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Abstract

This thesis presents a novel way of scene analysis in images and videos. Tradi-
tional scene analysis using object detection involves a lotof human labor for labeling
the images, and also has the difficulty of handling a large number of objects categories.
Our approach to scene analysis is unsupervised in nature. Given a video, we want to
“discover” the objects of interest. No single labeled imageis used to pre-train or ini-
tialize the system. Still, the system is able to discover theobjects of interest. It works
on a wide variety of videos and it can discover objects belonging to a large set of dif-
ferent categories. It works in crowded scenes with distracting background pattern and
motion. It works in partial occlusions and total removal. The probabilistic framework
consists of an appearance model and a motion model. The appearance model exploits
the consistency of object parts in appearance across frames. The motion model exploits
the motion continuity across frames. Together, they provide appearance and location
estimates of the objects of interest. This framework provides a basis for higher level
video content analysis tasks.
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Chapter 1

Introduction

1.1 Goal

This thesis presents a framework for discovering useful objects from images and videos. A system

that could automatically extract objects from images and videos would be of great importance.

Applications are countless: surveillance, image and videosearch, robots with vision capability,

computers with visual interfaces, smart vehicles. This chapter serves as an introduction to the

thesis.

1.2 Problem definition

Data mining is the process of extracting implicit and usefulinformation from data. In this work,

our data consists of images or videos. Let us consider imagesfirst. There are two types of input:

single input image vs. multiple input images.

The task of making sense out of a single image is called unsupervised image segmentation. One

can identify the structure within a single image by analyzing smaller patches and grouping them

into larger segments using plausible psychological rules.The outcome? An image segmented into

multiple regions by drawing outlines along the boundaries of segments, as if a human would do if

asked to do the same task. An image segment does not necessarily correspond to an object, since an

object (e.g., a car) can consist of multiple segments (wheels, window, body) that have very distinct

visual properties and are naturally segmented into distinct regions.

In this thesis, we are interested in the other scenario: multiple input images. One can still

3



4 1. INTRODUCTION

segment the images one by one separately, but more than that,one can analyze the images jointly.

The outcome? One can identify “objects”. In the example above, if we have multiple images that

consist of cars, we might be able to figure out that the wheels or the windows are smaller parts of

a larger entity that repeats over and over again in differentimages. In this way, the concept of a

larger entity that is composed of smaller parts emerges.

A video is a sequence of images. More than that, it is a sampling of a scene usually with a

high enough frequency so that things move in a relatively smooth way. Exploiting the temporal

continuity for data mining is also of out interest in this thesis.

1.3 Probabilistic Graphical Models

For a computer to reach human vision capabilities is not an easy task. There is too much infor-

mation in images, yet too few time and space to analyze them. For example, binary images of

size1000 × 1000 pixels can have21000000 different variations, which is larger than10100000. If all

of these variations contain valuable information, then mining data in such a large space would be

infeasible.

Fortunately, images often have inherent structure that could potentially reduce the amount of

variations. For example, in natural images, neighboring pixels often share similar properties such

as color or texture. Another important structure is that objects are composed of parts, and scenes are

composed of objects. Once we recognize some parts in an image, we have better clue about what

the other parts in the image might be. Exploiting these sortsof structures for scene understanding

and object detection is one of the current trends in computervision and pattern recognition research.

With such a hierarchy at hand, the21000000 variations become more organized, and data mining

becomes more reasonable.

If it is indeed true that within the21000000 variations there is a lot of redundant information,

then our hope is to represent these21000000 variations by some other factors that are not directly

observed, yet carry the structure and explains the large amount of variations that are observed.

These factors are calledlatent or hidden variables. The relationship between a latent variable

(e.g. the concept of a “car”) and an observed variable (e.g. the image pixels that constitute a car)

can be described by aprobabilistic graphical model. In general, a probabilistic graphical model de-

scribes the mathematical relationship betweenL-dimensional hidden variables andH-dimensional
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observed variables, withL < H. Latent variables might represent human interpretations of the real

world, or they might simply exist for theoretical convenience. In other words, it is up to the human

to interpret the underlying meaning of latent variables. Inthis thesis, the latent variables can be

considered as the hidden (unknown beforehand) object categories we would like to discover.

A nice property of using probabilistic graphical models is that building such a system requires

much less human labor in terms of data preparation, as opposed to some state of the art object

detection systems based on discriminative models that require intensive human power to prepare

training data. This unsupervised nature is especially desirable when the human experts do not

have enough data to train the system, or no training data at all! In addition, the avoidance of

requiring labeled images poses several other advantages. First, an image may consist of many

objects in a complex layout. So far there is no common approach to annotating images at the object

level. Second, there are many visual illusions showing thatdifferent people may have different

understandings of an image, hence the subjectiveness mightresult in negative impact on image

annotations. In summary, it is very expensive and difficult to collect large mount of accurately

annotated images for constructing a image understanding system. Considering the abundance of

images and videos available on the Internet, probabilisticgraphical models provide a promising

direction.

A special type of probabilistic graphical models calledtopic modelshas been used in the sta-

tistical text understanding community and later in computer vision. Since images and videos have

some distinct properties that text does not have, these properties inspire our extensions to existing

topic models. Below we will give an overview of topic models and our extensions.

1.4 Topic models

Topic models have been used in the statistical text understanding community for automatically

discovering topics from a collection of documents. In computer vision, documents are analogous

to images and words are analogous to visual words, being vector quantized local feature descriptors.

An image is considered a mixture of “topics” and each topic isconsidered a mixture of words. In

our work, the foreground object and background clutter are the twotopics.

First, we find a number of patches to generate the visual words. These patches are determined

by running interest point detectors; see [1] for a collection. Features are then extracted from these
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patches by Scale Invariant Feature Transform (SIFT) [2], yielding a128-dimensional local feature

descriptor for each patch. In all of our experiments, weintentionallydiscard color information and

extract patches and SIFT descriptors from grayscale imagesin order to make object discovery more

challenging. Patches and features extracted from color images [3] can easily be used instead.

The SIFT descriptors are then collected from all images and vector quantized using k-means

clustering. The resultingJ cluster centers (we useJ = 200) form the dictionary of visual words,

{w1, ..., wJ}. Each patch can then be represented by its closest visual word. Patches are now

represented by discrete visual words instead of continuousSIFT descriptors. Note that acquisition

of visual words does not require any labeled data, which shows the unsupervised nature of this

system. This also means they are general enough to be appliedto a wide range of different tasks.

Denote the images by{d1, ..., dN} and define topic variableszi(k) indicating if theith patch

in imagedk is originated from the foreground object or from the background clutter.{zi(k)} are

hidden variables; it is our goal to infer their values. Definethe conditional probabilitiesP (z|d)

andP (w|z) for each patch as follows:P (z = zFG|d = di) indicates in imagedi how likely a

patch originates from the foreground object ;P (z = zBG|d = di) is defined likewise.P (w =

wj |z = zFG) indicates how likely a patch originated from the foregroundobject has appearance

corresponding to visual wordwj; P (w = wj|z = zBG) is defined likewise.

In the following, we will give an overview of five approaches,A1 to A5, which we will later

refer to.

1.4.1 A1: No location or shape info

A particular topic model called Probabilistic Latent Semantic Analysis (PLSA) has recently been

applied to object discovery [4][5] and has shown good results. PLSA asserts that the probability of

observing a patch in imaged originated from topicz with appearancew is given by

P (d,w, z) = P (w|z)P (z|d)P (d). (1.1)

Using inference methods, one can infer the values of the hidden topic variables based onP (z|d,w)

[6]. One important drawback of PLSA is that it is based on the bag-of-words image representation

which completely ignores the position of the visual words. In other words, if we randomly shuffle

around the patches in the image, PLSA would still infer the same hidden topic for each patch! This

is often not desirable because the spatial configuration of patches can give us a clue about their
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identity. Approaches that use PLSA in text [6], video [7] or still images [4] would suffer from this

inherent drawback.

One point worth mentioning is, PLSA is known for its capability of handling polysemy: if a

visual wordw is observed in two imagesdi anddj , then the topic associated with that word can

differ in di anddj : arg maxP (z|di, w) can be different fromarg max P (z|dj , w). In other words,

PLSA allows a visual word to have different meanings in different images.

1.4.2 A2: Spatial location

Whenw is merely an appearance descriptor and contains no spatial information, the model does

not care about the spatial ordering of thew’s. This is problematic when spatial information is an

important cue for recognition. A number of approaches have been employed in the literature to

include spatial location information of local descriptorsfor recognition [8][9][10][11] [12] [13].

We can use a topic model to specify where the object is more likely located. Letr denote the

location of a patch. For a patch in imaged with appearancew and locationr, the joint distribution

P (d,w, r) has the formP (d,w, r, z) = P (d)P (z|d)P (w|z)P (r|z). P (r|z) is a spatial distribution

that models where a patch with topicz is more likely to occur. This model can be useful in modeling

pedestrians for instance less likely to walk in the sky. Including location information more or less

solves the ambiguity mentioned inA1, that is, the spatial ordering ofw’s now has an impact on the

discovery of topics, even when the topic appearance has large ambiguity (large overlap between

the distributionsP (w|zi) and P (w|zj), i 6= j). The spatial distributionP (r|z) uses the same

parameters across all documents, hence it is a global location model, and it is not translation nor

scale invariant.

1.4.3 A3: Spatial clustering

In Section 2 we will introduce a model that is based on the assumption that an object normally

consists of patches that co-exist tightly rather than scattered around loosely. The location and scale

of the object is hypothesized through a spatial distribution P (r|d, z) , wherer denote the location of

a patch, and the joint distribution isP (d,w, r, z) = P (d)P (z|d)P (w|z)P (r|d, z). The algorithm

for finding the topic and object location and scale can be viewed as performing joint spatial and

appearance clustering. Different thanA2, the parameters for the spatial distributionP (r|d, z) are

estimated per image, hence it provides translation and scale invariance. Notice that this approach
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only models the spatial clustering behavior of patches but it does not model the relative position or

the ordering between patches.

d z

r

w

Figure 1.1: The graphical model. The outer plate indicates the graph is replicated for each image,

and the inner plate indicates the replication of the graph for each patch. The topic variablez is

hidden.

1.4.4 A4: Correspondence

We extend the topic model framework to incorporate information about spatial configuration.

Rather than building a shape model as in constellation models [14], pictorial structures [15], or

fragment-based models [16], we will exploit the fact that similar objects in different images are

more likely to have strongcorrespondencesand extend the topic model to include this extra piece

of information.

Correspondence-based object recognition has been in the literature for nearly forty years. Even

though computing correspondence is computationally expensive, it is still popular, because of its

promising performance. Recent work by [17][18][19] [20] use correspondence as a central ele-

ment in their object recognition framework. However, theirmodel and learning algorithm differ

substantially from what is proposed here.

Our use of correspondence is to provide a non-parametric representation of the location of the

consistentpatches. By using correspondence methods that take into account the spatial distortion of

a correspondence and allow partial matching, the more matches a patch has, the better chances the

patch belongs to a foreground object, as opposed to background clutter. This piece of information

is employed by the topic model in the form of a featurer, or reward. More precisely, the reward

for a patch is high when this patch is repeatedly matched against other patches in other images.

On the other hand, patches from random clutter are less likely to find as many matches, which

results in lower rewards. This is precisely the notion that objects of interest normally show higher
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consistency across images and it is the consistency that tells an object apart from background clutter

or other objects.

1.4.5 A5: Temporal consistency

Extending topic models from still images to motion videos requires the integration with a temporal

model. We propose a novel spatial-temporal framework that uses topic models for appearance

modeling, and the Probabilistic Data Association (PDA) filter for motion modeling. The spatial and

temporal models are tightly integrated so that motion ambiguities can be resolved by appearance,

and appearance ambiguities can be resolved by motion. With extensive experiments, we show

promising results that cannot be achieved by appearance or motion modeling alone.

1.5 Limitations of the system

One important question to ask is, when and where the system does not work. The answer is as

follows: if two objects are always stationary with respect to each other (no relative motion), and if

they always co-occur in each and in all frames, then the current system cannot separate them.

My understanding of why human beings might still be able to separate them into two distinct

objects is due to the availability of additional visual cuesthat the system is not utilizing yet. For

example, one of the two objects could be highly salient in color while the other object has a very

dull appearance. In this case, human might focus more on the visually appealing one, and hence

implicitly considering them as distinct objects. Another possibility is that, human has prior expe-

rience of seeing one object in a situation where the second object was not present. Both cases can

be incorporated into our system framework, as we discuss below.

In the first case, additional features such as color saliencycan be represented as random vari-

ables. By introducing additional conditional probabilitydistributions (such as the ones we used

in Markov Random Field image segmentation and in Geometric Consistent Regions), we can au-

tomatically learn the correlation between, say, the color saliency and how likely the object is of

interest. If this new feature is distinct for these two objects, we have chances to separate them.

In the second case, we simply need to find data where two objects are separated. Once we

present the system with images where only one object appears, the system is then able to tell them

apart.
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The current system is based on a limited number of visual cues, and introducing more visual

cues would certainly increase the system’s capability. However, as easy as it sounds, the extraction

of visual cues itself is a challenging topic.



Part II

Discovering objects in images

11





Chapter 2

Spatial Clustering

2.1 Semantic Shift algorithm

Here we introduce the Semantic-Shift algorithm that explicitly takes spatial structure into account.

Semantic-Shift consists of a modified version of PLSA, whichhas an extra spatial distribution

component, and after every iteration of Expectation-Maximization [21], the probability of each

word belonging to a specific topic (i.e., the latent semanticof each word) is being updated. As a

result, the location and scale estimates of the foreground object are shifted. Inspired by the mode-

seeking ‘mean-shift’ algorithm [22][23], our algorithm seeks for the semantics or topics, hence

named ’semantic-shift’.

2.1.1 Model description

We assume that in each image there is no more than one single foreground object. Experiments on

the UIUC car dataset (see Fig.2.2) show that even if there aremultiple cars (foreground objects)

in one image, Semantic-Shift still can produce good resultsas long as the following assumptions

are satisfied. We make the assumption that the foreground object has no holes and has a convex

shape. Both assumptions hold for most objects. The reason weneed these assumptions is because

we want to model the image area occupied by the object as a Gaussian, which is convex in a 2D

image. Since there is no specific reason our model should be confined to a Gaussian except for

simplicity, it should be possible to loosen the Gaussian shape assumption so that the model can

handle more complicated shapes of objects.

13
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We introduce the conditional probabilityP (r|d, z). The dependence of positionr on image

d allows the foreground object to havedifferent locations and scales in every imaged. In other

words, the foreground object is allowed to be at vastly different positions in both learning and

testing. The scale can also vary freely over different images. Allowing different locations and

scales in different images is desirable, as it provides the basis for scale-invariance and translation-

invariance. The dependence ofr on z allows the foreground object and the background clutter to

have different locations and scales. We model the location distribution of the background clutter

as the probability of the complement of that location being foreground. This describes the realistic

situation that, at a particular location, the higher the probability of being foreground, the lower the

probability of being background.

2.1.2 Location and scale estimation for foreground object

The conditional probabilityP (r|d, z) is computed for each topic in each image. Denote the topic

zk that corresponds to the foreground object aszFG and call it the foreground topic. Since we

want the system to be unsupervised, we need to create an unsupervised rule for deciding which

of the two topics,z1 andz2, is the foreground topiczFG. We achieve this by assuming that the

foreground topic has on average a smaller spatial support than the background topic. We call this

stepforeground topic identification, as described below.

In the literature, finding a robust estimate of location and scale under the univariate model

assumption is not new. In our experiments, we simply take theweighted mean and weighted

standard deviation as estimates of the location and scale ofthe foreground object. Specifically,

we define the spatial support of a topiczk in an imagedi as the weighted standard deviation of

the positions of all interest points{rdi

1 , ..., rdi

|di|
} , where each interest pointrdi

p is given a weight

vp = P (zk|di, wj), wherewj is the visual word corresponding to pointrdi
p . The weighted standard

deviation is defined as

σ̂ik =

√
√
√
√

∑|di|
p=1 vp(r

di
p − µ̂ik)2

|di|−1
|di|

∑|di|
p=1 vp

(2.1)

whereµ̂ik is the weighted sample mean of the positions of all interest points. After foreground

topic identification, we denote the location and scale estimate of the foreground object in imagedi

asµ̂i,FG andσ̂i,FG, and the corresponding topic aszFG. We assume the interest points belonging

to the foreground topic have a spatial distribution in the form of a Gaussian,P (rdi
p |zFG, di) ≡
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N(rdi
p |µ̂i,FG,σ̂i,FG). The spatial distribution of the background is then set to the complement of

the former distribution, meaning that the more likely the foreground, the less likely the background,

and vice versa.

2.1.3 Model fitting

The goal is to maximize the log-likelihood,

L =
∑

i

∑

j

∑

p

n(di, wj , r
di
p ) log P (di, wj , r

di
p ) (2.2)

where the joint probabilityP (di, wj , r
di
p ) factorizes as

P (di, wj , r
di
p ) = P (di)P (zk|di)P (wj |zk)P (rdi

p |zk, di) (2.3)

We use a modified version of the EM algorithm where the location and scale of the foreground

object are estimated in each iteration. We use E’-step and M’-step to denote the two iteration steps.

In each iteration of Semantic-Shift, the posterior probability P (zk|di, wj , r
di
p ) is updated as in

Eq. (2.4). This quantity tells us how likely the visual wordwj at positionrdi
p in imagedi is part

of the foreground (or background) object. Using this posterior probability, we can compute the

location and scale estimates of the foreground object, as explained in the previous section. This

explains Eq. (2.8).

Here is the Semantic-Shift algorithm:

E′ − step :

P (zk|di, wj , r
di
p ) ∝ P (zk|di)P (wj |zk)P (rdi

p |zk, di) (2.4)

M′ − step :

P (wj |zk) ∝
∑

i

∑

p

nijpP (zk|di, wj , r
di
p ) (2.5)

P (zk|di) ∝
∑

j

∑

p

nijpP (zk|di, wj , r
di
p ) (2.6)

P (di) ∝
∑

j

∑

p

nijp (2.7)

P (rdi
p |zk, di) updated according to Section2.1.2 (2.8)
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wherenijp ≡ n(di, wj , r
di
p ). Note that these equations need normalization to make them proba-

bility distributions. Both learning and inference (test stage) use the above iterative procedure to

obtain the conditional probabilities, except that during inference (test stage) the factorP (wj |zk) is

kept fixed and not being updated anymore.

After each iteration, the location and scale estimates of the foreground topic are shifted to a

new value, and the Gaussian distributionP (rdi
p |zk, di) is updated accordingly. Notice that the E’-

step depends on the termP (rdi
p |zk, di), i.e., the “shift” of the location and scale estimates playsa

central role in the overall iterative scheme.

It is worth mentioning that, even though the location and scale estimates are found on a per

image basis, they are actually tightly coupled with all the system parameters across all images,

since the same conditional probability tableP (w|z) is used by all images.

2.2 Experiments

The red and green ellipses in Fig. 2.1 and 2.2 represent the inferred most likely topics of each visual

word; red indicates that the system labels the particular region as foreground. Comparing PLSA to

Semantic-Shift, it can be seen that foreground objects are more precisely located by Semantic-Shift.

Figure 2.1: Results on test data. Left column: PLSA. Right column: Semantic-Shift.



2.2. EXPERIMENTS 17

Figure 2.2: Results on test data. Left column: PLSA. Right column: Semantic-Shift.
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Chapter 3

Discovery Integrated with Segmentation

3.1 Introduction

Image segmentation can be categorized into interactive andnon-interactive. Interactive systems

such as ‘Magic Wand’ [24] and ‘Intelligent Scissors’ [25] have practical importance in image edit-

ing. These systems start with a user specified region or roughcontour and use texture or edge

information to achieve segmentation. Recently, there has been improvements on further reducing

the amount of required user interaction to achieve comparable segmentation performance. In the

GrabCut method [26], only a rough bounding box is needed, which is a significant improvement

over previous methods.

Suppose the user wants to segment the same type of object froma setof images, instead of a

single image. In previous interactive systems, the user must specify the object within each image,

which can be time consuming. If the target objects share certain characteristics, these character-

istics can be shared across images. Hence it is possible to further reduce the required amount of

human interaction.

In this work, we would like to investigate how well we can segment asetof images withzero

mouse clicks. On a high level, this is achieved by the interaction between a method that provides

rough bounding boxes of the target objects in each image, anda method that uses the bounding

boxes as seeds to achieve foreground-background segmentation. The method that provides bound-

ing boxes will be called ‘automatic object discovery’, and the method that achieves segmentation

is based on the ‘GrabCut’ method [26].

19
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We present a novel approach to background cutout for image editing. We show how background

cutout can be achieved without any user labeling. This is in contrast to current methods, where the

user needs to label each image separately. Our method uses automatic object discovery methods to

provide location and scale estimates of the object of interest; these estimates then provide seeds for

initializing color distributions of a segmentation algorithm. We show that our approach can achieve

similar performance as traditional methods that require users to specify for each image a bounding

box of the target object.

We will review image segmentation by GrabCut in Section 3.2.We will then detail the auto-

matic object discovery method in Section 3.3, and its interaction with GrabCut in Section 3.4. This

is followed by experiments in Section 6.4, and a summary in Section 3.6.

