 

   for all the quadruples qk, k=1,2,…,K 

      scorek = InconsistencyScore(qk)  

   find the quadruple that has max(scorek) and split it 

   if (max #of images reached or max(scorek)<T) 

      return; 

   else 

      go to start; 



 9

There is a difference between the voxel coloring algorithms in the literature and the one we want to propose 

for active IBR. In all the previous work, the goal is to find the 3D model of the scene as good as possible. In 

IBR, we recover the 3D model for depth-driven rendering. Our goal is to have the best rendering quality, but 

not to find the best 3D model. With rendering in mind, we define a color consistency measure based on local 

verification. For each voxel being tested, we claim it to be occupied when for all the quadruples the voxel is 

color consistent. As light rays from the same scene surface point to the images in one quadruple are often along 

very similar directions, we can assume that they have similar colors. Thus all the old simple color consistency 

measures can be used here. Since during the rendering we interpolate light rays only from neighboring light 

rays within a quadruple, the 3D model obtained from our voxel coloring algorithm can guarantee a good ren-

dering quality. We show our algorithm in Figure 6. The last stage of our voxel coloring algorithm is to add a 

plane at the maximum depth of occupied voxels. This is to avoid holes during the IBR rendering. 

Figure 6 Voxel coloring for non-Lambertian scenes. 

Similar to the original voxel coloring algorithm, our algorithm has a systematic bias to small depth voxels. 

Consider an extreme case where we have taken many sample images about the scene, the resultant voxel model 

may simply be a plane at the minimum depth. However, the bad voxel model will not hurt our rendering qual-

ity, as IBR can run well as long as the number of images and the geometry information jointly satisfy the sam-

pling curve requirement in [13]. In fact, the whole process of AIBR will help to find the best balance between 

the two factors.  

 

D.  A recursive approach for general scenes  
Our full active IBR algorithm runs active IBR for known geometry and voxel coloring recursively. We initial-

ize the capturing process by a reasonable dense uniform sampling.  

function Voxelcoloring () 

   for all the possible voxels from near to far  

      project it to qk, k=1,2, …, K 

      measure color consistency for each qk 

      if for all qk it is color consistent { 

         mark the voxel as occupied;  

         do supplemental things such as handling mask images; 

      } 

   end for 

   add a plane at the maximum depth of occupied  voxels;  



 10

We then apply voxel coloring and get a 3D voxel model. With the voxel model, we will be able to find which 

quadruple to split with an algorithm similar to that in ActiveIBR_KG. After the splitting, we may continue split-

ting or applying voxel coloring again. The whole process loops until the limit of the number of images is 

reached or all the quadruple has a good color consistency. The algorithm is shown in Figure 7.  

Figure 7 The full active IBR algorithm.  

The voxel coloring stage may take a long time to execute. Therefore we may not want to do voxel coloring for 

every split. At a certain stage, voxel coloring may actually make the geometry worse due to the systematic bias 

to small depth voxels. Therefore after a certain period we should leave voxel coloring algorithm out of the it-

eration.  

 

 

 

4. Experimental Results 
 
We test our algorithm on two synthetic scenes, Earth and Teapot. They are shown in Figure 8 (a) and (b), re-

spectively. Earth is a near-Lambertian scene, and we assume that its geometry is known. Teapot, on the other 

hand, is specular and illuminated by a spot light. The voxel model of Teapot is unknown, and we will use our 

voxel coloring algorithm to recover it during active capturing process.  

function ActiveIBR () 

   uniformly taking images as initialization.   

loop:  

   Voxelcoloring();  

   for all the quadruples qk, k=1,2,…,K 

      scorek = InconsistencyScore (qk) 

  find the quadruple that has max(scorek) and split it 

   if (max #of images reached or max(scorek)<T)  

      return;  

   else  

      go to loop; 



 11

  

(a)                                      (b)   

Figure 8 The two test scenes. (a) Earth. (b) Teapot.  

We first apply the AIBR algorithm for known geometry (Figure 5) to Earth. The geometry is described by a 

known 96×96×64 voxel model. We initialize our algorithm by a 7×7 uniform sampling, and the overall number 

of images is limited to be less than or equal to 169. The result is compared to a 13×13 uniform IBR (UIBR) 

sampling approach.  

  

(a)                                      (b)   

  

(c)                                      (d)   

  

(e)                                      (f)   

Figure 9 The final camera map of AIBR and UIBR and some sample images. 