3.2 Image Segmentation by GrabCut

The GrabCut method [26] is based on interactive graph cuts [27], which provides an energy mini-

mization framework for segmenting a single image into foreground (object) and background. Hard

constraints are obtained by the user who specifies certain pixels as foreground or background. Soft

constraints incorporate both boundary and region information. Minimization is done using a stan-

dard minimum cut algorithm. The obtained solution gives thebest balance of boundary and region

properties among all segmentations satisfying the constraints.

More specifically, two Gaussian mixture models (GMM) are used to model the RGB color of

each pixelzn, one for the foreground and one for the background. A vectork = {k1, ..., kN }

assigns to each of theN pixels a unique GMM component, one component either from theback-

ground or from the foreground model, according toαn = 0 or 1. The energy functionE = U + V

consists of a node potentialU(α,k,θ, z) =
∑

n

D(αn, kn, θ, zn) where

D(αn, kn, θ, zn) = − log π(αn, kn) +
1

2
log detΣ(αn, kn)

+
1

2
(zn − µ(αn, kn))T Σ(αn, kn)(zn − µ(αn, kn))

so that the parameters are

θ = {π(α, k), µ(α, k),Σ(α, k), α = 0, 1, k = 1...K}
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and a smoothness potential

V (α, z) = γ
∑

(m,n)∈N

[αm 6= αn] exp−β ‖zm − zn‖
2

where [.] is the indicator function,N is the set of neighboring pixels, andγ andβ control the

strength of the smoothness term. Once the energy function isdefined, thesegmentation mask(i.e.,

the foreground-background identityαn of each pixel) is found through the following steps:

1. User selects a bounding box by mouse clicking. Pixels outside of bounding box are marked

as background (αn = 0). Pixels inside the box are marked asαn unknown.

2. Computer creates an initial image segmentation, where all unknown pixels are tentatively

placed in the foreground class and all known background pixels are placed in the background

class.

3. Gaussian Mixture Models (GMMs) are created for initial foreground and background classes.

4. Each pixel in the foreground class is assigned to the most likely Gaussian component in the

foreground GMM. Similarly, each pixel in the background is assigned to the most likely

background Gaussian component.

5. The GMMs are thrown away and new GMMs are learned from the pixel sets created in the

previous set.

6. The energy function is minimized to find a new tentative foreground and background classi-

fication of pixels (i.e., minimize the energy functionE overαn).

7. Repeat from Step 4 until convergence.

Convergence properties are discussed in more detail in [27][26].

Notice that, without Step 1, the system does not know the color characteristics of the back-

ground regions, and hence it cannot determine which regionsare foreground and which are back-

ground.

3.3 Automatic Object Discovery

As mentioned in the introduction, if multiple images are to be segmented, and if these images

contain the same type of object (call them the target objects) that the user wants to segment, then

it is possible to analyze the region characteristics that consistently occur across images. It is the
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consistency that tells the foreground from the background apart. In this section, we will introduce

such a method.

Topic models such as Probabilistic Latent Semantic Analysis (PLSA)[6], were originally used

in the text understanding community for unsupervised topicdiscovery. In computer vision, topic

models have been used to discover object classes, ortopics, from a collection of unlabeled images.

As a result, images can be categorized according to the topics they contain. In the context of

unsupervised object detection, the object of interest and the background clutter are the twotopics.

Visual words (or textons) [28] are vector quantized local appearance descriptors from patches.

Objects can be represented as collections of visual words. We will discuss in more detail in Section

6.4 on how the visual words are generated. Following the notations used in the text understanding

community,w ∈ W = {w1, ..., w|W |} is the visual word associated with a patch,z ∈ Z =

{zFG, zBG} is a hidden variable that represents thetopic (foreground or background) associated

with a patch, andd ∈ D = {d1, ..., d|D|} is the index of the image associated with a patch.

PLSA assumes the joint distribution ofd, w,andz can be written asP (d,w, z) = P (d)P (z|d)P (w|z).

PLSA is known for its capability of handling polysemy: if a visual wordw is observed in two im-

agesdi anddj , then the topic associated with that word can differ indi anddj : arg maxP (z|di, w)

can be different fromarg maxP (z|dj , w). In other words, PLSA allows a visual word to have

different meanings in different images.

We augment the PLSA model in the following way. We introduce an extra variabler in the

graph. This variable is directly associated with theα values in GrabCut (Section 3.2). The idea

is to use the segmentation mask produced by GrabCut to guide the automatic object discovery

method. This sounds like the opposite direction of what we are seeking for: we wanted to use

automatic object discovery to provide seeds for initializing the color distributions in GrabCut. But

as we will see later, automatic object discovery and GrabCutare intimately connected, each feeding

information to the other.

Figure 3.1 shows our proposed graphical model. The outer plate indicates the graph is repli-

cated for each image, and the inner plate indicates the replication of the graph for each patch. The

topic variablez is hidden. Ther value for each patch is obtained by looking up the segmentation

mask: if this visual word corresponds to a patch that is segmented by GrabCut as foreground, then

r = 1; otherwise,r = 0.

The segmentation mask is correlated with the hidden topicz (foreground or background). This
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d z

r

w

Figure 3.1: The proposed graphical model for automatic object discovery.

correlation is expressed in the graphical model as the link from z to r, or P (r|z). We consider the

r value of each patch as an additional featurer that is related to the hidden topic variablez. We

learn the parameters using the EM algorithm:

E− step :

P (z|d, r, w) = k1P (z|d)P (w|z)P (r|z) (3.1)

M− step :

P (w|z) = k2

∑

d,r

m(d,w, r)P (z|d, r, w) (3.2)

P (z|d) = k3

∑

w,r

m(d,w, r)P (z|d, r, w) (3.3)

P (r|z) = k4

∑

w,d

m(d,w, r)P (z|d, r, w) (3.4)

wherek1, ..., k4 are normalization constants, andm(d,w, r) is a co-occurrence matrix that counts

the triples(d,w, r).

A typical distribution ofP (r|z) is shown in Figure 4.3. From this table we can see how ther

value is correlated withz. The foreground topiczFG strongly suggests that the GrabCut segmenta-

tion mask is also foreground at the corresponding position,while the ambiguity of the background

topic is higher and does not as often correspond to GrabCut’sbackground. The automatic object

discovery method is doing inference based on the co-occurrences of the visual words across images

(as PLSA does),andalso based on the segmentation mask returned by GrabCut. TheEM algorithm

figures out from data how to optimally make judgements from these two “sensors”: the GrabCut

sensor (which provides{r}) and the appearance sensor (which provides{w}).
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r=0 r=1

zFG 0.29 0.96

zBG 0.71 0.04

Figure 3.2: A typicalP (r|z).

3.4 Automatic Seeding

In this section, we will use automatic object discovery to assign seeds without any user interaction.

Here are the steps:

1. Automatic object discovery determines the topic of each visual word. In the first iteration,

we do not know yet which topic corresponds to the foreground object. Use the topic whose

positions of visual words has smaller variance as foreground. These visual words are called

the foreground visual words.

2. Find a bounding box for each image: The location and scale of the box are the median and

four times the standard deviation of the coordinates of the foreground visual words. We use

the median as it is more robust to outliers than the mean.

3. Run GrabCut, except that using the computed bounding box instead of using user input. Get

segmentation maskα for each image.

4. Use segmentation mask to update ther values in automatic object discovery.

5. Repeat from Step 1 until convergence.

We found this iterative algorithm typically converges in three or four iterations.

Notice that, during automatic object discovery, information is flowing across all images because

all images share the sameP (w|z) andP (r|z) distributions, whereas during GrabCut, segmentation

is done only locally within each image.

3.5 Experiments

We use the Caltech face data set [29] to illustrate the process and results of our method. The method

is general and can be applied to other object types as well. Werandomly sample twenty images
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from the Caltech face data set, and resize them to448 × 296 pixels.

In GrabCut we use patches found by the Watershed transformation [30] instead of raw pixels

as basic units. This speeds up the processing. Using raw pixels can provide better segmentation,

while the method stays the same.

In automatic object discovery the basic units are the visualwords, which are created as follows.

First, elliptical patches are detected by the Hessian Affineinterest point detector [1]. We use a

codebook size of500 for quantizing the SIFT descriptors [2] of these patches into visual words.

It is worth mentioning here that the SIFT descriptors, and hence the visual words, carry texture

information, while the patches used in GrabCut carry color information. Hence our automatic

background cutout method is utilizing information from both types of features.

Figure 3.3 demonstrates results. Figure 3.3(b) is the result of interactive GrabCut, which re-

quires the user to specify a bounding box as shown in Figure 3.3(a). Notice that we use Watershed

segmented patches instead of raw pixels for speed up, hence the result does not closely follow the

object contour, but raw pixels could certainly be used instead. Figure 3.3(c) to (h) shows the result

of our automatic method. The red and green crosses in (c)(e)(g) are the foreground and background

visual words. Based on the foreground visual words (the red ones), a bounding box is calculated

(not shown). Our method produces the results (d)(f)(h) after the first, second, and third iteration,

respectively. The automatic result in Figure 3.3(h) is comparable to the interactive approach in

Figure 3.3(b).

One of the reasons the result is not perfect is due to the way wecalculate the bounding box.

Our experience with GrabCut is that the result is quite sensitive to the preciseness of the bounding

box, in terms of how close the box covers the object. If too much background is included, then the

segmentation is rough. On the other hand, if the box is too small, then some part of the object will

be cutout. For example, comparing Figure 3.3(e) and (g), since the visual words inside the human

face are labeled more correctly in (g), the bounding box is tighter in (g) than in (e), resulting in the

better results in (h) than in (f). Additional results are shown in Figure 3.4. We currently compute

the bounding box using median and variance, but more sophisticated robust statistics might provide

better boxes.
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(a) Old method: draw a box (b) Result of (a) (c) Automatic, iter 1

(d) Result of (c) (e) Automatic, iter 2 (f) Result of (e)

(g) Automatic, iter 3 (h) Result of (g)

Figure 3.3: See Section 6.4 for details.

3.6 Conclusion

First, we have shown how background cutout can be achieved with zero user labeling. This is

in contrast to current methods, where the user needs to labeleach image separately. We have

shown that, by using the estimated foreground-background visual words in the automatic object

discovery method, a bounding box can be automatically computed and used to initialize GrabCut.

In return, the foreground-background segmentation mask ofGrabCut can be used to update the

features in automatic object discovery, and hence refining the foreground-background labeling of

visual words in the next iteration. Second, our method integrates texture and color information in

a novel way: automatic object discovery uses visual words, which captures texture around interest

points; GrabCut uses color from patches found by Watershed transformation. Compared with

previous automatic object discovery methods that only operate on sparse interest points [31], our

method provides finer segmentation.
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Figure 3.4: Results.
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Chapter 4

Utilizing Correspondence Information

We propose a combination of a topic model approach and correspondence-based approach, and

show significant improvements over current topic models that model the location of patches. Our

approach is advantageous over existing topic model approaches due to a non-parametric represen-

tation of the object’s spatial configuration. With this non-parametric representation, we can obtain

better estimates of the labels for each patch, thereby achieving significant better localization and

categorization results.

4.1 Reward by Correspondence

Figure 4.1: An image and three exemplar images. Red lines indicate correspondences found be-

tween patches.

In the introductory chapter we mentioned approachesA2 andA3, which make use of spatial

information, but do not explicitly consider the spatial configuration of patches coming from the

object of interest. Normally the patches from the object arefar more consistent than patches coming

from background clutter. In the context of unsupervised object detection, it is the consistency of

patches across images that tells an object apart from the background clutter: similar objects that

29
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appear repeatedly in the data set will demonstrate a consistent spatial configuration, while the

patches from random background clutter lack consistent spatial configuration. Similarly, in the

context of image categorization, same object classes sharesimilar spatial configurations, which are

distinct for every object class.

Our intent is to extend the topic model framework to incorporate information about spatial

configuration. Rather than building a shape model as in constellation models [14], pictorial struc-

tures [15], or fragment-based models [16], we will exploit the fact that similar objects in different

images are more likely to have strongcorrespondencesand extend the topic model to include this

extra piece of information.

Correspondence-based object recognition has been in the literature for nearly forty years. Even

though computing correspondence is computationally expensive, it is still popular, because of its

promising performance. Recent work by [17][18] [19] [20] use correspondence as a central ele-

ment in their object recognition framework. However, theirmodel and learning algorithm differ

substantially from what is proposed here.

Our use of correspondence is to provide a non-parametric representation of the location of the

consistentpatches. By using correspondence methods that take into account the spatial distortion

of a correspondence and allow partial matching, the more matches a patch has, the better chances

the patch belongs to a foreground object, as opposed to background clutter.

This piece of information is employed by the topic model in the form of an extra feature, or

reward. More precisely, the reward for a patch is high when this patch is repeatedly matched

against other patches in other images. On the other hand, patches from random clutter are less

likely to find as many matches, which results in lower rewards. This is precisely the notion that

objects of interest normally show higher consistency across images and it is the consistency that

tells an object apart from background clutter or other objects. The more good matches a patch gets,

the higher its reward, and the resulting reward map, as illustrated in Figure 4.2, is a non-parametric

representation of the location of the consistent patches.

It is important to use correspondence methods that respect both appearance and geometric

costs. Correspondence methods such as [18] [20] are among these. They measure the cost of a

correspondence by observing how similar feature points areto their corresponding feature points,

and how much the spatial arrangement of the feature points ischanged. These methods also allow

outliers to be excluded from the correspondence.
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Figure 4.2: Correspondences between patches across images(red lines on the left) provide strong

information of the object configuration. This information,shown at the bottom right as a “reward

map”, is incorporated into a topic model in our approach to enhance object localization and image

categorization.

Computing correspondences between all pairs ofN images in a data set is expensive, and to

avoid the exponential complexity, we generate a list ofC exemplars to correspond with each image.

By narrowing down fromN to C, we decrease the correspondence computation fromN2 times to

NC times, which is linear to the number of images in the data set.This is in contrast to systems

that need to run correspondenceN2 times for image categorization, such as in [19]. We generate

the list ofC exemplars by running PLSA and choosing the top ranked imagesfrom each topic. The

images are ranked according toP (d|z). In the experiments, we use10 exemplars per topic. See

Figure 4.1 for examples where an image is matched to some exemplar images.

4.1.1 Finding Correspondences

We want to find the correspondence between patches across twoimages,di and dj, that are

appearance-wise and geometrically consistent. Suppose there aren patches indi. It would be naive

to find the single best match based on appearance and would notgive a geometrically consistent

correspondence. Instead, we use the correspondence algorithm in [20] to find out the appearance

and geometric consistent matches.

We first find thek-nearest neighbors for each patch based on appearance, withk large enough

so that only appearance-wise very disagreeing matches are excluded. Suppose candidate matcha
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marries patchp in di and patchp′ in dj , written in shorthand asa = 〈p, p′〉. The appearance affinity

of the candidate matcha, denoted byA(a), is calculated as the correlation coefficient of the feature

descriptors of patchp and patchp′.

Supposeb = 〈q, q′〉. Then the geometric affinity is defined as:

G(a, b) ≡ max(0, 1 −Cd ·
‖(
−→
pp′ −

−→
qq′)‖

√

‖
−→
pp′‖‖

−→
qq′‖

) (4.1)

G(a, b) is dimensionless so it does not change when the two vectors
−→
pp′ and

−→
qq′ are multiplied by

a constant.Cd controls how tolerant this metric is to distortion.

The final affinity matrixM has elementsM(a, b) = G(a, b)A(a)A(b), wherea = 〈p, p′〉

andb = 〈q, q′〉. Pairs of candidate matches will have low affinityM(a, b) if either the geometric

affinity or one of the appearance affinities is low. The correspondence algorithm we adopt from [20]

figures out the final geometrically and appearance-wise consistent matches based on the dominant

eigenvector of the affinity matrixM . Partial matching is achieved by setting the parameterCd in

Equation 4.1 large enough (we useCd = 1.5), so that candidate matches that potentially match by

appearance but distort the correspondence too much are excluded from the final result.

4.1.2 The reward map

The geometrically and appearance-wise consistent correspondences that are found in the previous

section tell us which patches often co-occur; it also ensures us that, when patches co-occur, they

co-occur in a geometrically consistent manner. We count thenumber of matches each patch has

and create a “reward map” (Figure 4.2). In the context of unsupervised object detection, we would

expect patches from the object of interest to have more matches, thus the reward value is a good

indicator of whether a patch belongs to the object of interest.

Using the reward map to locate the object of interest is oftennot good enough. As we will

explain later in better detail, the reward map is indeed correlated with the topic variablesz, but the

correlation is not high enough to provide accurate estimation of the topic. In fact, the“quality” of

the reward map depends on the number of exemplars ones uses. Unless we use a very large set

of exemplars (which would be inefficient, because finding correspondences is at least linear to the

number of exemplars), many patches from the foreground object will not have consistent matches

in other images. This is because the intra-class variation of similar objects in the real world is often

very large, and having appearance-wise and geometrically consistent matches is rare.
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Instead of directly using the reward map to locate the object, we use the framework we intro-

duced in the introductory chapter. We consider the reward value of each patch as an additional

featurer that is related to the hidden topic variablez. Empirically, we found that usingP (r|z)

performs better than usingP (r|d, z), probably because of fewer parameters and less overfitting.

We learn the parameters using the EM algorithm:

E− step :

P (z|d, r, w) = k1P (z|d)P (w|z)P (r|z) (4.2)

M− step :

P (w|z) = k2

∑

d,r

m(d,w, r)P (z|d, r, w) (4.3)

P (z|d) = k3

∑

w,r

m(d,w, r)P (z|d, r, w) (4.4)

P (r|z) = k4

∑

w,d

m(d,w, r)P (z|d, r, w) (4.5)

wherek1, ..., k4 are normalization constants, andm(d,w, r) is a co-occurrence matrix that keeps

the counts of triples(d,w, r) [6].

A typical distribution ofP (r|z) is shown in Figure 4.3. Notice that we have quantized the

reward values into 4 bins using k-means quantization. It is interesting to see that background

topic zBG has almost all its rewards concentrated at the first bin (because patches originated from

background clutter often have very few matches), while the foreground topiczFG has rewards

distributed more evenly. Still, the first bin of both topics is highly concentrated, which implies

that directly using reward values to tell foreground from background has a lot of ambiguity. This

is still true if we quantize the rewards into a larger number of bins. Hence, instead of directly

using the reward values for object detection, we integrate this correspondence-based information

into a topic model. The EM algorithm will figure out from data how to make judgements from

these two “sensors”: the correspondence sensor (which provides rewards,{r}) and the appearance

sensor (which provides visual words,{w}). This integration allows us to use a very small number

of exemplars. Even so, the performance significantly improves over traditional topic models,A1

to A3, as we will show later.
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r1 r2 r3 r4

zFG 0.36 0.37 0.20 0.07

zBG 0.97 0.02 0.01 �0.00

Figure 4.3: A typicalP (r|z).

4.1.3 Remarks

By using correspondences, we introduce spatial configuration into topic models. We don’t make

assumptions and postulate a model for the shape of the object. Neither do we make assumptions

as inA2 andA3, about the location and clustering of the object. These are all implicitly taken into

account by using the reward map. It will be of future interestto combine A2 and A3 together in

this correspondence-based topic model framework.

Here is a summary of the advantages of this framework:

1. The nice property of PLSA (namely, handling polysemy) is inherent in the new method.

2. PLSA can only handle polysemy across documents but not within documents: the same

visual wordwj can be assigned to different topics in different images (context dependency)

but a visual word within an image will always be assigned the same topic, regardless of its

spatial relationship with other patches. InA2, A3, and our proposed method, the additional

featurer allows the topic model to handle polysemy within documents.

3. In situations where finding geometrically consistent matches is difficult (e.g. , when objects

have large deformations), methods that purely rely on correspondence would fail. In this

case, the reward map would turn out flat or erroneous. However, our method will learn this

fact and rely on the appearance information instead of the reward map.

4. Topic models can take advantage of information from background clutter. Pure correspondence-

based methods cannot.

4.2 Experiments

In the following experiments, we do not compare withA2, since it does not provide translation

invariance, which is crucial in our experiments.
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4.2.1 Small objects (synthetic data)

The number of patches sampled from the images is the most influential parameter governing recog-

nition performance using bag-of-words representation [32]. Moreover, in topic-model approaches,

unless the object of interest occupies a reasonably large proportion of the image, it will not have

a sufficient number of detections to compete with patches from the background, meaning that the

image is misclassified as background. To show that the proposed approach allows the foreground

object to have much fewer patches than in other approaches, we perform the following experiment:

the task is to detect dumbbells in cluttered scenes, and we gradually increase the amount of back-

ground clutter. In Table 4.1, we see the proposed method allows heavier background clutter than

the other topic models.

Proposed A1 A3 Proposed A1 A3

x1 100 83 88 86 74 81
x2 88 64 69 78 62 66
x5 68 52 54 65 53 52
x10 62 53 51 56 47 52

Classification Localization

Table 4.1: Small objects experiment in Section 4.2.1. By increasing the number of background

patches from one times the number of foreground patches to ten times, the performance of the

proposed method drops far less drastically than the baseline methods.

4.2.2 Confusing background (synthetic data)

In this experiment, we show that under the presence of changes in location, scale, occlusion and

deformation, topic modelsA1 and A3 perform very poorly. The task is to detect dumbbells in

cluttered scenes. Synthetic images are generated by embedding nonlinear distortions (using pinch,

punch, and perspective transforms with the software Paintshop) of the dumbbell in cluttered back-

grounds (Figure 4.4). To confuse the appearance, weinsert patches from the object into the back-

ground. Clearly, if appearance alone were used to classify the patches, there is no way to distinguish

object from clutter, because it is the spatial configurationof the patches that tells the object from

the clutter apart. This is demonstrated in Table 4.2(a). To demonstrate the effect of occlusion, we

removed some patches from the dumbbell. To verify multiple instance detection, two or three dis-
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(a)

Proposed A1 A3 Proposed A1 A3

100 50 50 96 50 50

Classification Localization

(b)

Classification Localization
Proposed Proposed

Size fixed 100 96
Size varied 86 83
Distortion 91 86
Occlusion 84 84

Combination 81 79

Multiple 100 92

Table 4.2: Classification and localization accuracy (%) forSection 4.2.2. (a) A1 and A3 perform

poorly because the data is ambiguous in appearance. (b) The proposed method still works well

under different kinds of distortions.

torted versions of the dumbbell were embedded randomly in the scene. These variations are shown

in Table 4.2(b). Note that the number of objects in the scene is unknown beforehand and the same

parameters are used throughout these experiments.

4.2.3 Unsupervised categorization and localization

Patches are detected by the Hessian Affine interest point detector. We use a codebook size of500

for quantizing the SIFT descriptors into visual words. The SIFT descriptors are then projected

from 128 to 30-dimension using Principal Component Analysis.

Proposed A1 A3 Proposed A1 A3

Motorbike 1.9 12.5 3.3 99.8 91.2 99.5
Airplane 3.8 10.2 13.4 99.1 95.7 92.6

Face 2.0 5.1 2.3 99.5 96.0 98.9
Car Rear 8.6 18.8 22.3 92.3 88.3 88.0

Equal Error Rate Area under ROC

Table 4.3: Image-level classification results (%).

Table 4.3 shows the receiver-operating characteristic (ROC) equal error rates (EER) and the

area under ROC curve. Clearly, methods that consider spatial information outperformA1 (PLSA).
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Figure 4.5 has further analysis on the motorbike data set.

Figure 6.2 shows the localization performance. Scores are computed based on the posterior

probability P (z|d,w) in A1, and based onP (z|d,w, r) in A3 and inProposed. The proposed

method shows significantly better performance in localization. Figure 4.7 shows some localization

results. The top 15 highest scoring patches are indicated bythe yellow ellipses. Notice that the

proposed method has much less false alarms thanA1 (PLSA) andA3.

4.3 Conclusion

We have shown how topic models can benefit from finding correspondences and using the “reward

map” as an additional feature. We have also shown that traditional topic model approaches can

perform poorly when the appearance of the background clutter is extremely confusing. Our method

is more robust than traditional topic models when the amountof background clutter is significantly

larger than the number of patches from the object of interest, which is a major problem when

applying traditional topic models to images.
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Figure 4.4: Synthetic images for Section 4.2.2. Topic models A1 and A3 cannot distinguish be-

tween the object and the background because it is the spatialconfiguration of the patches that tells

the object from the background apart. See performance in Table 4.2.
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Figure 4.5: Classification of Caltech motorbike versus Caltech background images. The top figure

shows that, among the motorbike images, most images have around 300 to 600 patches (foreground

plus background). The bottom figure shows the number of wrongly classified motorbike images

with respect to the number of patches in the image. Together,we see that the proposed method

performs better thanA1 and A3. We also see that images with fewer patches are more often

classified incorrectly. The proposed method classifies incorrectly 16 out of 826 motorbike images,

all of them having less than 150 patches in the image.
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Figure 4.6: Patch-level classification result on Caltech motorbike data set. For each method, its

top 20% confident patches are classified as foreground versusbackground; the closer the posterior

probability P (z|d, r, w) (or P (z|d,w) in A1) of a patch is to 0 or 1, the higher the confidence of

the patch.
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(a) A1 (b) A3 (c) Proposed

Figure 4.7: Localization results.
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Chapter 5

Handling Multiple Objects

We propose an iterative method for discovering objects in images. In each iteration, the current

estimate of the layout is processed by a sequence of perceptual grouping rules. Perceptual grouping

appears to be the basis of visual organization of human. It isconcerned with the problem of the

formation of wholes from parts. The method does not rely on the mixture of Gaussian model and

hence avoids the model selection problem. We use synthetic and real images to demonstrate that

the obtained result is better than that obtained by other methods.

5.1 Introduction

In the field of scene understanding, an image can be considered as a set of objects arranged in a

spatial layout. A central problem is that of segmenting the image into objects. In order to ex-

tract the underlying objects, one can use image segmentation or layout extraction methods. Image

segmentation methods partition an image into regions that consist of similar color, texture, or po-

sition. This partitioning often operates on a single image.In comparison, image layout extraction

partitions an image by objects and uses information from multiple images.

The method we propose has its root in an unsupervised learning method called Probabilistic

Latent Semantic Analysis (PLSA)[6]. This model has earlierbeen used in the text and linguistic

domains. PLSA is a generative model, and can be used to interpret how a document is generated. A

document is considered as a mixture of “aspects” (“topics”), and each aspect consists of a mixture

of words. The power of PLSA originates from the fact that aspects can be learned in an unsuper-

vised manner given a set of document-word pairs. It is hence capable of accumulating information

43
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from multiple documents.

One important drawback of PLSA is that the set of document-word pairs ignores the layout

or order of words in a document. PLSA as a generative model is hence generating a document

without structure. In other words, if we arbitrarily shufflethe words in the document around, we

get the same latent aspects (topics). As a result, the performance of PLSA still leaves room for

improvement. Sivic et al. [4] add spatial information into the feature representation and leave the

PLSA model unchanged. Liu and Chen [13] extend the PLSA modeland explicitly model spatial

structure.

However, using a Gaussian or mixture of Gaussians to model the spatial distribution of the

objects in each image is not ideal for several reasons. First, the Gaussian distribution decays quickly

around the peak and has long tails. Real world objects have uniform nonzero support inside the

object boundary and zero support outside of it, and hence theGaussian distribution does not model

the spatial distribution genuinely. Second, since the number of objects varies from image to image,

a Gaussian mixture model requires the specification of the number of mixture components per

image. In this case, model selection methods such as the Bayesian information criteria (BIC) or the

Akaike information criteria (AIC) require not only loopingover the possible number of mixtures

components, but also over each image, hence being computationally expensive.

We propose an iterative layout extraction method that is based on perceptual grouping [33].

This method does not rely on the mixture of Gaussian model andhence avoids the aforementioned

problems. Perceptual grouping appears to be the basis of visual organization of human. It is respon-

sible for the formation of wholes from parts. In psychology,generic principles such as proximity,

similarity, closure, simplicity, etc., have been identified for the grouping process. Of special inter-

est is proximity, which states that elements which are closeto each other will be grouped together.

In each iteration, after we obtain an updated estimate of thelayout, we process the layout by a

sequence of perceptual grouping rules that agree with humanperception.

In the following, we will first describe the probabilistic model. We then describe the perceptual

grouping method for refining the posterior map to obtain the spatial distribution. Finally, we present

experimental results.
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5.2 Probabilistic Model

As mentioned in the introduction, if multiple images contain the same type of object, then it is

possible to analyze the region characteristics that consistently occur across images and thereby

segment the object. It is the consistency that tells the foreground from the background apart. In

this section, we will introduce such a method.

Images are represented as collections of visual words (or textons) [28], which are discrete

(vector quantized) local appearance descriptors extracted from image patches. We will discuss in

more detail in Section 6.4 on how the visual words are generated. Following the notations used

in the text understanding community,w ∈ W = {w1, ..., w|W |} is the visual word associated

with a patch,z ∈ Z = {zFG, zBG} is a hidden variable that represents thetopic (foreground

or background) associated with a patch, andd ∈ D = {d1, ..., d|D|} is the index of the image

associated with a patch.

Each image is considered as a mixture of topics:P (zk|di) is the probability of topiczk occur-

ring in imagedi. Assume there are a predefined number ofZ latent topics,{z1, ..., zZ}. Using

inference methods, it is then possible to infer the latent variables of the model. In our experiments

we will consider the case ofZ = 2, but extending it to more topics is feasible. Each topic is further

considered as a mixture of words:P (wj |zk) is the probability of wordwj occurring in topiczk.

We denoteW as the total number of (visual) words,{w1, ..., wW }.

We introduce the spatial distributionP (xdi
p |di, z). The dependence of positionxdi

p on image

di allows the foreground object to have different locations and scales in every imagedi. In other

words, the foreground object is allowed to be at vastly different positions in both learning and

testing. The scale can also vary freely over different images. Allowing different locations and

scales in different images is desirable, as it provides the basis for scale-invariance and translation-

invariance. The dependence ofxdi
p onz allows the foreground object and the background clutter to

have different locations and scales. The superscriptdi is to indicate that the patch positions can be

different for each image, and is omitted in the sequel to simplify the notation.

We define an image-word-position co-occurrence tablen( d,w, x), with n(di, wj , x
di
p ) denot-

ing the number of occurrences of wordwj at positionxdi
p ∈ {x

di

1 , ..., xdi

|di|
} in imagedi, where|di|

denotes the number of patches in imagedi. In other words,n(di, wj , x
di
p ) = 1 if in imagedi there

is a wordwj at positionxdi
p , andn(di, wj , x

di
p ) = 0 otherwise.
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(a) Synthetic (b) Synthetic (c) Face (d) Background

Figure 5.1: Synthetic and real objects used in the experiments.

The joint distribution of document, topics, position, and words is formulated as

P (di, wj , zk, xp) = P (wj |zk)P (zk|di)p(xp|dk, zk)P (di). (5.1)

5.3 Parameter Learning

The goal is to maximize the log-likelihood,

L =
∑

i

∑

j

∑

p

n(di, wj , x
di
p ) log P (di, wj , x

di
p ) (5.2)

This can be achieved by the EM algorithm [21], which alternates between the E-step and the M-

step. The E-step updates the posterior distribution as follows:

P (zk|di, wj , xp) ∝ P (zk|di)P (wj |zk)P (xp|zk, di) (5.3)

The M-step updates the individual conditional distributions. The update equations of the topic

distribution,P (zk|di), and the appearance distribution,P (wj |zk), can be derived by the Lagrange

multiplier technique as in [6] and they are as follows:

P (wj |zk) ∝
∑

i

∑

p

nijpP (zk|di, wj , xp) (5.4)

P (zk|di) ∝
∑

j

∑

p

nijpP (zk|d
s
i , wj , xp) (5.5)

wherenijp ≡ n(di, wj , xp). The left hand side of these equations are normalized to become

probability distributions.

A standard EM algorithm would attempt to solve the update equation for the spatial distribution

as follows:

θ∗ = arg max
θ

∑

d,w,x,z

n(d,w, x)p(z|d,w, x) log pθ(x|d, z) (5.6)
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where we usepθ(x|d, z) to emphasize that the distributionp(x|d, z) is parameterized byθ. In

the Semantic-shift algorithm [13], the spatial distribution p(x|d, z) is assumed to be a Gaussian

distribution and an update equation can be derived from there. During the EM iterations of the

Semantic-shift algorithm, we observed the spatial clustering of a single bump to occur due to the

strong prior assumption that one and only one bump exists in the image pixel domain. Since images

can contain multiple objects, a natural way to extend the method is to allow multiple bumps to exist

in an image. Gaussian mixture models are often used to describe multi-modal data. However, spec-

ifying the number of mixture components is nontrivial sinceeach image can have different number

of objects, and hence model selection using the BIC or AIC criteria requires not only looping the

number of components, but also over all images. This is computationally very expensive.

Motivated by the spatial clustering behavior in the Semantic-shift algorithm, where nearby

patches with high posterior probability are grouped together and noisy patches are gradually sup-

pressed, we consider the process of finding the optimal spatial distribution as a perceptual grouping

process. In psychology, several generic principles have been identified to account for the human

visual grouping process. These principles include proximity, similarity, closure, simplicity, etc..

However, to the best of our knowledge, there is no mathematically model that describes all Gestalt

principles under one framework. We therefore propose to useimage processing techniques to real-

ize the spatial clustering behavior as that observed in the Semantic-shift algorithm, thereby avoid-

ing making unrealistic assumptions about the spatial distribution such as mixture of Gaussians that

don’t fit the true layout well.

In this work, we use a non-parametric representation for thespatial distribution. Denote the

distribution parameters ofp(x|d, z) by θ. Specifically,θ contains the values ofp(x|d, z) at every

x, for eachd and z. This is equivalent to storing a two-dimensional ‘posterior map’ for each

image and topic, which contains the value of the posterior probability for each image patch. Within

the EM iterations, we aim at removing small elements and simultaneously group elements that

are close to each other. We use simple morphological image processing to achieve this result.

We first erode the posterior map, then dilate it. This can be understood as a realization of the

proximity principle, which states that elements which are close to each other will be grouped

together. The perceptual grouping process does not need to achieve a clean segmentation within the

current iteration. Instead, since the perceptual groupingprocess occurs repeatedly during the EM

algorithm iterations, a suboptimal grouping step can result in significant changes in the posterior
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estimation in the next iteration. We will illustrate this effect in the experiments.

In literature, there are many attempts to simulate the humancapability of perceptual grouping,

e.g. in [34]. We suggest that methods such as these could be incorporated into the estimation of

the spatial distribution as well.

Another alternative is to use a Markov Random Field (MRF) to model the spatial distribu-

tion. In that case, we could have associated the hidden states with the hidden variablesz. The

smoothness prior can roughly achieve the proximity principle. However, finding the solution of a

two-dimensional MRF is an NP-hard problem. Hence, even though mathematically the problem

is well defined, the approach is not always elegant. On the other hand, using morphological pro-

cessing or image filtering techniques, we can intuitively incorporate the Gestalt principles into the

estimation procedure.

5.4 Experiments

5.4.1 Synthetic images

We created 20 synthetic images of size20 × 18, each containing one or two objects. Objects

consist of visual words uniformly sampled from 13 visual words. Background consists of visual

words uniformly sampled from 10 visual words. In total thereare 20 distinct visual words, so the

objects and background share 3 visual words. Each pixel corresponds to a visual word, so there are

360 ‘patches’ per image. Examples of the layout of the objects are shown in Fig. 5.1(a)(b).

During each EM iteration, the ‘posterior map’ is estimated;examples are shown in the first

column in Fig. 5.2. The posterior map has many smaller groupsof pixels which appear to be noise

and larger groups of pixels that appears to be the foregroundobject. After erosion and dilation,

we obtain the result in the second column in Fig. 5.2. Notice that many smaller groups of patches

with higher posterior probability are suppressed, and larger groups are clustered. These cleaned up

results are the estimated spatial distributionp(x|d, z) and are passed into the E-step in the next EM

iteration. The algorithm converges after 20 iterations. The most likely latent aspect of each visual

word can be computed by

z∗ = arg max
z

P (z|di, wj , xp) (5.7)

Over99% of patches are correctly identified as foreground vs background. This result cannot be

achieved by the Semantic-shift algorithm (results not shown) using a single Gaussian assumption.
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Figure 5.2: From top to bottom: the posterior map (left figure) and the perceptual grouping result

(right figure) at iteration 3, 4 and 9. Viewed in color.

Also, as mentioned earlier, model selection becomes an issue if using multiple Gaussian distribu-

tions. On the other hand, considering the spatial distribution estimation as a perceptual grouping

process, one can easily apply erosion, dilation, edge-preserving smoothing, or other techniques

during the spatial distribution estimation.

5.4.2 Real images

We use 50 face images and 50 background images from the Caltech image dataset, and another 15

face images from the CMU face dataset. Some of the face imagescontain two or more faces. All

images are converted to grayscale and resized to300 × 200. We use the Harris-Laplace interest
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Figure 5.3: Posterior map of some face images at iteration 20. Viewed in color.

point detector to obtain around 200 to 2000 interest regionsper image. Since the interest points

cover the image only sparsely, we downsample the images to30 × 20 before performing image

erosion and dilation. The algorithm converges at around 30 iterations.

In Fig. 5.3 we show the ‘posterior map’ at the final iteration.Due to the non-parametric rep-

resentation, the spatial distribution can easily accommodate an arbitrary number of foreground

objects, such as the multiple faces in the bottom of Fig. 5.3.

Since the image dataset consists of face and non-face images, we can consider a (unsupervised)

classification task. Comparing the proposed method with theSemantic-shift algorithm, we obtain

the ROC curve shown in Fig. 5.4, where the upper curve is the proposed approach. For fair com-

parison, since Semantic-shift was originally designed fora single foreground object, we did not

use the 15 images that contain more than one face.
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Figure 5.4: ROC curve for face vs non-face classification.

5.5 Conclusion

We proposed an approach for object discovery that incorporates perceptual grouping into the EM

algorithm. This method can achieve similar spatial clustering behavior as the Semantic-shift al-

gorithm, and yet it is not confined to the problem of model selection. Also, it allows easy in-

corporation of other image processing techniques into the loop. The method also achieves better

performance on an image classification task.
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Part III

Discovering objects in videos
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Chapter 6

Utilizing Temporal Information

Here we present a probabilistic framework for discovering objects in video. The video can switch

between different shots, the unknown objects can leave or enter the scene at multiple times, and the

background can be cluttered. The framework consists of an appearance model and a motion model.

The appearance model exploits the consistency of object parts in appearance across frames. We use

Maximally Stable Extremal Regions as observations in the model and hence provide robustness

to object variations in scale, lighting and viewpoint. The appearance model provides location

and scale estimates of the unknown objects through a compactprobabilistic representation. The

compact representation contains knowledge of the scene at the object level, thus allowing us to

augment it with motion information using a motion model. This framework can be applied to

a wide range of different videos and object types, and provides a basis for higher level video

content analysis tasks. We present applications of video object discovery to video content analysis

problems such as video segmentation and threading, and demonstrate superior performance to

methods that exploit global image statistics and frequent itemset data mining techniques.

6.1 Introduction

Video object discovery is the task of extracting unknown objects from video. Given a video, we

want to ask what is the object of interest in this sequence, without providing the system any exam-

ples. This is very different from object detection in the computer vision literature, see for example

[35], where the characteristics of the object of interest are learned from labeled data. Object de-

tection not only involves a lot of human labor for labeling the images by putting bounding boxes

55
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on the object of interest, but also has the difficulty of scaling to multiple objects. Since the object

of interest in a sequence can be any type of object, it is very difficult to train a comprehensive

object detector that covers all types of objects. The state of the art multi-class object detector has a

recognition rate only around55 − 60% for recognizing 101 pre-defined object categories [36] and

requires over 3000 human labeled images.

Our approach to object discovery is unsupervised in nature.No labeled images are needed for

training the system, and no examples are used for specifyingthe object of interest. A high level

intuition of how this can be achieved is as follows: In a video, if there is a car appearing in multiple

frames, we might be able to figure out that the wheels or the windows are smaller parts of a larger

entity that repeats over and over again in different images.In this scenario, the concept of a larger

entity that is composed of smaller parts emerges. The smaller parts that constitute the larger entity

can be generic, and do not need to have semantic meanings suchas wheels or windows in this

example.

Our approach works well on small objects in low resolution video. The object of interest

sometimes has as few as a single feature point out of over fiftybackground feature points. The

system is designed for videos where only a single object of interest will be extracted. We consider

this less of a limitation but more of an advantage. In many videos, even though there are multiple

objects, there is only one object that is of main interest. Our proposed method is intended to

discover this major object of interest.

DISCovering Objects in Video, or DISCOV, involves two processes:

1. At the image level, extracting salient patches that are robust to pose, scale and lighting vari-

ations, and are generic enough for dealing with different types of objects. These salient

patches serve as candidate parts that constitute larger entities.

2. At the video level, constructing appearance and motion models of larger entities by exploiting

their consistency across multiple frames.

6.2 Related work

One approach to video object discovery is to observe the samescene over a long time and build

a color distribution model for each pixel [37][38][39]. Unusual objects can then be identified if

some pixels observe substantial deviation from their long-term color distribution models. These



6.2. RELATED WORK 57

kind of background modeling approaches are suitable for video surveillance with a static camera,

but if an image sequence is obtained from a moving camera, then a pixel does not correspond to a

fixed scene position; unless we can accurately register the image sequence, we cannot build a color

distribution for each pixel.

Some methods exploit optical flow to discover objects. Optical flow is the apparent motion

between a pair of images. The problem is difficult because of alack of constraints (the aperture

problem) and insufficient sampling near occlusion boundaries [40]. Since optical flow computes

local image gradients, it is best suited to successive pairsof frames, not to low frame rates with

large motions [40]. Using such short duration flow field, in [41], the optical flow of each frame

is clustered, providing initial estimates of object positions in each frame. In [42], frame to frame

optical flow fields are concatenated to obtain longer range correspondences, providing information

to determine if a motion is consistent in direction over time. This consistency is useful in rejecting

distracting motions such as the scintillation of specularities on water, and the oscillation of vegeta-

tion in wind. Using such long range optical flow field, however, one must refine the field at each

step to avoid drifting, as mentioned by [40].

While optical flow provides a dense but short range motion field, feature tracking using distinc-

tive textured patches provides long range but sparse motionfield. In [43], the correspondence of

distinctive feature patches are found across successive frames and grouped according to their co-

occurrences. Our approach also uses distinctive textured patches, but we do not explicitly compute

the correspondences across frames, which can be computationally expensive.