 12

Figure 9 (a) shows the final camera map of AIBR. For comparison, (b) shows that of UIBR. Each dot repre-

sents a camera being there and taking one image. It can be observed that active IBR puts more cameras at the 

top-right portion of the camera plane. Figure 9 (c) is an example view captured in AIBR (red circled in (a)). 

UIBR did not sample that view. Figure 9 (d) is what can be rendered from the sampled images in UIBR. As a 

comparison, Figure 9 (e) is a view captured in UIBR (red circled in (b)). It is not captured in AIBR but can be 

rendered as (f). Obviously we would prefer to sample (c) instead of (e) because the quality degradation from 

(c) to (d) is more obvious than that from (e) to (f). Therefore AIBR made the right decision. 

To measure the improvement of active IBR over the traditional uniformly sampled IBR, we employ two ob-

jective measures. The first is the worst-case quality. From the quadruples formed by both approaches, we ren-

der the virtual views at their centers. As the center views are the farthest from the sampled images, most likely 

they will have the worst quality. Our first measure is the average peak signal-to-noise ratio (PSNR) of the 

worst 30 center views. Notice that we are able to measure the PSNRs because we are rendering 3D models and 

we have the real rendered images as our ground-truth. The second measure is the PSNR variance of rendered 

images. We randomly render 1000 images on the camera plane and measure the variance of the PSNRs. The 

results are shown in Table I. It can be observed that active IBR has a better worst-case quality and a smaller 

variance, which is what we want. 

Table I: Comparison between UIBR and AIBR on scene Earth.  

 UIBR AIBR 

Avg. PSNR of 30 worst center 

views 

32.8dB 33.2dB 

PSNR Var. of 1000 rendered 

images  

9.87 6.82 

 

We next show some experimental results on voxel coloring. Teapot has a highly reflective surface, which is a 

disaster to the traditional voxel coloring algorithms. We represent the geometry of Teapot with a 192×192×128 

voxel model. 7×7 images and 13×13 images are uniformly sampled on the camera plane. We then apply the 

traditional voxel coloring and our algorithm on the images. The resultant voxel models are shown in Figure 10 

(a), (b), (c) and (d). Notice that in both sampling density, our algorithm gives better results. More importantly, 

the traditional voxel coloring does not improve when the number of sample image increases, while our result 

for 13×13 images is much better than 7×7 samples.  



 13

  

(a)                                      (b)   

  

(c)                                      (d)   

Figure 10 Voxel coloring results for Teapot. (a) Traditional method, 7×7 sample images. (b) Traditional method, 
13×13 sample images. (c) Proposed method, 7×7 sample images. (d) Proposed method, 13×13 sample images. 

 

We finally show some rendered images for the Teapot scene. The comparison is between uniform sampling 

with optimal constant depth and active IBR with the new voxel coloring algorithm. The recursive process in 

Figure 7 is applied for active IBR. The overall number of images is limited as 169, and the active IBR algo-

rithm is initialized with 7×7 uniform samples. Active IBR does geometry refinement for every 20 newly cap-

tured images. Three example rendered images are shown in Figure 11 (a1-a3), (b1-b3), respectively. Notice the 

flower texture on the teapot. It is very obvious that the images rendered by our algorithm are much better than 

that by the traditional method.  

5. Conclusions and Future Work 
 
In this paper, we introduced active capturing for image-based rendering, which poses capturing cameras intelli-

gently based on the estimation of rendering quality. We also proposed a new voxel coloring algorithm that can 

handle non-Lambertian scenes. The combination of these two produces better results than the tradition IBR 

approach.  

The active capturing algorithm for IBR is a framework rather than a specific algorithm. It basically employs 

rendering quality estimation, capturing and geometry refinement recursively. Quadruple is a special case of 

neighborhoods. If we do not have a quadtree structure during the capturing, all the discussions are still valid for 

neighborhoods. Similarly, although voxel-based representation is used in our algorithm, other geometry repre-

sentation can also apply.  



 14

 

  

(a1)                                      (b1)   

  

(a2)                                      (b2)   

 

  

(a3)                                      (b3)   

Figure 11 Comparison of rendered images. (a1-a3) UIBR rendered at constant depth. (b1-b3) AIBR rendered with 
the reconstructed voxel model.  

 

There are yet some limitations on our algorithm. The quadtree structure makes our algorithm elegant but it 

also hurts the performance to some extent because the capturing pattern is constrained. We also need to know 

exactly where the camera is, which is difficult in real applications. We are currently working on applying the 

AIBR algorithm in real situations.   

 

References 
 
[1] S. B. Kang. “A survey of image-based rendering techniques”, VideoMetrics, SPIE Vol. 3641, pages 2-16, 1999. 