Our work also differs from layer extraction methods [44][45] in which the frames in a video

are partitioned into a number of regions, in each of which pixels share the same apparent motion

model. In contrast, our approach allows for a very low frame rate, in which case methods relying

on image registration (as in [44]) cannot register the background across frames. Our approach does

not compute affine transformation between patches as in [45], which would have the same problem

at low frame rates.

In [46][47], multiple object detectors of airplanes, buildings, people, etc. provide as input to

the data mining algorithm a feature vector describing the presence and absence of each of these

objects. However, as mentioned in Section 6.1, the state of the art 101-class object detectors has

a recognition rate only around55 − 60% [36] and requires huge amount of training data, and

hence these type of object recognition approaches have inherent difficulties. Some systems build
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specialized video object detectors by using labeled data totrain an object detector and then track

its trajectory or exploit prior knowledge of the color distribution of the target, such as the human

skin color distribution [48][49]. Some require track initialization (initial position of the target) and

target appearance initialization [50] [51]. These approaches are not intended for object discovery,

since they require prior knowledge of the appearance or position of objects.

As mentioned earlier, our approach works well on small objects in low resolution video, where

the object of interest sometimes has as few as a single feature point out of over fifty background

feature points. This is in contrast to methods that exploit arich set of textures of the foreground

object [52][53] [54].

In [55], a spatial scan statistic is applied to detect clusters in epidemiological and brain imaging

data. In [56], the challenge is to find sets of points that conform to a given underlying model from

within a dense, noisy set of observations. As in many spatialdata mining methods [57], these

methods focus on point patterns where the ‘density’ of the points conveys information. In our data,

different appearance features are extracted from different image patches, and hence not only the

density but also the identity of each atomic unit plays a rolein object discovery.

Recently, topic models [6] have been applied to unsupervised object discovery in images

[4][5][58][13] and videos [31][7]. We follow the approach of [31] and present applications includ-

ing video segmentation and threading. In the image domain, we have an appearance model and

a spatial model of patches. In the temporal domain, we use a motion and data association model

that is tightly coupled with the appearance and spatial model. This framework yields a principled

and efficient object discovery method where appearance is learnt simultaneously with motion in a

completely unsupervised manner. The appearance model accounts for appearance variations and

background clutter; the motion and data association model accounts for the randomness in the

presence/absence of features due to appearance measurement noise. The features we use are sim-

ple spatial features demonstrating the generality of our system; more sophisticated spatial-temporal

features [59][60] could certainly be used as well.

In Section 6.3, we will introduce the DISCOV framework. We will start from the image repre-

sentation, which uses generic region detectors and descriptors. We then introduce the appearance

and motion models, which provide an unsupervised method fordiscovering the object of interest

in video sequences. In Section 6.4, we present experimentalresults and also present applications

of video object discovery for video segmentation and threading.
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6.3 The DISCOV framework

6.3.1 Representation of images

Visual words, or textons, are used as atomic units in our image representation. They were used in

various applications, such as photometric stereo [61], object recognition [62], image retrieval [5],

etc. Next we will discuss in detail how to generate visual words.

Figure 6.1: Maximally Stable Extremal Regions (MSERs). Left: position of MSERs. Middle:

coverage of MSERs. Right: Output of DISCOV, showing the discovered object regions.

First, we find a number of patches to generate the visual wordsfrom. These patches are deter-

mined by running the Maximally Stable Extremal Regions (MSER) operator [63]. Examples are

shown in Figure 6.1. MSERs are the parts of an image where local contrast is high. This operator

is general enough to work on a wide range of different scenes and objects and is commonly used

in stereo matching, object recognition, image retrieval, etc. as mentioned earlier. Other operators

could also be used; see [1] for a collection. Features are then extracted from these MSERs by Scale

Invariant Feature Transform (SIFT) [2], yielding a128 dimensional local feature descriptor for

each MSER. Whether or not to use color information is largelyapplication dependent. If the data

mining task is to discover all instances of a specific object category, such as all cars in a video, then
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color information should not be used because the color can bedifferent across different instances of

the same category. On the other hand, if the data mining task is to discover a single object instance,

then color information provides good discrimination against other objects in the video. Color in-

formation can also be useful when shape and grayscale texture are not discriminative enough. In

this work we extract MSERs and SIFT descriptors from grayscale images; patches and features

extracted from color images [3] can easily be used instead.

The128 dimensional SIFT descriptors are collected from all imagesand vector quantized using

k-means clustering [64]. The resultingJ cluster centers (we useJ = 50) form the dictionary

of visual words,{w1, ..., wJ}. Each MSER can then be represented by its closest visual word.

MSERs are now represented by discrete visual words instead of continuous SIFT descriptors. Note

that acquisition of visual words does not require any labeled data, which shows the unsupervised

nature of this system.

6.3.2 Appearance and spatial modeling

Denote the image frames by{d1, ..., dN} and define hidden variableszi(k) indicating if theith

MSER in framedk originates from the object of interest or otherwise. We willrefer to the MSERs

that do not belong to the object of interest as background (bg) clutter.{zi(k)} are hidden variables;

it is our goal to infer their values. Define the conditional probabilitiesP (z|d) andP (w|z) for each

MSER as follows:P (z = zobj |d = di) indicates in framedi how likely a MSER originates from

the object of interest;P (z = zbg|d = di) is defined likewise.P (w = wj |z = zobj) indicates how

likely a MSER originated from the object of interest has appearance corresponding to visual word

wj ; P (w = wj|z = zbg) is defined likewise.

Denote the position of theith MSER in framedk asri(k), and its hidden variable aszi(k), i =

1, ...,mk . The indexi are sometimes dropped to avoid cluttering equations. Definean image-word-

position co-occurrence tablen(d,w, r), with n(di, wj , ri(k)) denoting the number of occurrences

of word wj at positionri(k) in framedi, where|di| denotes the number of words in framedi.

In other words,n(di, wj , ri(k)) = 1 if in frame di there is a wordwj at positionri(k), and

n(di, wj , ri(k)) = 0 otherwise.

We introduce the spatial distributionsp(r|d, zobj) andp(r|d, zbg). They describe how the ob-

ject of interest and the background clutter are spatially distributed in the image. The dependence

of positionr on framed allows the object to have different locations and scales in every frame.
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Allowing different locations and scales in different frames is desirable, as it provides the basis for

translation and scale invariance. This concept has been used by the Semantic-Shift algorithm in

[13]. However, in the next section we will constrain the object position to follow a motion model.

Another important distinction with [13] is that, while in [13] a foreground topic identificationstep

is required to correctly identify the hidden variable that corresponds to the object of interest, we

found this step unnecessary. The foreground, i.e., the object of interest, can be automatically iden-

tified due to the un-symmetric nature of the distributionsp(r|d, zobj) andp(r|d, zbg).

Assume the object of interest is located at image coordinater̂ with horizontal and vertical scale

σ̂h andσ̂v. These estimates are related to the motion model to be detailed in the next section. The

spatial distribution of the object of interest is defined as:

p(r|d, zobj) = k2
1

(r− r̂)T Σ̂−1(r− r̂) + k1

(6.1)

whereΣ̂ is a diagonal matrix with elementŝσ2
h andσ̂2

v which are related to the scale of the object.

The values of̂σ2
h andσ̂2

v are unknown and yet to be estimated. Before we detail the parameter es-

timation procedure in Section 6.3.4, it is worth mentioningthat the parameters of the appearance,

spatial, and motion model (in Section 6.3.3) are estimated in an iterative manner, and it does not

matter which of the models is initialized first. The use of theregularization constantk1 (we use

k1 = 1) avoids numerical issues when(r− r̂)T Σ̂−1(r− r̂) approaches zero. The spatial distribu-

tion is a probability mass function and the constantk2 is used to ensure its mass adds up to one.

This is achieved by summing up(r− r̂)T Σ̂−1(r− r̂) + k1 over all MSERsri in framed.

The spatial distribution of the background clutter is simply defined as a uniform distribution.

We found empirically our distributions perform better thanthose in [13], one reason being that

their background spatial distribution requires parametertuning, which is often difficult and data

dependent.

Our probabilistic model that combines appearance, location, scale, and motion information is

expressed by this joint probability distribution:

p(d,w, z, r) = p(r|d, z)P (w|z)P (z|d)P (d) (6.2)

and it postulates the conditional independence ofd andw givenz, and hence provides a compact

representation of the joint probability. It also provides abasis for efficiently finding the maximum

likelihood estimates of the unknown appearance modelsP (w|z), P (z|d), σ̂2
h and σ̂2

v , which we

will detail later in Section 6.3.4.
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6.3.3 Motion modeling

Motion modeling provides the location and scale estimatesr̂, σ̂h and σ̂v used in the spatial dis-

tribution in (6.1). Define the states(k) as the unknown position and velocity of the object to be

discovered, wherek is the video frame index. We assume a constant velocity motion model in the

plane and the state evolves according tos(k +1) = Fs(k)+v(k) , whereF is the state matrix and

the process noise sequencev(k) is white Gaussian with mean zero and constant covariance matrix

[65].

Suppose at timek there are a number ofmk observations. Each observationri(k) is the position

of an MSER. If an observationri(k) originates from the foreground object, then it can be expressed

asri(k) = Hs(k) +wi(k), whereH is the output matrix [65], and the observation noise sequence

wi(k) is assumed white Gaussian with mean zero and constant covariance matrix. We do not build

a motion model for the background clutter.

We want to establish the relationship between the observations and the states. Since we do not

know beforehand if an observation is originated from the object of interest or from the background

clutter, we have a data association problem [65]. The Probabilistic Data Association (PDA) filter

[65] solves the data association problem by assigning each observation an association probability,

which specifies by how much the observation deviates from themodel’s prediction. In the original

PDA filter, the association probabilities are calculated based on deviation of observations from

the predicted states, where the states consists of only position and velocity, and appearance is not

utilized. Here instead, we use the posterior probabilityp(zobj |d,w, r) as association probability.

The posterior probability can be calculated as follows:

p(zobj |d,w, r) =
p(r|d, zobj)P (w|zobj)P (zobj |d)

∑

z

p(r|d, z)P (w|z)P (z|d)
(6.3)

It naturally includes location information (throughp(r|d, zobj)) and appearance information (through

P (w|zobj)). Then, the state estimate can be written as:

ŝ(k|k) =

mk∑

i=1

ŝi(k|k)p(zi(k)|dk, w, ri(k)) (6.4)

whereŝi(k|k) is the updated state estimate conditioned on the event thatri(k) is originated from

the foreground object. This is given by the Kalman Filter [65] as follows:

ŝi(k|k) = ŝ(k|k − 1) + W(k)νi(k) (6.5)
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whereνi(k) = ri(k) − r̂(k|k − 1) is the innovation,̂r(k|k − 1) is the observation prediction, and

W(k) is the Kalman gain [65]. The state estimation equations are the same as in the PDA filter

[65].

We estimatêσh andσ̂v as the interquartile range [66] of all MSERs, weighted by their posterior

probability. In implementation, we duplicate points in theimage space according to the posterior

probability, and then compute the interquartile range of these points. The interquartile range pro-

vides a more robust scale estimate [66] than the weighted standard deviation used in [13][31].

6.3.4 Maximum likelihood parameter estimation

The distributionsP (w|z), P (z|d), andP (d) of the appearance model are estimated using the

Expectation-Maximization (EM) algorithm [21], which maximizes the log-likelihood

L =
∑

k

∑

j

∑

i

n(dk, wj , ri(k)) log p(dk, wj , ri(k)) (6.6)

The EM algorithm consists of two steps: the E-step computes the posterior probabilities for the

hidden variables; the M-step maximizes the expected complete data likelihood:

E− step :

p(zi(k)|dk, wj , ri(k))

= c1P (zi(k)|dk)P (wj |zi(k))p(ri(k)|zi(k), dk) (6.7)

M− step :

P (wj |zi(k)) = c2

∑

k

∑

i

nkjip(zi(k)|dk, wj , ri(k)) (6.8)

P (zi(k)|dk) = c3

∑

j

∑

i

nkjip(zi(k)|dk, wj , ri(k)) (6.9)

P (dk) = c4

∑

j

∑

i

nkji (6.10)

p(ri(k)|zi(k), dk) updated according to Section 6.3.3 (6.11)

wherenkji ≡ n(dk, wj , ri(k)), andc1, ..., c4 are normalization constants which have values so that

all functions are valid probability mass functions.
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We see that the spatial distributionp(ri(k)|zi(k), dk) is updated within each EM-iteration,

which means that the temporal information enters the EM-iteration and influences the appearance

estimation.

6.3.5 Initialization

To handle the case where the object may disappear from the scene and re-enter the scene, we re-

initialize the motion model when the position of the object is estimated to go out the scene, or when

the color histogram of the whole scene changes beyond a certain threshold. This implementation is

particularly important for video sequences which are post-edited, so that the camera view changes

between the object of interest and other objects.

The distributionsP (wj |z), P (z|dk), andP (dk) are all initialized randomly. The spatial distri-

bution parameters are initialized at the center of the framewith scale equal to half the size of the

frame. The state estimatês is initialized to the center of the frame and with zero velocity.

6.4 Empirical study

The experiments are conducted on several real-world data sets to validate our framework. Seven

video sequences were downloaded from YouTube.com with resolution 320× 240 and are sampled

at one frame per second. Practical internet video analysis systems are expected to handle such

low frame rate videos in order to keep up to speed with the vastamount of available online videos

nowadays. We have tried downsampling the original videos into various frame rates and found that

one frame per second is good enough to retain the content while providing good computational

efficiency. Such low frame rate poses higher difficulty to thesystem, as object motion could be

large and appearance changes could be significant. The duration of these videos range from 67 to

711 seconds, as shown in Table 6.1. In the video segmentationexperiment (Sec. 6.4.2), the fraction

of frames containing the object of interest ranges from 0.16to 0.85, hence the videos represent a

variety of different shooting styles. The average durationof a shot ranges from 3 to 5 frames in

all videos except in BIKE. These videos hence contain a largenumber of shot transitions, posing

difficulty to methods based on motion. In the localization experiments (Sec. 6.4.4) we included

two extra videos that contain no shot transitions to demonstrate that our method works equally well

in such situation.
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In summary, these video sequences pose the following challenges: the object of interest can

have wild changes in appearances, including scale, pose, and lighting variations; the background

can be highly cluttered and non-stationary; the object can leave and re-enter the scene multiple

times, which may occur due to large camera motion or post-editing of the video sequence.

6.4.1 Baseline methods

Here we briefly describe the baseline methods.

Baseline-NM:

This is the Semantic-Shift algorithm in [13]. It is an objectdiscovery method developed for image

collections. When we apply it on our video sequences, we treat each video as a collection of

images. Motion information is not used, hence we call it Baseline-No Motion.

Baseline-NL:

This is the Probabilistic Latent Semantic Analysis algorithm in [6][4]. Similar to Baseline-NM, it

is an object discovery method for still images. Since only appearance information is used but not

the location of the image patches, we call it Baseline-No Location.

Baseline-FREQ: Frequent closed itemset mining

In the data mining literature, an itemset refers to a set of items, which in our application refers to a

candidate set of regions that could represent an object of interest. A frequent itemset is an itemset

that occurs at least a certain number of times, and hence morelikely corresponds to an object of

interest. A recent data mining algorithm ‘CLOSET+’ [67] discovers frequent closed itemset, such

that for each discovered frequent itemset there exists no superset of equal frequency. This helps

in reducing the final number of itemsets to be considered. TheCLOSET+ algorithm requires the

minimum itemset frequency as an input parameter. Setting the minimum frequency too small will

result in too many frequent closed itemsets, and many of themmight not correspond to the object

of interest. Hence we start from the largest possible minimum frequency, which is equal to the

number of frames, and gradually decrease it untilM frequent closed itemsets are found. We found

M = 10 to give the best results.
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Baseline-KM1: K-means clustering on image-word co-occurrence matrix

This approach assigns a feature vector to each frame, where the feature vector is the histogram of

visual words. In [4] it was reported to perform worse than Baseline-NL. The Euclidean distance is

used for computing the distance between feature vectors.

Baseline-KM2: K-means clustering on color histogram

This approach assigns a feature vector to each frame, where the feature vector is the RGB color

histogram of all pixels within the frame. We useN regular bins for each color channel and con-

catenate the three histograms. The Chi-Square distance is used [68]. We foundN = 10 to give the

best results.

6.4.2 Object-oriented video segmentation

Consider a video in which the camera is switching among a number of scenes. For example, in

the test drive scene in Fig.6.2, the camera switches betweenthe driver, the frontal view of the

car, the side view, and so on. We would like to cluster the frames into semantically meaningful

groups. In classical temporal segmentation methods, the similarity between two frames is assessed

using global image characteristics. For example, all pixels are used to build a color histogram

for each frame, and a distance measure such as the Chi-Squaredistance is used to measure the

similarity between two histograms [68]. K-means clustering or spectral clustering methods can

then be employed. This method is suitable for shot boundary detection [68], because when the

camera switches between shots, color information providesa good indicator of scene transition.

However, using color information alone cannot provide object-level segmentation. This is

because the object of interest often occupies only a small part of the scene, and the global color

statistics are often dominated by background clutter. Also, using color alone cannot provide the

knowledge of ‘what’ makes the frames separated into different groups.

Our DISCOV framework provides a natural way for object-oriented clustering, and is also

able to point out ‘what’ is exactly the factor that separatesthe frames. In Table 6.1, we compare

DISCOV to five baseline methods. Each video sequence has a natural object of interest, e.g., the

PEPSI and PEUGEOT1 sequences are commercial advertisements where the object of interests are

the Pepsi logo and the Peugeot vehicle respectively, and theBENZ and PEUGEOT2 sequences
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Table 6.1: Video segmentation performance. Numbers in parenthesis indicate the number of frames

containing the object of interest. Detailed in Section 6.4.2.

are test drive videos featuring a car, hence the object of interests in each video are naturally well

defined. The BIKE2 and HORSE sequences used later in the localization experiment are not used

here because they did not contain transitions from one object to another. The frame rate is one

frame per second and the motion of both the object of interestand the background are fast, making

it non-trivial to apply optical flow or layer extraction methods for discovering objects. In addition,

all sequences frequently transition between different shots. The average duration of a shot ranges

from 3 to 5 frames, which is relatively short compared to the video length. This also demonstrates

the difficulty of using optical flow based methods. The groundtruth data labels the presence or

absence of the object of interest in each frame. We evaluate the object discovery performance as a

detection problem. The classification rates are shown in Table 6.1.

DISCOV ranks the images according toP (zobj |di) for all framesdi; same for Baseline-NM.

This has the interpretation of ranking the images accordingto how likely it contains the object

of interest. Since a ranking is obtained, we report the classification rate at the point where the

false alarm rate equals the false reject rate. Baseline-NL,Baseline-KM1 and Baseline-KM2 are

clustering methods and do not have knowledge of which cluster corresponds to background clutter

and which cluster corresponds to the object of interest. We compute the classification rate for both

clusters in turn and report the result with the higher classification rate. Baseline-FREQ assigns

different number of frequent closed itemsets to each frame,and we rank the frames according to

how many frequent closed itemsets it contains inside.
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Baseline-KM1 performs slightly worse than Baseline-NL. This is consistent with the report in

[4]. Baseline-NM has similar performance as Baseline-NL. We also see that global color informa-

tion provides little discriminative ability (Baseline-KM2) and performs the next to the worst. This

is due to the large color variations in the background clutter, which dominates over the object of

interest. Baseline-FREQ has the lowest classification rate. This shows that the number of frequent

closed itemsets in a frame is not a good indicator of the presence of the object of interest. DISCOV

outperforms all the others in four out of five experiments. Inthe PEUGEOT1 sequence, the result

of DISCOV is worse than Baseline-NM and Baseline-NL becauseof the shooting style; the object

of interest appears at random locations with fast shot transitions, hence the baseline methods that do

not model the motion perform better. Overall, DISCOV has theleading performance in weighted

average classification rate, where the weighting comes fromthe number of frames.

6.4.3 Object-oriented threading

The capability of object-oriented video segmentation suggests an application called “threading”,

where all occurrences of an object are linked together. Threading is different from keyframe(s)

extraction [69]. The aim of keyframe extraction is to obtaina set of frames that covers all aspects

of a video sequence, yet these frames need not contain the object of interest. Our aim of object-

oriented threading is to obtain a set of frames that includesthe object of interest, hence being

different from keyframe extraction. Whether threading or keyframe extraction is more useful is

application dependent; it is better to understand them as different video summarization techniques.

Both methods attempt to cover the temporal domain while threading focuses more on the object of

interest.

Our approach to threading is object-oriented. First, we rank the images according to how likely

they contain the object of interest (usingP (zobj |di) as in Section 6.4.2). We put the top twenty

frames with the highest values into a candidate set. Since many among these twenty frames are

visually similar and hence redundant, we apply k-means clustering (withk = 5) using their RGB

color histograms as features and pick from each cluster the one with the highest value ofP (zobj |di),

resulting in the five frames as shown in Fig. 6.3. Even though the Pepsi logo appears in only 87

out of 181 frames, each of the five candidate keyframes contains the Pepsi logo. Likewise, the

Mercedes-Benz appears in only 278 out of 711 frames. The five candidate keyframes correspond

to the435th, 468th 690th, 694th, and704th frame in the BENZ video and the30th,42nd,55th,146th,
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and179th frame in the PEPSI video, showing very little temporal redundancy (frames are sampled

at one frame per second).

Sequence
Trivial 

Solution

BIKE 69.2% 92.3% 1.33 92.3% 1.33 88.5% 1.28

HORSE 20.0% 65.0% 3.25 50.0% 2.50 50.0% 2.50

BIKE2 50.0% 96.6% 1.93 82.8% 1.66 74.1% 1.48

PEUGEOT1 100.0% 81.7% 0.82 77.9% 0.78 58.6% 0.59

PEUGEOT2 86.3% 71.7% 0.83 57.8% 0.67 59.6% 0.69

BENZ 55.7% 68.3% 1.23 65.7% 1.18 59.3% 1.06

PEPSI 14.9% 34.5% 2.32 31.2% 2.09 19.5% 1.31

DISCOV Baseline-NM Baseline-NL

Table 6.2: Localization performance. Detailed in Section 6.4.4.

6.4.4 Object of interest localization

In order to see if the discovered objects truly correspond tothe object of interest, here we evaluate

the localization performance. The ground truth data provides a bounding box around the object of

interest in each frame, and the frames that do not contain theobject of interest are not evaluated.

Each object discovery algorithm assigns to each MSER an ‘object’ or ‘background’ label. Each

MSER has a center position. The average position and covariance of all ‘object’ MSERs provides

a rough estimate of the object position, scale and shape. A hit is made if the estimated position and

scale matches well with the ground truth bounding box withina certain threshold. The reported

numbers shown in percentage are the hit rates averaged over each video sequence. It should be

noted that since occasionally some background clutter are assigned an ‘object’ label, these outliers

can move the average position of all ‘object’ MSERs outside the bounding box, hence showing

lower hit rates.

Results are shown in Table 6.2. The trivial solution is a naive algorithm: always return the

center of the frame as the position estimate of the object of interest. Since larger objects are

more likely covering the center position, the trivial solution provides a sense of the difficulty of

each video sequence. The numbers next to the percentages areratios between the hit rate of the

algorithm and the trivial solution. The larger the better. It can be seen that DISCOV clearly
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outperforms Baseline-NM and Baseline-NL.

Figure 6.2: Samples of two video sequences from YouTube.com. Top two rows are 14 out of

711 samples of the BENZ sequence. Bottom two rows are 14 out of181 samples of the PEPSI

sequence. Images are displayed from left to right.

6.4.5 Computation speed

The computation time for DISCOV on a 100-frame video sequence is around 30 seconds for MSER

extraction and 80 seconds for running the EM algorithm. The EM algorithm is written in MATLAB

and not intentionally optimized for speed.

6.5 Handling Multiple Objects

In the previous sections, we considered a model that assumesthere is at most one OOI per frame.

To deal with multiple objects, we consider a Sequential Monte Carlo framework.

We use a particle filter to address the aforementioned problems of the original DISCOV pa-

per. We call it the unsupervised particle filter because, as explained in the Introduction section,

prior work on using particle filtering for tracking requireshuman intervention [70],[71],[72],[73]

or human labeled data [74], or has been using a simplified bootstrap filter [75].
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Figure 6.3: Results of object-oriented threading (SectionIV-C). Each frame in the top row contains

the black Mercedes vehicle; in the bottom row, each frame contains the PEPSI logo. This pro-

vides an object-oriented overview of the whole video sequence in a different way than traditional

keyframe extraction.

ObservationsObservations

Particle
Filter

Particle
Filter Location MapsLocation MapsWeighted

Ellipses
Weighted
Ellipses

Color ImagesColor Images

Topic DistributionTopic Distribution

Appearance DistributionAppearance Distribution

Posterior MapsPosterior Maps

Figure 6.4: Algorithm flowchart. Notice that while the location maps are estimated for each frame,

the topic and appearance distributions are shared across all frames.

6.5.1 Overview

Define the ‘posterior map’, or ‘P-Map’, as the ‘image’ that stores the posterior probabilityp(zFG|d,w, r)

of each pixel. The P-Map is updated according to (6.3). Notice that some pixels can be covered by

more than one MSER patch. In that case, we assign the pixel themaximum value; some pixels can

be covered by none of the MSER patches. In that case, we assignthe pixel a close-to-zero posterior

probability (we used10−5 in the experiments). Similarly, the ‘location map’, or L-Map stores the

probabilityp(r|d, zFG) of each pixel.

A region in the P-Map with high values indicates the potential existence of a foreground object

at that location. But the P-Map can have spurious regions causing false positives or false negatives.
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The purpose of using the particle filter is to ‘clean up’ the P-Map. The cleaned-up P-Map becomes

the L-Map in the next EM iteration. Therefore, the clean-up process is crucial to the performance of

video object discovery. The clean-up is based on the following prior knowledge: first, that objects

tend to move in a smooth manner; second, that objects tend to be spatially clustered in space.

We use a particle filter for the clean-up process. Notice thatthe particle filter replaces the

role of the PDA filter (a variation of the Kalman filter) in the original DISCOV framework. The

advantages of the particle filter over the PDA filter are: (1) it can handle multiple objects, (2) it

can handle complex shapes, (3) it is inherently a multiple-hypotheses framework, and (4) it allows

us to use a non-linear observation model. While there existsother PDA-like filters such as the

JPDA filter [65] that can handle (1)-(3) as well, it is the fourth property that makes particle filters

especially suitable for our purpose.

The input to the particle filter includes the P-Map as well as the original color image frames

(see Fig. 6.4), collectively denoted asyk, wherek is a frame index. As in the control and tracking

literature, we cally the observation to the particle filter.

6.5.2 Importance Sampling

We first briefly review the basics of Importance Sampling.

The expectation of a functionf under the probability distributionp is as follows:

Ep[f(x)] =

∫ ∞

−∞
f(x)p(x)dx (6.12)

Suppose we haveN particles, or random samples,x1, ...xN , that are sampled fromp. Thenp can

be approximated as follows:

p(x) =
1

N

N∑

i=1

δ(x− x(i)) (6.13)

Substituting the approximatep into Ep[f(x)], we obtain

Ep[f(x)] =
1

N

N∑

i=1

f(x(i)) (6.14)

Since sampling fromp is sometimes difficult, we consider another option here. Instead of sampling

from p, we sampleN random samples,x1, ...xN , from another distributionq, which is often called

the ‘proposal distribution’. Also define the particle weight, w, as follows:

w(x) =
p(x)

q(x)
(6.15)
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It follows thatEp[f(x)] can be computed as follows:

Ep[f(x)] =

∫
f(x)w(x)q(x)dx
∫

w(x)q(x)dx
=

1
N

∑N
i=1 f(x(i))w(i)

1
N

∑N
i=1 w(i)

(6.16)

which further simplifies to

Ep[f(x)] =

N∑

i=1

f(x(i))
w(i)

∑N
j=1 w(i)

=

N∑

i=1

f(x(i))v(i) (6.17)

wherew(i) ∆
= w(x(i)) and

v(i) =
w(i)

∑N
j=1 w(i)

(6.18)

Notice that in order to computev(i) we only need to knowp(x) up to a multiplicative constant.

This fact is useful when exhaustively evaluating all possible outcomes ofp(x) is intractable.

6.5.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods (also called particlefilters) is an extension of Importance

Sampling. It consists of a two step recursion:

Predict:

p(xk|y0:k−1) =

∫

p(xk|xk−1)p(xk−1|y0:k−1)dxk−1 (6.19)

and Update:

p(xk|y0:k) =
p(yk|xk)p(xk|y0:k−1)

∫
p(yk|xk)p(xk|y0:k−1)dxk

(6.20)

Sequential Importance Resampling (SIR) is a popular SMC method. The proposal distribution

is defined through this recursive equation:

q(x0:k|y0:k) = q(x0|y0)
∏

k

q(xk|x0:k−1, y0:k) (6.21)

If we replacep(x) with p(x0:k|y0:k) andq(x) with q(x0:k|y0:k) in the derivation of Importance

Sampling, we obtain:

w
(i)
k =

p(x
(i)
0:k|y0:k)

q(x
(i)
0:k|y0:k)

=
1

q(x
(i)
0:k|y0:k)

·
p(y0:k|x

(i)
0:k)p(x

(i)
0:k)

p(y0:k)
(6.22)

If we define

w
∗(i)
k

∆
=

p(y0:k|x
(i)
0:k)p(x

(i)
0:k)

q(x
(i)
0:k|y0:k)

(6.23)
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then

v
(i)
k =

w
(i)
k

∑

j w
(i)
k

=
w

∗(i)
k

∑

j w
∗(i)
k

(6.24)

and

w
∗(i)
k

w
∗(i)
k−1

=

p(y0:k|x
(i)
0:k)p(x

(i)
0:k)

q(x
(i)
0:k|y0:k)

p(y0:k−1|x
(i)
0:k−1)p(x

(i)
0:k−1)

q(x
(i)
0:k−1|y0:k−1)

=

p(y0:k,x
(i)
0:k)

p(y0:k−1,x
(i)
0:k−1)

q(x
(i)
k |x

(i)
0:k−1, y0:k)

(6.25)

The v
(i)
k are called the normalized particle weights. Based on the conditional independence as-

sumptions shown in the graphical model in Fig. 6.5, we have

p(y0:k, x
(i)
0:k)

p(y0:k−1, x
(i)
0:k−1)

= p(yk|x
(i)
k , yk−1, x

(i)
k−1)p(x

(i)
k |x

(i)
k−1) (6.26)

so that the un-normalized particle weights can be computed recursively:

w
∗(i)
k = w

∗(i)
k−1

p(yk|x
(i)
k , yk−1, x

(i)
k−1)p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1, y0:k)

(6.27)

1−kx kx

1−ky ky

Figure 6.5: Graphical model defining the conditional independence assumptions.

In theory, we would sample from the proposal distribution,q(x|x
(i)
0:k−1 , y0:k), and obtain sam-

ples {x(i)
k }. Each sample is then weighted by four terms,p(yk|x

(i)
k , yk−1, x

(i)
k−1), p(x

(i)
k |x

(i)
k−1),

q(x
(i)
k |x

(i)
0:k−1, y0:k) andw

∗(i)
k−1 before obtaining the un-normalized particle weightw

∗(i)
k . Notice

that each of these functions can be subject to an unknown multiplicative factor without affecting

the value of the normalized particle weights.
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6.5.4 Proposal Distribution

A proper proposal distribution (also called theimportance density[76]) is essential for keeping

the particle filter effective. In practice, we want to use a small amount of particles for run-time

efficiency. Hence, distributing the particles effectivelyin the state space is important. It has been

shown [77] that the optimal proposal distribution which minimizes the variance of the particle

weight conditional uponx(i)
0:k−1 andy0:k has the form ofq(xk|x

(i)
k−1, yk).

Our approach is to build a proposal distribution from the P-Map,ypmap, which is part of the

observation,yk. Different than all prior work in visual tracking, where theobservation consists

only of the color image, our observation consists additionally of the P-Map. The P-Map contains

information of the position and scale of the objects of interest. In this sense, mode (local maxima)

and scale seeking on the P-Map resembles the use of an object detector in [74]. However, mode

and scale seeking does not require labeled data or training of an object detector, hence it fits in the

unsupervised object discovery framework.

Mode and scale seeking

Our approach of finding the mode and scale is to fit a mixture of Gaussians (MoG) (see [64] for

the EM algorithm we are using) to the P-Map, where the controlparameter is the number of mix-

ture components,K. In video object discovery of short video clips, such as the Youtube videos

used in our experiments, the number of objects of interest ina video are generally less than three.

Therefore, by controlling the value ofK over a reasonable range of values, we effectively impose

a prior knowledge on the number of objects of interest. By maintaining multiple MoGs with dif-

ferentK values, we explicitly explain the possibilities of different numbers of objects of interest

in each frame, and implicitly the possibilities of noise in the P-Map, effectively maintaining mul-

tiple hypotheses over the number of objects of interest. In the experiments, we useK = 1, ..., 5.

In order to incorporate the prior knowledge on the number of objects of interest, an algorithm

that has direct control over the number of modes is preferredto an algorithm that directly con-

trols the bandwidth of kernels (mixture components), such as the variable bandwidth mean-shift

[23],[78],[79],[80],[71].

Finding the optimal number of mixture components is a model selection problem with rich

literature [81]. Even though greedy algorithms exist that have running time linear in the number of

data points and quadratic in the final number of mixture components [82], in video object discovery,
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however, model selection becomes intractable: the number of objects of interest can vary from

frame to frame, and hence if we jointly optimize over all frames in a video, the complexity is

exponential to the number of frames. Jointly optimizing over all frames is important, because the

number of objects of interest is strongly correlated acrossframes.

Based on the prior knowledge on the number of objects of interest, and taking into account that

the P-Maps are noisy, we maintain multiple MoGs with different number of mixture components

and collectall modes. I.e., instead of trying to determine the “correct” value ofK, we make use of

multiple MoGs and don’t care about determining the optimal number of mixture components. In

the experiments, we use diagonal MoGs andK = 1, ..., 6. Notice that theK values do not need to

be contiguous, nor do they have to start from one. Alternatively, one could use Variational Bayes

techniques [83] to estimate the mixture model.

Parts-based representation

The Gaussians collected from the MoG(s)collectivelyrepresent the potential spatial positions of

the objects of interest. Notice that multiple Gaussians maycollectively describe a single object of

interest. The mixture model is therefore suitable for modeling complicated shapes and articulated

objects. This is similar in spirit to the ‘multi-ellipsoid’representation in [84], where body parts are

collectively modeled by multiple ellipsoids.

To fine tune the scale of each potential object part, the standard deviations in the horizontal

and vertical axes are multiplied by a scaling factor for eachGaussian. In practice, we use a set of

scaling factorss = {0.75, 1, 2}, with the hope that one of the scaling factors will approach the true

size of the object part.

After the position and scale estimates of each potential object part are obtained, each potential

object part is equivalent to an ellipse. We can estimate the velocity of each ellipse as follows. First

we obtain the correspondence between ellipses in neighboring frames. In the tracking literature,

this is called the data association problem [65]. The nearest-neighbor strategy [65] associates

ellipses in the current frame with the closest one in the previous frame. This simple strategy

keeps the number of associations at a minimum but is more prone to errors. We adopt a multiple

hypotheses strategy [65] where each ellipses is associatedwith all ellipses in the previous frame.

For each association, we compute the estimated velocity vector by subtracting the horizontal and

vertical positions of the ellipse in the previous frame fromthe current frame. Each particle is now
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represented by the position, scale, and velocity as follows:

x(i) = (pos
(i)
h , pos(i)

v , scale
(i)
h , scale(i)

v , vel
(i)
h , vel(i)v )T (6.28)

where the subscriptsh andv denote horizontal and vertical coordinates, and the frame indexk

being dropped for clarity. Since each ellipse is associatedwith all ellipses in the previous frame,

the number of particles is the squared number of ellipses. Since the first frame does not have a

previous frame, particles in the first frame are initializedwith zero velocity and properly replicated

such that the number of particles is constant in all frames.

In summary, we use multiple MoGs to deterministically estimate the position and scale of

potential object parts from the P-Map,ypmap. As a comparison, the MoG (and its approximation

by a kernel density function) has been used in the particle filtering literature in fundamentally

different ways: to model the particle filter’s posterior distribution in [85], or to model both the

posterior distribution and the likelihood function in [80]and [71].

Unsupervised proposal distribution

The proposal distribution has the following form:

q(xk|x
(i)
k−1, yk) =

1

N

N∑

i=1

δ(xk − x
(i)
k ) (6.29)

whereN is the number of particles, particles{x(i)
k }

N
i=1 are obtained as described in the previous

section, andδ(xk − x
(i)
k ) denotes the Dirac-delta mass located atx

(i)
k .

The proposal distribution has two important features: first, the proposal distribution is a func-

tion of the observation (noticing that particles are estimated based on the P-Map); second, and

more importantly, the proposal distribution does not rely on human labeled data. While these two

features have been individually presented before, they have never been shown together.

The first feature was neglected by the CONDENSATION algorithm [70], which is a popular

particle filter algorithm due to its simplicity (for example, [75] and [86]). The proposal distribu-

tion is chosen as the dynamic model (also called the prior distribution [76]), p(xk|x
(i)
k−1), which

omits the observation,yk, from the optimal distribution,q(xk|x
(i)
k−1, yk). Equation (6.27) for com-

puting the particle weights then greatly simplifies, as the nominator and denominator cancel each

other out. The simplification comes at a price, because by ignoring the observation, the proposal
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distribution could generate few or zero particles around the true state, which would result in poor

performance [76].

The second feature was neglected by the Boosted Particle Filter [74], which uses an Adaboost

object detector to detect hockey players and thereby defining a proposal distribution. Similarly,

the color-based tracker in [86] detects regions of skin color. Since the observations (in their case,

the original color image frames) are taken into account in the proposal distribution, the afore-

mentioned problem of CONDENSATION is resolved. However, training an object detector or skin

color model requires human labeled data, hence the approachis not suitable for unsupervised learn-

ing. On the other hand, while the work in [75] learns the foreground and background models by

background subtraction and hence does not require human labeled data, its particle filter is based

on CONDENSATION and hence neglects the first feature.

Even though there is a vast literature addressing the two features individually, there is no work

that has addressed them simultaneously. We call (6.29) the ‘unsupervised’ proposal distribution

due to the second feature.

6.5.5 Dynamic Model

The dynamic model is a linear equation,

xk = Ax
(i)
k−1 + ǫk (6.30)

whereǫk is a Gaussian noise vector with zero mean and standard deviation σ = (σpos
h , σpos

v , σscale
h , σscale

v , σvel
h , σvel

v )T ,

and

A =
















1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
















(6.31)

i.e., assuming constant velocity and constant scale.

For a pair of ellipses in framen−1 and framen, one can compute the probability

p̃(xk|x
(i)
k−1) = N (xk −Ax

(i)
k−1|0, diag(σ)) (6.32)
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wherediag(σ) is the covariance matrix formed by the diagonal elements taken from theσ vector

and zeros elsewhere. We useσ = (1, 1, 10, 10, 0.1, 0.1). The scale parameter is given relatively

larger freedom to change to accommodate abrupt changes in size in real video datasets.

6.5.6 Observation Model

The likelihood function in (6.27) is defined as

p(yk|x
(i)
k , yk−1, x

(i)
k−1) ∝ exp{λP log LP + λC log LC} (6.33)

which consists of the P-MAP likelihood functionLP and the color likelihood functionLC . We use

λP = λC = 10−4 in the experiments.

P-Map likelihood

The P-Map (log-)likelihood captures the intuition that thesystem prefers image regions with higher

posterior probability being covered by candidate ellipses, instead of lower ones being covered. A

naive implementation would be

log LP (ypmap, xi) =
1

Ai

Ai∑

j

(ypmap
j − 0.5) (6.34)

wherej is an index over the pixels covered by ellipsexi, andAi is the area ofxi. However, for

candidate ellipses on the P-Map where the center has the highest posterior value and gradually

decreasing values on the sides, this would encourage ellipses that degenerate to a point (that is

the mode). A corrected version of the above equation would hence encourage larger ellipses is as

follows:

log LP (ypmap, xi) =
1

Ci

(

Ai∑

j

(ypmap
j − 0.5)−

Bi∑

k

(ypmap
k − 0.5)) (6.35)

wherek indexes the set of pixels on a band of finite width along the boundary of ellipsexi, and

Bi is the number of such pixels, andCi = Ai + Bi. In the experiments, we noticed that using a

boundary with width of 1, 2, or even 3 pixels would significantly improve the performance over

0, which reduces to (6.34). We use a width of two pixel. To better understand (6.35), consider

the example shown in Fig. 6.6: suppose the P-Mapypmap has value 1 (shown as white) inside a

circular region, and value 0 (shown as gray) outside. Suppose we have a set of two circular-shaped

candidate ellipses, the inner one shown with round dotted outline, and the outer one shown with
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dashed outline. While (6.34) would assign equal likelihoodto these two candidate ellipses, (6.35)

would assign a larger likelihood to the outer ellipse, whichexactly covers the white area.

Figure 6.6: Illustration for the definition of P-Map likelihood.

Color likelihood

The color likelihood term is based on the (1) object attraction and (2) background exclusion prin-

ciples [86],[84]:

log LC(yk, x
(i)
k , yk−1, x

(i)
k−1) = B(h

(i)
k , h

(i)
k−1)

︸ ︷︷ ︸

(1)

−B(h
(i)
k , h)

︸ ︷︷ ︸

(2)

(6.36)

where the first term favors the histogram similarity betweentheith ellipse in the current frame,h(i)
k ,

and in the previous frame,h(i)
k−1. The second term favors the difference in an ellipse’s appearance

from the background. The background color histogramh uses image pixels that are not covered

by any of the ellipses. The similarity is based on the Bhattacharyya coefficient,B(ha, hb) =
∑

j

√

ha(j)hb(j). We use 10 histogram bins for each of the R, G, and B color channels.

6.6 Experiments

6.6.1 Synthetic Data Experiment-1

In this experiment, we want to demonstrate the capability ofthe particle filter within a single EM

iteration, given synthetic observation data. The data consists of 8 frames of P-Maps and color

image frames, simulating a single object moving in cluttered background. In the5th frame, we

added structural noise simulating background clutter. Thestructural noise is represented by high
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posterior probability in the P-Map. The goal is to show that the particle filter is robust to the

structural clutter.