[2] L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system”, Computer Graphics 

(SIGGRAPH’95), pp. 39-46, Aug. 1995.  

[3] M. Levoy and P. Hanrahan, “Light field rendering”, Computer Graphics (SIGGRAPH’96), pp. 31, Aug. 1996. 



 15

[4] S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen, “The Lumigraph”, Computer Graphics (SIGGRAPH’96), 

pp. 43-54, Aug. 1996. 

[5] H.Y. Shum and L.-W. He, “Rendering with concentric mosaics”, Computer Graphics (SIGGRAPH’99), pp.299-306, 

Aug. 1999. 

[6] S. Chen and L. Williams, “View interpolation for image synthesis”, Computer Graphics (SIGGRAPH’93), pp. 279-

288, Aug. 1993.  

[7] S. M. Seitz and C.M. Dyer, “View morphing”, Computer Graphics (SIGGRAPH’96), pp. 21-30, Aug. 1996.  

[8] M. Pollefeys, "Self-calibration and metric 3D reconstruction from uncalibrated image sequences", Ph.D. Thesis, 

ESAT-PSI, K. U. Leuven, 1999.  

[9] L. McMillan, “An image-based approach to three-dimensional computer graphics”, Technical Report, UNC Computer 

Science TR97-013, 1999. 

[10] J. Shade, S. Gortler, L. W. He, and R. Szeliski, “Layered depth images”, Computer Graphics (SIGGRAPH’98), pp. 

231-242, July 1998.  

[11] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering architecture from photographs: A hybrid geome-

try- and image-based approach”, Computer Graphics (SIGGRAPH’96), pp. 11-20, Aug. 1996.  

[12] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen,  “Unstructured Lumigraph rendering”, Computer 

Graphics (SIG-GRAPH’01), pp 425-432, Aug. 2001. 

[13] J.X. Chai, X. Tong, S.C. Chan and H. Y. Shum, “Plenoptic sampling”, Computer Graphics (SIGGRAPH’00), pp.307-

318, July 2000.   

[14] C. Zhang and T. Chen, “Generalized Plenoptic Sampling”, Carnegie Mellon University Technical Report, AMP01-06.  

[15] S. M. Seitz and C. R. Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring”, CVPR 1997, pp. 1067-1073.  

[16] R. Pito, “A Solution to the Next Best View Problem for Automated Surface Acquisition”, IEEE Transactions on 

PAMI, vol. 21, Oct. 1999.  

[17] M. K. Reed, “Solid Model Acquisition from Range Images” Ph.D. thesis, Columbia University, 1998.  

[18] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active Learning with Statistical Models”, Journal of Artificial Intelli-

gence Research, pp. 129-145, Vol. 4, 1996.  

[19] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and active learning”, In G. Tesauro, D. 

Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, Cambridge, MA, 

1995. MIT Press. 

[20] M. Hasenjäger, H. Ritter, and K. Obermayer, “Active learning in self-organizing maps”, In E. Oja and S. Kaski, edi-

tors, Kohonen Maps, pp. 57-70. Elsevier, Amsterdam, 1999.  

[21] I. Cox, S. Hingoraini, S. Rao, “A maximum likelihood stereo algorithm”, Computer Vision and Image Understanding, 

Vol. 63, No. 3, pp. 542-567, May, 1996.  

[22] S. Roy and I. J. Cox, “A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem”, Int. Conf. on 

Computer Vision (ICCV'98), pp. 492-499, Jan. 1998,  

[23] S.M. Seitz and C.M. Dyer. “Photorealistic scene reconstruction by voxel coloring”, Int. Journal of Computer Vision, 

Vol. 35, No. 2, pp.1067–1073, 1999.  



 16

[24] A. Broadhurst and R. Cipolla, “A statistical consistency check for the space carving algorithm”, Proc. 11th British 

Machine Vision Conference, volume I, pp.282–291, Bristol, Sep. 2000.  

[25] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer, “A survey of methods for volumetric scene reconstruction 

from photographs”, Proceedings of the Joint IEEE TCVG and Eurographics Workshop (VolumeGraphics-01), pp.81--

100, June, 2001.  

[26] A. Broadhurst, “A Probabilistic Framework for Space Carving”, Ph.D. Thesis, University of Cambridge, 2001.  

[27] A. Yezzi, G. Slabaugh, A. Broadhurst, R. Cipolla, R. Schafer, “A Surface Evolution Approach to Probabilistic Space 

Carving”, The 1st International Symposium on 3DProcessing, Visualization, and Transmission (3DPVT) 2002.  

 