The data is shown in Fig. 6.17. In the first column of Fig. 6.17,we see that the color of both the

object and the background are contaminated by noise. In the second column, the top figure shows

the P-Map, and the bottom figure shows the L-Map, which is the output of the particle filter. We

can see from the L-Map that despite the color noise and structural clutter, the particle filter tracks

the target throughout the video. The computation time is 0.65 seconds per frame using MATLAB

on a Intel Core2 Duo 3GHz machine.

6.6.2 Synthetic Data Experiment-2

The second experiment has the same setup as the previous one,except that there are two objects

instead of one. In the5th frame, instead of adding structured clutter, we let one of the objects

disappear, simulating occlusion, and then re-appear in frame 6. The goal is to show that the particle

filter is robust to occlusion.

The data is shown in Fig. 6.18. In the first column, we see that the color is again contaminated

by noise. In the bottom figures of the second and third row, we can see that the particle filter can

quickly recover from occlusion.

6.6.3 Synthetic Data Experiment-3

The previous two experiments demonstrated the particle filter’s utility within a single EM iteration.

In this experiment, we run the whole DISCOV framework with 20EM iterations, and the P-Maps

are automatically generated according to the DISCOV framework. There are ten visual words. Two

objects are moving in linear motion as in Experiment 2 with the same number of frames. The goal

is to illustrate that the particle filter is more suitable forthis task than the PDA filter in the original

DISCOV framework, because it can handle naturally handle multiple objects.

We sampled 320 visual words for each frame from the generative distribution shown in Fig. 6.7

with a foreground topic distributionP (zFG|d) = 0.5, and obtain the underlying histogram, shown

in Fig. 6.7. Both the generative distribution and the underlying histogram are hidden, and the goal is

to estimate the underlying histogram. From Fig. 6.7 we see that the particle filter-based DISCOV

produces appearance distributions that are far more similar to the underlying histogram than the

PDA filter-based DISCOV.
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Figure 6.7: Visual word distributions.

6.6.4 Real Data Experiments

We collected 94 videos fromwww.youtube.com. This data will be made available online.

Videos are converted to images in PNG format at a rate of 2 frames per second. To measure quan-

titative performance, we collected ground truth data in thefollowing way: three persons without

knowledge of our system were asked to draw bounding boxes covering the objects of their interest.

Examples are shown in Fig. 6.8. We did not instruct the human labelers an upper or lower bound

on the number of objects of interest, hence the number variesfor each video, but in all videos the

number of objects of interest is less than four.

We first use the mean-squared error (MSE) as performance measure, which measures the dis-

crepancy between the human labeled bounding box and the system generated P-Map for each
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Figure 6.8: Sample frames containing one object of interest(top), and multiple objects of interest

(middle and bottom). From left to right: original data, system generated output, human labeling.

frame, as illustrated in Fig. 6.9. In Fig. 6.10, on the left, we show the mean-squared error averaged

over all frames for each video, then averaged again over all videos; on the right, we show the mean-

squared error averaged directly over all frames from all videos. The purpose is to see whether the

results are biased by a subset of videos with more frames. We see that the two charts have very

similar results.

From the charts in Fig. 6.9 we see that the proposed DISCOV framework with particle filtering

performs better than the original DISCOV framework, and human performance is still the best. All

results are evaluated against the ground truth labels from person 1. The human performance is mea-

Human Machine

MSE = 0.09

Figure 6.9: Mean-squared error of a single frame.
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suring the labeling of person 2 against the labeling of person 1. We also see that the PLSA model

[4][6] shown by the ‘No Location’ bar performs the worst. We did not compare further with other

data mining techniques such as the frequent closed itemset mining [67], clustering on the image-

visual word co-occurrence matrix [87], or a straightforward clustering on color histograms [87],

because the original DISCOV framework in [87] has already demonstrated superior performance

to those techniques.
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Figure 6.10: Mean-squared error over all videos and all frames.

To gain some understanding of the performance over individual videos, we show in Fig. 6.11

the results of the first ten videos in our dataset. The proposed DISCOV framework performs better

than the original DISCOV framework in general, with the exception of video number 6, 8, and

10. The reason can be explained by Fig. 6.9, which shows a frame in video number 6. In this

video, both persons labeled the vehicle as the only object ofinterest throughout the video. In this

case, the shape of the vehicle is well approximated by a Gaussian, and hence the original DISCOV

framework fits the data extremely well. On the other hand, theparticle filter is relatively more prone

to data overfitting. However, as seen in video number 8 and 10,where also only a single object

of interest exists throughout the video, the performance ofthe proposed DISCOV framework can

approach the original DISCOV framework very closely, and little data overfitting occurs.

In Fig. 6.11 we see an anomaly where video number 1 has better performance achieved by

the machine than by human. The reason is that person 1 and person 2 sometimes placed labels

differently, as shown in Fig. 6.12, hence the high mean-squared error.

In addition to the mean-squared error, we show in Fig. 6.13 the precision-recall (PR) curve.

Since the P-Map consists of probabilities for each pixel, byvarying a threshold value on the P-Map

we can classify pixels in each frame into those that belong toan object of interest and those that

do not. The precision is the number of pixels in all frames that are correctly classified as belonging
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Figure 6.11: Mean-squared error over first ten videos.

Figure 6.12: Different people have different concepts of object of interest.

to an object of interest divided by the total number of pixelsin all frames labeled as belonging to

the object of interest. The recall is the number of pixels in all frames that are correctly classified as

belonging to an object of interest divided by the total number of pixels in all frames that actually

belong to the object of interest. The PR curve is shown in the third column of Fig. 6.13.

Some frames are more suitable for evaluation purpose than the others; let us call them the good

frames. One way to select good frames is to select the ones that the human labelers agree with each

other on their labeling. We use the F-measure as similarity measure, which is the harmonic mean of

precision and recall. The precision and recall values are computed for each frame based on whether

each pixel is labeled the same or not. After ranking all frames based on the F-measure, we selected

three sets of frames: the first set consists of the top10% ranked frames, the 2nd subset consists of

the top50% ranked frames, and the 3rd set consists of all frames. Using these three sets of frames,

we then evaluated the machine performance. This way of evaluating machine performance takes
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into account the consistency of human labelers.
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Figure 6.13: Precision-recall curves.

In Fig. 6.14, we show the MSE again, this time using the ‘voting’ result of the three human

labelers. The voting result is obtained as follows: for eachpixel, if most human consider it as

object of interest, then labeled it as so; otherwise, the pixel is labeled as background. Using the

voting result, we again see that the non-Gaussian approach performs the best.
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Figure 6.14: Mean-squared error over all videos and all frames.

The EM-algorithm is used both in the construction of the visual word dictionaries and in up-

dating the location map, appearance distribution, and topic distribution (Fig. 6.4). It is well known

that the EM-algorithm is sensitive to initialization and has difficulty escaping local extrema [81].

Here we want to see whether this causes different performances in different runs. We ran the

whole system repeatedly for 50 times with random parameter initialization and recorded the mean-

squared error at each run. In Fig. 6.15 we see that the MSE has little variation over different runs,
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demonstrating that the overall system is stable enough to provide consistent results.
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Figure 6.15: System stability/sensitivity to random initializations.

In Fig. 6.16 we study the effect of the visual word dictionarysize on the overall performance.

We vary the dictionary size from 10 to 5000 and record the average MSE over all videos. The MSE

gradually decreases and then increases, showing that the optimal dictionary size is around 100 to

1000. Within this range, the performance is relatively insensitive to the visual word dictionary size.
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Figure 6.16: Effect of dictionary size on mean-squared error.
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Figure 6.17: Frames 1, 3, 5, 7 shown in rows. Middle and right column: different levels of noise.

Top: posterior distribution. Bottom: location distribution after particle filtering. System is robust

to noise and clutter (in frame 5).

6.7 Conclusion

The video data mining and ‘object-oriented’ nature of our approach provides promising new di-

rections for video content analysis. At present, DISCOV only provides a rough position estimate

of the object of interest. For keyframe extraction or video segmentation this might suffice, but in

some other areas such as high quality editing it might be of interest to obtain a clearer contour

segmentation of the image pixels. This might require sophisticated feature detectors in addition

to MSERs. We are also investigating applications in spatialdata mining tasks where traditionally

only the density of feature points were considered, whereasDISCOV is able to handle atomic units

with different appearances and thus different identities.
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Figure 6.18: Frames 1, 3, 5, 7 shown in rows. Middle and right column: different levels of noise.

Top: posterior distribution. Bottom: location distribution after particle filtering. System is robust

to noise and occlusion (in frame 5).
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Chapter 7

Object-Oriented Retrieval

State-of-the-art video retrieval methods use global imagestatistics to provide low level descriptors

or use object recognizers to provide high level features. Using global image statistics can be hin-

dered by lack of explicitly characterizing the object of interest hence prone to retrieving irrelevant

results, while using object recognizers can suffer from having to train a large number of object

recognizers for different types of objects.

We present a novel framework for content based video retrieval. We use an unsupervised

learning method to automatically discover and locate the object of interest in a video clip. This un-

supervised learning algorithm alleviates the need for training a large number of object recognizers.

Regional image characteristics are extracted from the object of interest to form a set of descriptors

for each video. A novel ensemble-based matching algorithm compares the similarity between two

videos based on the set of descriptors each video contains. Videos containing large pose, size, and

lighting variations are used to validate our approach.

7.1 Introduction

We present a method for estimating the similarity between two videos based on theobject of interest

each video contains. Our method automatically extracts theobject of interest without resorting to

any object recognition.

Why do we want to avoid object recognition? Because there is no current algorithm that can

handle the large number of objects a human can recognize, notto mention its performance for the

objects it is trained to recognize. This poses a problem for video retrieval researchers: should we

91
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wait until the perfect object recognition system is developed so that we can perform video retrieval?

Instead of recognizing the object of interest, which is often the most important factor for re-

trieving similar videos, researchers instead have been using other less important visual factors such

as the global color and texture of each frame. This works wellif it is the global property that the

user cares about; for example, to distinguish greenish country-side videos from bluish ocean-side

videos. However, if it is the object of interest the user cares about, global information can be unre-

liable because the object of interest often occupies only a small proportion of pixels in a frame and

cannot be captured by global image statistics. In Fig.7.1(Left), global image statistics capture the

mountain scene and ocean scene and hence relate the four videos horizontally. It cannot find out

that the top and bottom videos contain the same type of object.

Our framework discovers the object of interest in each video(hang gliders on the left and bears

on the right), thus being able to relate the videos vertically as in Fig.7.1(Right). More precisely,

once the object of interest is discovered and located in certain frames, we use a set of local features

extracted from the object of interest to represent a video, instead of using global features. Video

matching and retrieval involves the ranking of database videos according to their similarity to the

query video, where each video can be represented as a set of feature vectors. We propose a novel

similarity function that operates on a pair of sets of feature vectors. Distinguished from previ-

ous methods, the proposed similarity function also incorporates statistics from the video database.

We compare our similarity function with the state of the art and show promising results both in

performance and in computation cost.

7.2 Background

Most work in literature on content-based video retrieval relies on global features such as color,

texture, or edge descriptors; for example [88]. The use of higher level features to facilitate video

retrieval has become popular in TRECVID [89], see example [90][91], where features such as the

presence of faces and cars are used. However, reliably extracting these high level features is very

difficult even with state-of-the-art object recognizers [92] and, more importantly, it constrains the

applicability of video retrieval to scenes containing a very limited number of specific object types.

Our approach of automatically locating the object of interest does not require trained object

recognizers. It is general and can handle different types ofobjects. There are many ways of
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Traditional: using global image statistics Proposed: locate the object of interest

Figure 7.1: One frame from each of the four videos is shown. See Sec. 1 for details.

extracting the object of interest. Our approach differs from saliency-based methods [93], since our

method focuses on consistency across multiple frames instead of color or shape saliency in a single

image. Our work is related to unsupervised learning methodsfor discovering objects in images

[58][5][4] and videos [31]. In [43][94], the correspondence of distinctive feature patches are found

across frames and grouped. Our approach also uses distinctive textured patches, but we do not

explicitly compute the correspondences across frames, which can be computationally expensive.

Our method differs from the ‘Video Google’ work [51] since wedo not rely on a user to manually

outline the object of interest to facilitate video retrieval.

Video retrieval involves computing the similarity betweenvideos. Ensemble matching methods

[95][96] [97] can be used to compare a set of samples to another set of samples, where here a

sample is a feature vector representing the object of interest in a particular frame. However, in

video retrieval the problem is not only to match two videos but also to rank the whole database of

videos. Hence a better method should take into account the statistics of the whole database while

performing video to video matching. In other words, the similarity function should be a function of

not only the two videos to be compared, but also the rest of thevideos in the database. In Sec.7.3 we

present a novel similarity function that has this property.The concept of utilizing database statistics

for image retrieval has been exploited in [98], but there it was limited to comparing a feature vector

to a feature vector instead of a set of feature vectors to a setof feature vectors. Besides, the method

there only applies to binary feature vectors.
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Figure 7.2: Sample frames showing the result of extracting the object of interest. We can handle oc-

clusions, disappearance (top left video), non-rigid motion (top right and bottom left), size variations

(bottom right video), and different types of objects. This is achieved without using single-frame

color saliency methods or object recognizers. Good frames (according toP (z+|d)) will be used to

extract features from.

In Sec.?? we introduce a framework for localizing the object of interest in a video. Once the

object of interest is localized, local features are extracted and compared across videos using the

similarity function introduced in Sec.7.3. In Sec.8.5 we show experimental results and conclude

with Sec.7.5.

7.2.1 OOI bounding box

The estimated spatial distributionp(r|z+, d) tells us the location of the OOI and also provides an

estimate of the size of OOI. As shown in Fig.7.2, a bounding box around the OOI is used to specify

the region from which we will extract features for video matching. We use a bounding box with

size that is twice the standard deviation of the Gaussian distribution p(r|z+, d). The choice of

using a bounding box versus an elliptical region for featureextraction does not yield significant

difference in results.

In the Experiments section we will detail the features we extract from within a bounding box.

As mentioned earlier, our framework allows the OOI to disappear or become occluded in some

frames. This can be detected by observing the value ofp(z+|d). Frames in which the OOI disap-

pear or being heavily occluded should be excluded from feature extraction. We will detail in the

Experiments section how to determine which frames to extract features from.
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7.3 Video matching

We use{V} to denote the database of videos andQ to denote a query video. We represent the

ith videoVi by a set of feature vectors,Vi =
{
vi

1, ...,v
i
Ki

}
, whereKi is the number of frames

we extract features from. Each feature vectorvi
k has dimensionJ , i.e.,vi

k =
[
vi
k1, ..., v

i
kJ

]T
. The

features we use are histogram features, i.e., the feature valuesvi
kj are normalized or un-normalized

counts of physical properties such as color or texture within an image subregion. Similarly, the

query videoQ consists ofI feature vectors,Q = {q1, ...,qI}, each vector also with dimensionJ .

Note that the number of feature vectors are generally different for each video.

Next we will discuss how to calculate the similarity betweenthe query videoQ and any

database videoV. This similarity will be used in a query by example task, where all database

videos are ranked according to their similarity to the queryvideo.

7.3.1 Sample-mean matching

A naive way to compute the similarity betweenQ andV is to average the feature vectors withinQ

andV separately and then use any standard similarity measure forvectors. However, information

is lost during the averaging process. We call this approach sample-mean matching. A more sophis-

ticated way is to fit the set of feature vectors inQ andV separately with a probability distribution,

and then measuring the similarity between the two distributions. Yet another method is to perform

ensemble matching, as we will detail in the next section.

7.3.2 Ensemble-based matching

Ensemble matching methods [95][96] [97] generally consider the task of obtaining a similarity

function which operates on pairs of sets of feature vector, or pairs ofensembles. Ensemble match-

ing provides a natural way to calculate the similarity betweenQ andV when a video is considered

as an ensemble. The kernel principal angle [96] is the angle between the principal subspaces of two

matrices, each matrix composed of feature vectors as columns. We will use it as a baseline method

in the experiments.

Proposed methodOur method differs in that we take into account the statistics of the database

from which the ensembles are drawn. In other words, our proposed similarity function is a function

of threeterms:Q, V, and{V}. This idea of taking into account the database statistics issimilar
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to the work in [98].

Since we use histogram features, we may assume each feature vector within an ensemble fol-

lows a multinomial distribution, i.e.,p(vk|θ) is multinomial with unknown parametersθ. The

parametersθ for different videos can be the same or different; if two videos contain the same ob-

ject of interest, we assume they share the same parametersθ; if not, we assume they have different

parameters. Based on this assumption, we define the similarity function as the ratio

R =
p(V,Q|θV,Q)

p(V|θV)p(Q|θQ)
(7.1)

The numerator can be interpreted as how likelyV andQ were generated with the same parameters

θV,Q, i.e., the two videos contain the same object of interest. The denominator says how likely

they were generated with different parameters. Hence, the ratio R is a measure of how similarV

andQ are.

Since the parameters are unknown, we assume a prior distribution over the parameters and

integrate them out in the Bayesian fashion. We assume the feature vectors within an ensemble are

i.i.d. such that

p(V|θ) =
K∏

k

p(vk|θ) =
K∏

k

((
∑J

j vkj)!
∏J

j (vkj!)

J∏

j

θ
vkj

j

)

(7.2)

p(Q|θ) =

I∏

i

p(qi|θ) =

I∏

i

( (
∑J

j qij)!
∏J

j (qij!)

J∏

j

θ
qij

j

)

(7.3)

and the parametersθ follow a Dirichlet distribution,

p(θ) =
Γ
(
∑J

j αj

)

∏J
j (Γ(αj))

J∏

j

θ
αj−1
j (7.4)

where the hyperparameterα is a vector of dimensionJ , with αj being set to the average over the

dimensionj of all feature vectors within the database,{V}. From here we see that the similarity

function takes into account the statistics of the whole database instead of only focusing onV and

Q.

It can be shown that the ratioR is as follows:

R = c
J∏

j





(
∑I

i qij + αj

) (
∑K

k vkj + αj

)

∑I
i qij +

∑K
k vkj + αj



 (7.5)
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The constantc is irrelevant to the ranking of videos and can be ignored. Thesummation over the

features of each database video,
∑

k vkj, can be computed and stored off-line. This renders the

ratioR into the form ofR′ as follows:

R′ =
J∏

j





(
∑I

i qij + αj

)

cj

∑I
i qij + cj



 (7.6)

wherecj is a constant that can be computed and stored off-line. The scoreR′ can hence be com-

puted very efficiently online with complexity linear with respect toJ , the dimension of a feature

vector. Empirically, the ratio can be computed orders of magnitude faster than the kernel principal

angles [96], which we will use as a baseline method. The kernel principal angle method involves

heavy Singular Value Decomposition. Even with the simplicity of our method, no precision is

sacrificed, as we will show later in the experiments.

7.4 Experiments

We collected 150 videos from the internet. We sampled each video at two frames per second. The

total number of frames is around 20,000. We categorized the videos into 15 categories such as

bear, cheetah, giraffe, helicopter, and space shuttle. To evaluate the performance, we randomly

select a video as query and use the rest of the videos as database. The database videos are ranked

according to similarity to the query video and a recall-precision curve is obtained for each query.

This is repeated 100 times.

We have two contributions and want to evaluate them one by one. First, we want to show

that extracting features from the object of interest for video retrieval yields better results than

using global image statistics. We will call these two approaches OOI and GLOBAL, respectively.

Second, we want to show that the proposed similarity function outperforms (1) kernel principal

angles and (2) sample-mean matching using Euclidean distance.

7.4.1 OOI versus GLOBAL

We experimented with three different types of features, including (1) color, (2) texture, and (3)

MSER+SIFT. The OOI and GLOBAL methods are then compared using the proposed similarity

function for retrieval.
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(a) Color
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(b) Texture
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(c) MSER+SIFT

Figure 7.3: Comparing OOI with GLOBAL. OOI consistently performs better. The error bars show

the standard error about the mean. See details in Sec.7.4.1.



7.4. EXPERIMENTS 99

For color features, we use the CIE-Lab color space and cluster pixels into 36 clusters. In

GLOBAL, a frame is represented by a histogram over the entireimage. In OOI, a frame is repre-

sented by a histogram over pixels inside the bounding box, which is shown by the yellow boxes in

Fig.7.2. Results are shown in Fig.7.3(a).

We also experimented with texture features. We use the same filter banks as in [99] in the CIE-

Lab color space. The filter responses are clustered into 100 clusters and the same representation as

for color features is used. Results are shown in Fig.7.3(b).

For MSER+SIFT features, we first find MSER patches, compute SIFT features and then quan-

tize them, as in Sec. 3.1. The same representation as for color features is used. Results are shown

in Fig.7.3(c).

OOI is better than GLOBAL

From Fig.7.3 we see that OOI consistently performed better than GLOBAL, regardless of the

choice of features. Fig.7.4 shows some examples. The reasonthat OOI performs better can be

attributed to at least two factors:

1. The GLOBAL method does not have knowledge of the object of interest. Our framework

provides the advantage of extracting the most relevant features, that is, features from the ob-

ject of interest. Since features from background will inevitably distort the similarity measure

(unless itis the background that we are interested in), extracting features from the whole

frame is a disadvantage.

2. The OOI method explicitly models the proportion of patches originated from the object of

interest versus the background withP (z+|d). This information is used to prune away frames

that are less likely to contain the object of interest, whichis helpful when the object of

interest is occluded or disappears due to shooting style or editing. We achieve this by simply

retaining the top50% of frames with larger values ofP (z+|d). In contrast, the GLOBAL

method does not possess this information and is hence prone to including more irrelevant

background information into features.

Before we conclude this section, we will discuss the features we experimented with.

Since the object of interest is often very small in a frame, and also because of the relatively low

resolution of the videos (480 × 324) and compression artifacts, texture features did not perform

significantly better than color features. We expect a combination of texture and color features to
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Figure 7.4: Examples where the GLOBAL method performs worsethan the OOI method. The

bottom left pair shows a hang glider in two different videos; since the object of interest is small,

global image statistics do not capture the object of interest and matches them closer to ocean

related videos and mountainous videos, respectively. Thebottom right pair shows a windsurfer

and a hovercraft; the GLOBAL method considers these two videos similar, while the OOI method

is able to differentiate them better.
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gain further improvements, but this is not the focus here. Our goal is to demonstrate that OOI is

better than GLOBAL.

The visual words based on MSER patches followed by SIFT feature extraction were used in

Sec.?? to locate the object of interest and here again for video retrieval. Fig.7.3 shows that the

retrieval performance is worse than using color and texture. We observed that, a feature that is

good for locating the object of interestwithin a video is not necessarily good for matchingacross

videos. One reason is that different videos within the same category contain the same object class

but not necessarily the same object identity. MSER+SIFT features are probably too discriminative

for video retrieval tasks so that objects of the same class but with different identities have distinct

features, thus having a negative impact on the performance.In the Video Google work [51], similar

features were used with good results, but the goal there was to retrieve frames containing the object

with the same identity as the one the user manually labels. Inthat scenario, features that are highly

discriminative are desirable.

7.4.2 Comparing similarity functions
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Figure 7.5: The proposed similarity function, SIM, outperforms the state of the art, KPA. It also

runs orders of magnitude faster, an important factor for video retrieval applications. The error bars

show the standard error about the mean. See details in Sec.7.4.2.

In Fig.7.5 we compare three different similarity functionsfor video matching using color fea-

tures and the OOI method. The proposed similarity function (call it SIM) performs the best, fol-
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lowed tightly by ensemble matching using kernel principal angles (KPA), and significantly out-

performs the naive baseline sample-mean matching using Euclidean distance (call it SAMP). We

observed the same result for the other two types of features.It is worth emphasizing that SIM runs

orders of magnitudes faster than KPA, because KPA involves Singular Value Decomposition. This

offers an important advantage of our proposed similarity function, especially for video matching

and retrieval applications.

Computation speed: On a Intel 3.2 GHz Linux machine, processing a 1 min compressed video

using color features for video matching takes around 1.5 minfor MSER+SIFT extraction, 2 min for

extracting the OOI, and 0.5 min for color feature extraction. Video matching using our proposed

similarity function is roughly as fast as computing Euclidean distance. The MATLAB code is not

optimized for speed yet.

7.5 Conclusion

While object recognition has not yet reached the maturity ofhandling all types of objects human

can recognize, our contribution is to use an unsupervised learning method to extract the object

of interest, hence enabling object based retrieval. We demonstrated that using the automatically

located object of interest one can perform better video retrieval than using global image statistics.

We presented a new ensemble matching algorithm and comparedit with the state of the art. Our

method offers several orders of faster computation withoutloss of precision. The high precision

can probably be attributed to the fact that it takes into account the statistics of the database from

which ensembles are drawn. It would be of future interest to apply this algorithm to other problems,

such as object recognition from videos.
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Chapter 8

Discovery with Frame-Level Labeling

8.1 Introduction

The endless streams of videos on the Internet often contain irrelevant data. Our goal is to cut video

clips shorter and retain the frames that are relevant to the user input. We assume the user has an

“object of interest” (OOI) in mind, which can, for example, be a car, a book, or thescene of a

forest. The system will infer which frames contain the OOI. This application can be used, e.g., for

shortening surveillance videos or TV programs.

We propose a novel method for removing irrelevant frames from a video given user-provided

frame-level labeling for a very small number of frames. We first hypothesize a number of can-

didate areas which possibly contain the object of interest,and then figure out which area(s) truly

contain the object of interest. Our method enjoys several favorable properties. First, compared to

approaches where a single descriptor is used to describe a whole frame, each area’s feature de-

scriptor has the chance of genuinely describing the object of interest, hence it is less affected by

background clutter. Second, by considering the temporal continuity of a video instead of treating

the frames as independent, we can hypothesize the location of the candidate areas more accurately.

Third, by infusing prior knowledge into the topic-motion model, we can precisely follow the tra-

jectory of the object of interest. This allows us to largely reduce the number of candidate areas and

hence reduce the chance of overfitting the data during learning. We demonstrate the effectiveness

of the method by comparing it to several other semi-supervised learning approaches on challenging

video clips.

105
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We consider the case where the system is provided with very limited information. Specifically,

the user will label at least one frame as relevant and anotherframe as irrelevant. These labels are at

the frame-level instead of at the pixel-level. Although pixel-level labeling (such as using a bounding

box or segmentation mask to specify the location of the OOI) can provide more information, we

intend to explore the possibility of letting the user provide coarser and less tedious labeling.

We formulate the task as a self-training multiple instance learning problem. For each frame, we

postulate a number of candidate areas, and use a multiple instance learning algorithm to simulta-

neously find out whether the OOI exists in the frame, and if it does, where it is located. The reason

that we go one step beyond our goal (that is, trying to locate the OOI) is because we are able to

exploit the temporal smoothness property of video objects to consolidate their locations. That is to

say, objects tend to move in a continuous manner from frame toframe.

We use sporadically labeled frames to train a multiple instance learning algorithm called MIL-

Boost [100]. It was originally applied to a face detection problem. In their work, images are

manually labeled by drawing a rectangle around the head of a person. In our system, we only have

frame-level labels, i.e., no rectangles are available.

Our semi-supervised framework can be distinguished from prior work in several aspects. Our

work does not require pixel-level labeled data. In[101], learning requires both pixel-level labeled

data and frame-level labeled data. An object detector is initially trained on the pixel-level labeled

data, and the learned model is used to estimate labels for theframe-level labeled data. As illustrated

in Fig. 9.1, we “discover” the OOI since no bounding box is given, which also distinguishes our

work with the video object retrieval work in [51][94], wherethe OOI is explicitly labeled at the

pixel-level.

Image retrieval systems often allow users to provide positive and negative feedback, hence the

task of image retrieval can also be cast under the self-training [102] or multiple instance learning

[100] framework. Nonetheless, our system exploits temporal information of videos in a novel way,

which distinguishes itself from the image retrieval literature. In [103], activities in a video are

condensed into a shorter period by simultaneously showing multiple activities. It does not intend

to discover the frames that contain the user-desired OOI from limited user input.

Our method is based on the bag-of-words representation, which is part-based. Different than

other part-based methods such as the one-shot learning framework [104], we leverage motion con-

sistency to improve recognition, while the one-shot learning framework did not utilize that.
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S-MILBoost

Classifier

S-MILBoost

Classifier
Frame

Probability

Frame

Probability

Figure 8.1: Frames are unlabeled (top left), labeled as irrelevant (middle left) or relevant (bottom

left). The system will find out what the object of interest is (in this case, the black vehicle) and

remove frames that don’t contain the vehicle.

Our contribution can hence be summarized as follows:1) A novel application that summarizes

videos based on the implicitly specified OOI.2) A novel system that uses weakly labeled data for

object discovery in video.3) A novel method that takes advantage of the temporal smoothness

property during semi-supervised learning.

In section 8.2 we define the type of user labeling informationthat is available to the system. In

section 8.3 we introduce a baseline method, where features at the frame-level are used for semi-

supervised learning. In section 8.4 we explain in detail theproposed method. In section 8.5 we

will compare the proposed method with the baseline method and several variants of the proposed

method. Finally, we conclude in section 8.6.

8.2 Frame-level labels

The amount of user label information as well as its format hasa major impact on system design.

The amount of user label information can range from all frames being labeled to none. For those

frames being labeled, the labeling can be as detailed as providing bounding boxes for each frame

(which we call pixel-level labeling), or as coarse as “this frame does (or does not) contain the OOI”

(which we call frame-level labeling).
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(a) (b)

Figure 8.2: (a) Labeling at the frame level assumed in this work. Frames can be unlabeled, or

labeled as positive or negative. (b) The bounding box type oflabeling provides more explicit

information regarding the object of interest, but is also more tedious in the labeling process.

Here we consider the more challenging task of having as inputonly frame-level labeling; see

Fig. 8.2 for a comparison. This kind of ‘weak labeling’ is very different from traditional object

detection; see for example [35], where the characteristicsof the OOI are learned from plenty of

pixel-level labeled data. This is also different from the recent video retrieval work in [51][94].

Traditional object detection not only involves a lot of human labor for labeling the images by

putting bounding boxes on the OOI, but also has the difficultyof scaling to multiple categories

of objects. Since the OOI in a sequence can be of any category,it is very difficult to train a

comprehensive object detector that covers all types of objects.

8.3 Semi-supervised learning at frame-level

Our first attempt to achieve the goal of VideoCut is to use semi-supervised learning at the frame-

level. Each frame is represented as a histogram ofvisual words, or textons[105]. To generate
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visual words, we use the Maximally Stable Extremal Regions (MSER) operator [63] to find salient

patches1. MSERs are the parts of an image where local contrast is high.Other operators could

also be used; see [1] for a collection. Features are extracted from these MSERs by Scale Invariant

Feature Transform (SIFT) [2]. In this work we extract MSERs and SIFT descriptors from grayscale

images. Patches and features extracted from color images [106] can also be used instead. The SIFT

features from a video are vector quantized using K-Means Clustering. The resultingJ = 50 cluster

centers form the dictionary of visual words,{w1, ..., wJ}. Each MSER can then be represented by

its closest visual word.

The histograms of the labeled frames along with their labelsare fed to the system to train a

classifier. The classifier is then applied to the unlabeled frames. Frames with high confidence

scores are assigned pseudo-labels. The pseudo-labeled data is combined with the original labeled

data and the classifier is trained again. The classifier we useis Discrete AdaBoost [107]. We

will use this method as a baseline method in the experiments.This kind of self-training [102]

procedure has been used extensively in different domains [108][101] and achieved top results in

the NIPS competition [107].

8.4 Semi-supervised learning at sub-frame level
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Figure 8.3: Semi-supervised learning at sub-frame level using temporally consistent candidate

areas.

There are two issues with the frame-level learning framework in Sec. 8.3.

1The word ‘region’ should not be confused with the ‘candidateareas’ to be introduced later. Each candidate area

contains a set of MSER patches.
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1. The OOI can be small and the visual words from the whole frame are usually dominated by

background clutter. Hence the full-frame histogram representation is not a truthful represen-

tation of the OOI.

2. Objects in video often follow a smooth trajectory, which we call thetemporal smoothness

property. With frame-level learning, the temporal smoothness property cannot be readily

exploited.

We address these issues by learning at a sub-frame level. Fig. 8.3(a) shows the proposed system

flowchart. In each frame, we propose a number ofRandom Candidate Areasthat potentially contain

the OOI (illustrated in Fig. 8.3(b)). This will be detailed in section 8.4.1. The candidate areas are

passed to a self-training version of MILBoost (S-MILBoost)and assigned anArea Probability, a

score that tells us how likely this candidate area truly belongs to the OOI. This will be detailed

in section 8.4.2. After each candidate area receives a score, we assign each image patch (MSER)

a Patch Probability, which is defined as the largestArea Probabilityamong the candidate areas

that cover that image patch. Given thePatch Probability, in section 8.4.3 we will explain how to

obtain theTemporally Consistent Candidate Areas. Basically, this is achieved by fitting a model

which simultaneouslydiscoversthe OOI andtracks it across frames. TheTemporally Consistent

Candidate Areasare illustrated in Fig. 8.3(c); using them, we train S-MILBoost once again. As

we will show in the experiments, this new S-MILBoost classifier will be more reliable than the

previous one trained with theRandom Candidate Areas. Finally, the S-MILBoost classifier gives

us theFrame Probability, which tells us how likely each frame contains the OOI. UsingtheFrame

Probability, we can determine the irrelevant frames and perform VideoCut.

Notice how the two issues mentioned earlier are resolved by using this proposed flowchart.

First, the candidate areas are smaller than the whole frame and hence include less background

clutter, which address the first issue mentioned above. Second, the candidate areas in one frame

can be temporally correlated with the candidate areas in thenext frame by performing ‘weak’

object tracking (illustrated in Fig. 8.3(c)), which addresses the second issue. We emphasize that

this ‘weak’ tracking is different from traditional object tracking, as we will explain later.

In the experiments section we will compare our proposed flowchart with some other methods,

which replace or omit some parts of the modules in Fig. 8.3(a). In the following subsections we

will explain the details and merits of each component in Fig.8.3(a).
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Figure 8.4: Candidate areas, each represented by a histogram over visual words. In the experiments,

we use a variety of different densities and spacings of candidate areas.

8.4.1 Random candidate areas

Since the user labeling does not tell us where the OOI is located (neither in the labeled nor in the

unlabeled frames), we need to set the candidate areas based on prior knowledge, if any. At the

beginning, we use candidate areas with fixed size and uniformspacing and call them the random

candidate areas. Each candidate area is represented as a histogram of visual words, as shown in

Fig. 8.4. After we have a rough guess (using the techniques inthe next two subsections), we will

refine the candidate areas by placing them more densely around the estimated location of the OOI.

We call these later candidate areas as temporally consistent candidate areas. See Fig. 8.3(b)(c) for

illustrations.

8.4.2 Self-training MILBoost

Using a similar self-training procedure as in Sec. 8.3, we first use the labeled frames to train a

multiple instance learning [100] classifier. As a result, each candidate area of the labeled frames is

assigned an area probability, which is the probability thatan area contains the OOI. The classifier

is then self-trained with the unlabeled frames and pseudo-labels included. As a result, the area

probabilities of candidate areas in unlabeled frames are obtained as well.

Different than in Sec. 8.3, we have multiple histograms per frame, instead of a single one,

therefore we use a multiple instance learning classifier, MILBoost [100]. First let us define some

notations. We denote the histogram over visual words of a candidate area asxk,a, wherek indices

over frames anda indices over the candidate areas inside framek. Let tk ∈ {0, 1} denote the label

or pseudo-label of framek. Each frame has aframe probabilitypk, and each candidate area has
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an area probabilitypk,a. The frame probabilityis the probability that a frame contains the OOI,

and thearea probabilityis the probability that the area contains the OOI. Since a frame is labeled

as positive as long as it contains the OOI, it is natural to model the relationship betweenpk and

pk,a using the Noisy-OR model [109],pk = 1 −
∏

a∈k(1 − pk,a). The likelihood is given by

L(C) =
∏

k pk
tk(1− pk)

(1−tk).

As implied by its name, MILBoost produces a strong classiferC(xk,a) in the form of a weighted

sum of weak classifiers:C(xk,a) =
∑

u λucu(xk,a), cu(xk,a) ∈ {−1,+1}. The strong clas-

sifier scoreC(xk,a) translates into the area probability,pk,a, by the logistic sigmoid function

pk,a = 1/(1 + exp(−C(xk,a))). Using the AnyBoost [110] method, the boosting weight̟k,a of

each candidate area is the derivative of the log-likelihood, easily to be shown astk−pk

pk
pk,a. In round

u of boosting, one first solves the optimization problemcu(.) = arg maxc′(.)

∑

k,a c′(xk,a)̟k,a. A

line search is then performed to seek for the optimal parameterλu, i.e.,λu = arg maxλ L(C+λcu).

In summary, S-MILBoost produces a classifier that assigns each frame a frame probability, and

each candidate area an area probability. Notice that the S-MILBoost classifier is always used in a

learning mode, during which the area and frame probabilities are estimated.

8.4.3 Temporally consistent candidate areas

The accuracy of the frame probabilities depends heavily on the placing of the candidate areas; as

an extreme example, if the OOI appears in a frame but none of the candidate areas cover it, then

there would be no chance we could have correctly estimated the frame probability. This suggests

a refinement of the placing scheme of candidate areas based onextra information. Notice that, we

haven’t yet exploited the temporal smoothness property of videos.

We would like to use the temporal smoothness property to refine the placing of the candidate

areas. The temporal smoothness property is typically exploited through tracking the object. How-

ever, tracking requires manual initialization of the object location and size, information which is

not available to us.

The topic-motion model [31] simultaneously estimates the appearance and location of the OOI.

However, it was used in an unsupervised setting where one hasno prior knowledge about the label

(object vs. background) of each image patch. In our case, thearea probabilities estimated by

S-MILBoost provides information that we could use as prior knowledge.

The topic-motion model was designed for the case where at most one OOI appears in each
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frame. But this is not a problem for our system, because as long as one of the possibly many OOIs

is discovered, the frame probability will be high. In other words, we don’t need to identify every

OOI to decide if a frame is relevant or irrelevant. Also notice that discovering the OOI is not our

ultimate goal.

Denote framek asdk, wherek indices over all frames. Each patch indk is associated with a

visual wordw, a positionr, and a hidden variablez ∈ {z+, z−}. Definep(z+|dk) as the probability

of a patch being originated from the OOI in framek, and likewisep(z−|dk) for the background.

We define a spatial distributionp(r|z+, dk) that models the location of the patches originated from

the OOI. We assumep(r|z+, dk) follows a Gaussian distribution, but other distributions (such

as a mixture of Gaussians) could be used as well. Likewise,p(r|z−, dk) models the location of

patches originated from background and we assume it followsa uniform distribution. The third

distribution isp(w|z+), which models the appearance of the OOI. It is the normalizedhistogram

over visual words corresponding to patches originated fromthe OOI. Likewise,p(w|z−) models

the appearance of the background. We assume that the joint distribution of wordw, positionr, and

hidden labelz of a patch in framedk is modeled asp(z, r, w|dk) ≡ p(z|dk)p(r|z, dk)p(w|z).

Define the states(k) as the unknown position and velocity of the OOI in framedk. We assume

a constant velocity motion model and the state evolves according to s(k + 1) = Fs(k) + ξ(k),

whereF is the state matrix and the process noise sequenceξ(k) is white Gaussian. Suppose at

time k there are a number ofmk patches. If a patch is originated from the OOI, then its po-

sition can be expressed asri(k) = Hs(k) + ζi(k), whereH is the output matrix and the ob-

servation noise sequenceζi(k) is white Gaussian; otherwise, the position is modeled as a uni-

form spatial distribution. The state estimate can be written as ŝ(k) =
∑mk

i=1 ŝi(k)βi(k), where

ŝi(k) = ŝ(k−) + W(k)ǫi(k) is the updated state estimate conditioned on the event thatri(k) is

originated from the OOI, whereǫi(k) = ri(k)− r̂(k−) is the innovation,̂r(k−) is the observation

prediction,ŝ(k−) is the state prediction, andW(k) is the Kalman Filter gain [65]. The state es-

timation equations are essentially the same as in the PDA filter [65]. The association probability

βi(k) is defined asβi(k) ∝ N(ǫi(k)|0,Υ(k))p(zi(k)|wj , ri(k), dk), where the first term contains

motion information, the second term contains appearance and location information, andΥ(k) is

the innovation covariance.
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Figure 8.5: Graphical model representation. Dashed lines are not the typical plate representation.

Parameter estimation

The distributionsP (w|z), P (z|d), andP (r|z, d) are estimated using the Expectation-Maximization

(EM) algorithm [21], which maximizes the log-likelihoodR =
∑

k

∑

j

∑

i nkji log p(dk, wj , ri(k)),

wherenkji ≡ n(dk, wj , ri(k)) is a count of how many times a patch indk at positionri(k) has

appearancewj. The EM algorithm consists of two steps. The E-step computesthe posterior prob-

abilities for the hidden variables:

p(zl|dk, wj , ri(k)) =
p(zl|dk)p(wj |zl)p(ri(k)|zl, dk)

∑

R p(zl|dk)p(wj |zl)p(ri(k)|zl, dk)
(8.1)

The M-step maximizes the expected complete data likelihood. We adopt a Bayesian approach

to estimating the probabilities, usingm-probability-estimation [111]. First, notice that thearea

probability, pk,a, computed from S-MILBoost contains prior knowledge about the OOI. This prior

knowledge should be incorporated into the detection of temporally consistent candidate areas. This

is a significant improvement over the algorithm in [31], which was completely unsupervised.

Noticing that each patch can belong to multiple candidate areas, we define thepatch proba-

bility as the largestarea probabilityamong the candidate areas that cover an image patch. The

patch probabilityis written aspMIL(zl|dk, wj , ri(k)), with the subscript “MIL” emphasizing that

this probability is estimated from the outcome of S-MILBoost. A simplified graphical model is

illustrated in Fig. 8.5, where the variabler is omitted to simplify illustration. Dashed lines indicate

groups of image patches having the same value ofpMIL. More specifically, dashed lines in red

correspond to the red box (candidate area) in the picture, and blue (yellow) nodes in the graphical
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model correspond to blue (yellow) ellipses in the picture. We then obtain:

p(zl|dk) =

∑

j,i nkjipMIL(zl|dk, wj , ri(k)) +
∑

j,i nkjip(zl|dk, wj , ri(k))
∑

l,j,i nkjipMIL(zl|dk, wj , ri(k)) +
∑

l,j,i nkjip(zl|dk, wj , ri(k))
(8.2)

p(wj |zl) =

∑

k,i nkjipMIL(zl|dk, wj , ri(k)) +
∑

k,i nkjip(zl|dk, wj , ri(k))
∑

j,k,i nkjipMIL(zl|dk, wj , ri(k)) +
∑

j,k,i nkjip(zl|dk, wj , ri(k))
(8.3)

p(ri(k)|z+, dk) = N (ri(k)|̂r(k),Σdk
) (8.4)

wherezl ∈ {z+, z−} is the value taken byzi(k) andr̂(k) = Hŝ(k) is the position estimate. The

covarianceΣdk
in the Normal distribution in Eq.(8.4) is the weighted covariance matrix of the

observationsri(k). The weighted covariance matrix is the covariance matrix with a weighted mass

for each data point, with weights equal to the association probabilitiesβi(k). As a result, if the

association probabilities have high uncertainty, the spatial distributionp(r|z+, d) will be flatter; if

low uncertainty, it will be sharper around the position of the OOI.

Finally, we propose a number of temporally consistent candidate areas that havêr(k) as center

and with various sizes, as shown in Fig. 8.3(c). We use a1.2 scale ratio between two areas, with

the smallest one equal to the variance specified byΣdk
in Eq.(8.4), and with no more than 5 areas

in total. Using various sizes is to increase system robustness in case of inaccurate size estimates.

Figure 8.6: Sample frames. Name of video clip, from top to bottom: Knorr, Benz, Pepsi, Whiskas.
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8.5 Experiments

We use 15 video clips from YouTube.com and TRECVID [89]. Sample frames are shown in

Fig. 8.6. Most of the clips are commercial advertisements with a well defined OOI and range

from 20 to 356 seconds in length. We sample each video at two frames per second. In total, there

are 3128 frames of size320× 240. The frames have visible compression artifacts.

The video frames are ground-truthed as positive or negativeaccording to whether they contain

the OOI; e.g., in a PEPSI commercial, we assume the PEPSI logois the OOI. Each video clip is

run twenty runs, where in each run we randomly selectNp frames from the positive frames andNn

frames from the negative frames as labeled data, whereNp andNn are one or three. The rest of

the frames are treated as unlabeled data. Results are averaged over the twenty runs. Notice that the

labeled frames are labeled at the frame-level but not pixel-level.

Table 8.1 shows the average precision (area under precision-recall curve) of different methods.

In the following, we will introduce the different comparative methods listed in Table 8.1 while we

discuss the results. In general, we have the following observations:

Method 1: Supervised learningusing only labeled data is consistently outperformed by the

semi-supervised variants. When the number of labeled frames is low, its performance is close to

by chance.

Method 2: Semi-supervised learning at frame levelperforms only marginally better than

supervised learning when the number of labeled frames is as low as(1+, 1−), but improves signif-

icantly as the number of labeled frames increases.

Method 3: Semi-supervised learning at sub-frame level withrandom areas consistently

outperforms semi-supervised learning at the frame level. This justifies our claim in Sec. 8.4 that

frame-level learning can be hindered when background clutter dominates the appearance features.

Using sub-frames (candidate areas) helps the learning process to focus on the features originated

from the OOI. The candidate areas consist of rectangles of size 160 × 120 with equal spacing

between each other. In addition, a rectangle of size320× 240 covering the whole frame is used in

here, in Method 4, and in the proposed method, in order to takecare of large objects and inaccurate

size estimates. After training S-MILBoost, we did not refinethe placing of candidate areas, as we

do in Method 4 and in the proposed method.

We experimented with different numbers of rectangles by changing the spacing between them

and obtained different performances as shown in Fig. 8.7. There is a sweet spot at the number of
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Figure 8.7: Increasing the number of areas does not lead to increase in performance.

10 areas, which shows that the more candidate areas does not necessarily yield better performance.

Even though increasing the number of areas will increase thechance that one of the candidate

areas faithfully represents the OOI, the chance of overfitting also increases, hence the drop in

performance. We also experimented with placing the areas more concentrated around the center of

the frame but obtained similar results.

Labeled

frame

Unlabeled

frame

Initial Random

Candidate Areas

Most Confident 

Area Propagation

most    confident areamost    confident area

Figure 8.8: Illustration of Method 4.

Method 4: Most confident area propagation: This method is the closest to the proposed

method. Instead of using ‘weak’ tracking, we assume the OOI is stationary within a shot. As

illustrated in Fig. 8.8, each unlabeled frame obtains its ‘base’ candidate area by replicating, from

the nearest labeled frame, the size and position of the most confident area. Nearness can be defined

as the visual similarity between frames or as the time difference between frames. We found the
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latter to work better. The base area is then resized and replicated within the frame using a1.2 scale

ratio between two areas, with the smallest one equal to the size of the base area, and no more than

5 areas in total. Since videos often contain multiple scene transitions or shots, we only allow the

replication to happen within a shot and not across shots. If there are no labeled frames within a

shot, we place random candidate areas in that shot.

In summary, the proposed method outperforms all the other methods (Table 8.1). Together with

Fig. 8.7, this justifies our earlier expectation that properly placed candidate areas are crucial to the

performance; using a huge number of candidate areas overfitsthe data and lowers the performance.

The temporally consistent candidate areas reduce the need for a large number of uninformative

candidate areas. Finally, in Fig. 8.9, we display some frames that are inferred by the proposed

method.

Figure 8.9: Sample frames that are inferred as positive. A yellow box shows the candidate area with

highest area probability. Name of video clip, from top to bottom: Knorr, Benz, Pepsi, Whiskas.
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8.6 Conclusion

We have presented an approach for removing irrelevant frames in a video by discovering the object

of interest. Through extensive experiments, we have shown that this is not easily achieved by

directly applying supervised or semi-supervised learningmethods in the literature developed for

still images.

On a higher level, our method can be considered as a tracking system but without manual track

initialization; the system finds out itself what the “best track” is, with the objective of agreeing with

the user’s labeling on which frames contain the object of interest.
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Method 3 Method 4 Proposed

1+,1- 32.6 26.0 28.9 31.7 29.3 38.7
3+,3- 32.5 29.1 52.9 54.6 48.8 58.3
1+,1- 34.1 32.6 34.3 41.9 39.1 42.3
3+,3- 33.7 39.4 53.9 57.7 50.6 63.2
1+,1- 43.7 49.0 54.2 62.6 64.1 65.3
3+,3- 43.5 53.9 71.2 77.0 78.1 73.8
1+,1- 3.9 2.8 5.2 10.7 10.7 6.5
3+,3- 2.0 4.1 11.3 21.2 22.5 22.7
1+,1- 21.2 14.4 15.5 45.4 41.8 36.1
3+,3- 19.4 21.1 41.9 51.4 57.6 62.2
1+,1- 39.0 40.5 41.7 62.7 65.1 66.9
3+,3- 38.2 58.2 76.0 91.4 91.4 91.4
1+,1- 27.1 26.5 27.0 31.4 29.9 36.0
3+,3- 25.5 23.8 32.6 42.7 34.7 36.2
1+,1- 25.9 39.3 53.7 67.6 58.9 58.9
3+,3- 24.1 58.4 67.5 67.6 70.2 70.2
1+,1- 20.7 20.4 32.2 44.2 62.1 59.4
3+,3- 18.5 20.2 48.9 57.2 69.4 67.7
1+,1- 18.4 19.8 20.0 26.4 30.3 30.3
3+,3- 14.7 18.6 22.1 25.3 36.4 38.0
1+,1- 10.8 15.4 43.5 42.6 53.5 59.6
3+,3- 10.5 18.7 50.7 44.4 40.8 62.1
1+,1- 4.8 2.8 2.8 3.5 3.7 4.2
3+,3- 4.2 3.6 12.7 27.7 27.3 25.1
1+,1- 11.6 8.5 38.1 27.8 33.9 44.9
3+,3- 11.2 46.9 56.3 40.9 48.5 56.1
1+,1- 24.1 14.7 15.0 36.1 33.8 35.2
3+,3- 23.8 41.6 47.2 56.9 56.7 56.1
1+,1- 11.2 15.8 18.4 22.6 28.3 34.1
3+,3- 10.5 18.0 41.3 44.1 48.9 54.6

1+,1- 21.9 21.9 28.7 37.1 39.0 41.2

3+,3- 20.8 30.4 45.8 50.7 52.1 55.8
Average

Knorr

Kellogs

E-Aji

CaramelNut

FlightSimul

SpaceShuttle

WeightAero

WindTunnel

Horizon

CleanClear

CatFood

Whiskas

SkittlesFunny

Benz

Pepsi

Semi-Supervised

Sub-Frame Level
Method 2

Frame Level

Sequence Label By Chance
Method 1

Supervised

Table 8.1: Comparing the average precision (%). The number of labeled frames are one positive

(1+) and one negative (1−) in the upper row, and three positives and three negatives inthe lower

row for each video sequence.



Chapter 9

Integrated Feature Selection and

Extraction

9.1 Introduction

In computer vision, the bag-of-visual words image representation has been shown to yield good

results. Recent work has shown that modeling the spatial relationship between visual words further

improves performance. Previous work extracts higher-order spatial features exhaustively. How-

ever, these spatial features are expensive to compute. We propose a novel method that simultane-

ously performs feature selection and feature extraction. Higher-order spatial features areprogres-

sivelyextracted based on selected lower order ones, thereby avoiding exhaustive computation. The

method can be based on any additive feature selection algorithm such as boosting. Experimental

results show that the method is computationally much more efficient than previous approaches,

without sacrificing accuracy.

The traditional pipeline of pattern recognition systems consists of three stages: feature extrac-

tion, feature selection, and classification. These stages are normally conducted in independent

steps, lacking an integrated approach. The issues are as follows: 1.Speed: Feature extraction can

be time consuming. Features that require extensive computation should be generated only when

needed. 2.Storage: Extracting all features before selecting them can be cumbersome when they

don’t fit into the random access memory.

Many object recognition problems involve a prohibitively large number of features. It is not

121
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1st Order

Feature Pool 

1st Order

Feature Pool

2nd Order 

Feature Pool 

2nd Order 

Feature Pool

1st Order

Feature Pool 

1st Order

Feature Pool SelectionSelection

SelectionSelection

Extracted 2nd-order Features

Figure 9.1: The top figure shows the traditional approach where 1st and2nd order features are

extracted before feature selection. Second-order features encode spatial configurations of visual

words and are expensive in terms of computation and storage.The proposal is to extract2nd order

features based on previously selected1st order features and to progressively add them into the

feature pool.

uncommon that computing the features is the bottleneck of the whole pipeline. Techniques such as

“classifier cascade” [112] reduce the amount of computationfor feature extraction in run time (in

testing), while the aim here is to improve the feature extraction and selection procedure in training.

In this work, we focus on thebag-of-local feature descriptorsimage representation [113] and

its recent extensions [114][115][116]. Local feature descriptors are image statistics extracted from

pixel neighborhoods or patches. Recent work of [114][115][116] focused on modeling the spatial

relationship between pixels or patches. We call the features originated from local feature descrip-

tors as1st order features, and features that encode spatial relationship between a set of two, three,
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or N patches as2nd, 3rd, or N th order features, respectively. Features with order larger than one

are calledhigher-order features. These are analogous toN-grams[117] used in statistical lan-

guage modeling. It is worth mentioning that, by higher-order features, we donot mean algebraic

expansions (monomials) of lower order ones, such as cross terms (x1x2), squares or cubes (x3
1).

In the recent works of [114][115][116], higher-order features are extractedexhaustively. How-

ever, these higher-order features are prohibitively expensive to compute: first, their number is

combinatorially exploding with the number of pixels or patches; second, extracting them requires

expensive nearest neighbor or distance computations in image space [118]. It is the expensive

nature of higher-order features that motivates our work.

Instead ofexhaustivelyextracting all higher-order features before feature selection begins, we

propose to extract themprogressivelyduring feature selection, as illustrated in Fig. 9.1. We start

the feature selection process as early as when the feature pool consists only of1st order features.

Subsequently, features that have been selected are used to create higher-order features. This process

dynamically enlarges the feature pool in a greedy fashion sothat we don’t need to exhaustively

compute and store all higher-order features.

A comprehensive review of feature selection methods is given by [119]. Our method can be

based on any additive feature selection algorithm such as boosting [120] or CMIM [121][122].

Boosting was originally proposed as a classifier and has alsobeen used as a feature selection

method [112] due to its good performance, simplicity in implementation, and ease of extension

to multiclass problems [120]. Another popular branch of feature selection methods is based on

information-theoretic criteria such as maximization of conditional mutual information [121][122].

9.2 Integrated feature selection and extraction

Each image is represented as a feature vector which dynamically increases in the number of di-

mensions. Initially, each feature corresponds to a distinct codeword. The feature values are the

normalized histogram bin counts of the visual words. These features are the1st order features,

and this is the bag-of-visual words image representation [113]. Visual words, with textons [105]

as a special case, have been used in various applications. A dictionary of codewords refers to the

clusters of local feature descriptors extracted from pixelneighborhoods or patches, and a visual

word refers to an instance of a codeword.
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Round 2

Round 2’

Round 1

1st order features Higher order features

Figure 9.2: The ‘feature pool’ is dynamically built by alternating between feature selection and

feature extraction.

Our method maintains a ‘feature pool’ which initially consists only of1st order features. Subse-

quently, instead of exhaustively building all higher-order features, the process offeature selection

andhigher-order feature extractionare run alternately. At each round,feature selectionpicks a

feature, andfeature extractionpairs this feature with each of the previously selected features. The

pairing process can be generic, and we will explain the implementation in Sec. 9.3. The pairing

process creates new features which are concatenated to the feature vector of each image. In the next

round of feature selection, this enlarged ‘feature pool’ provides the features to be selected from.

In Fig. 9.2, we illustrate this process for the first few rounds. In the first round,feature selection

picks a feature (the light gray squares) from the ‘feature pool’ and puts it in a1st order list (not

shown in Fig. 9.2) that holds all previous selected1st order features. Since the list was empty,

we continue to the second round. In the second round,feature selectionpicks a feature (the dark

gray squares) from the ‘feature pool’ and places it in the1st order list. At the same time,feature

extraction pairs this newly selected feature with the previously selected feature (the light gray

square) and creates new features (the diagonally patternedsquares). These2nd order features are

then augmented into the ‘feature pool’. In general, we may maintain 1st, ..., Lth-order lists instead

of only 1st order lists. If a selected feature has orderL1, then it was originated fromL1 codewords,

and pairing it with another feature of orderL2 means that we can create new features that originate
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from a set ofL1 + L2 codewords.

Algorithm 1 : Integrated-Feature-Selection-And-Spatial-Feature-Extraction

Sample weightsv(1)
n ← 1/N , n = 1, ..., N.1

k ← 0.2

for m=1,...,Mdo3

Fit decision stumpym(x) to training data by minimizing weighted error function4

Jm =
N∑

n=1
v
(m)
n I(ym(xn) 6= tn)

Denote feature index selected by decision stump asi(m)5

if i(m) corresponds to a1st order feature then6

k ← k + 17

z(k)← i(m)8

for j=1,...,k-1do9

for each imagedo10

BuildSecondOrderFeatures(z(k), z(j))11

end12

Augment feature pool13

end14

end15

ǫm ←

N∑

n=1
v
(m)
n I(ym(xn)6=tn)

N∑

n=1
v
(m)
n

andαn ← ln 1−ǫm

ǫm

16

v
(m+1)
n ← v

(m)
n exp {αnI(ym(xn))}17

end18

Selected features are{xi(1), ...,xi(M)} for any vectorx19

In Algorithm 1 we detail the procedure of computing featuresup to the2nd order. We use

Discrete AdaBoost with decision stumps for feature selection as in [112], although other feature

selection methods could be used as well. AdaBoost maintainsa set of sample weights,{vn}, n =

1, ..., N , on theN training images (Line 1). At each round, a decision stump tries to minimize

the weighted error rate by picking an optimal feature and threshold (Line 4). The selected feature

could be a1st or 2nd order feature. If it is a1st order feature, it is placed in the1st-order listz(.)
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Figure 9.3: The order (1st vs2nd) of a selected feature in each round.

(Line 8), and then paired with all previous members in the1st-order list to generate new2nd order

features (Line 11). The new features are augmented into the feature pool (Line 13).

Lines 16 and 17 are standard update rules of AdaBoost. It updates the sample weights in a

manner so that the decision stumps can focus on the source of error. This eventually drives the

choice of features. Using AdaBoost as a feature selection tool is justified by its taking into account

the classification error when selecting features [121]. However, the concept of integrating feature

selection and extraction is general, and the feature extraction procedure in lines 6 to 15 can be

embedded into other feature selection methods as well.

To show that different object categories result in different temporal behaviors of the integrated

feature selection and extraction process, we show in Fig. 9.3 the order of a selected feature at each

round of boosting, from rounds 1 to 200. AdaBoost is used in a binary one-vs-rest classification

manner. In the first few rounds,1st order features are being selected and2nd order features are

being built. Structured objects such as ‘Cow’ and ‘Building’ soon start to select2nd order features.

At the end, structured objects tend to select more2nd order features compared to homogeneous

objects such as ‘Sky’. This agrees with the expectation thatsky has less obvious geometrical

structure between pairs of1st order features.

After feature selection and extraction, to make predictions, one can:

1. treat boosting solely as a feature selection tool and use the selected features,{xi(1), ...,xi(M)},

as input to any classifier; or,

2. proceed as in AdaBoost and use a thresholded weighted sum,Y (x) = sign(
∑M

m=1 αmym(x)),

as the final classifier; or,

3. as we propose, use the set of weighted decision stumps,{α1y1(x), ..., αM yM(x)}, as features

and train a linear SVM.

We will experiment with the last two methods later.
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9.3 Second-order spatial features

The algorithm introduced in the previous section is a generic method for integrating the feature se-

lection and feature extraction processes. In this section we provide examples of building2nd order

features, given a pair of1st order features,(wa, wb) (Line 11 in Algorithm 1). In the Experiments

section, we will explain how3rd order features can be built.

(a) (b)

Figure 9.4: Examples of spatial histograms.

Different kinds of spatial histograms can be used for building2nd order features. In Fig. 9.4(a),

we illustrate a spatial histogram with distance approximately in log scale, similar to the shape

context histogram [123]. The log scale tolerates larger uncertainties of bin counts in longer ranges.

The four directional bins are constructed to describe the semantics ‘above’, ‘below’, ‘to the left’,

and ‘to the right’. In Fig. 9.4(b), directions are ignored inorder to describe how the co-occurrence

of (wa, wb) varies in distance. In [114], squared regions are used to approximate the circular

regions in Fig. 9.4(b) in order to take advantage of the integral histogram method [124]. Of course,

squared regions and integral histogram can be used in our work as well.

The goal is to build a descriptor that describes howwb is spatially distributed relative towa.

Let us first suppose that there is only a single instance ofwa in an image, but multiplewb’s. Using

this instance ofwa as a reference center of the spatial histogram, we count how many instances of

wb fall into each bin. The bin counts form the descriptor. Sincethere are usually multiple instances

of wa in an image, we build a spatial histogram for each instance ofwa, and then normalize over

all spatial histograms; the normalization is done by summing the counts of corresponding bins, and
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Figure 9.5: Second-order features. These are best viewed incolor.

dividing the counts by the number of instances ofwa. This takes care of the case when multiple

instances of an object appear in an image. The whole process is summarized in Algorithm 2.

The spatial histograms yield translation invariant descriptors, since the reference center is al-

ways in respect to the center wordwa, and describes the relative position of instances ofwb. The

descriptors can also be (quasi-)scale invariant. This can be achieved by determining the normalized

distance between instances ofwa andwb, where the normalization is done by considering the geo-

metric mean of the scale of the two patches. To make the descriptor in Fig. 9.4(a) rotation invariant,

we can take into account the dominant orientation of a patch [125]. However, rotation invariance

may diminish discriminative power and hurt performance [125] in object categorization.

In Fig. 9.5, red circles indicate words used as reference center. The red-green pairs correspond

to a highly discriminative2nd order feature that has been selected in early rounds of boosting. The

images are those that are incorrectly classified when only1st order features are used for training a

classifier. We can see that2nd order features can detect meaningful patterns in these images. As

a result, most of these images are correctly classified by a classifier using both1st and2nd order

features.

9.4 Experiments

We use three datasets in the experiments: the PASCAL VOC2006dataset [126], the Caltech-4 plus

background dataset used in [127], and the MSRC-v2 15-class dataset used in [114]. We used the

same training-testing experiment setups as in these respective references.
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Algorithm 2 : BuildSecondOrderFeatures

Goal: create feature descriptor given a word pair1

Input: codeword pair(wa, wb)2

Output: a vector of bin counts3

Suppose there areNa instances ofwa, andNb instances ofwb in the image4

Initialize Na spatial histograms, using each instance ofwa as a reference center5

for i=1,...,Na do6

Count the number of instances ofwb falling in each bin7

end8

Sum up corresponding bins over theNa spatial histograms9

Divide bin counts byNa10

For each dataset we use different local feature descriptorsto show the generality of our ap-

proach. For the PASCAL dataset, we adopt the popular choice of finding a set of salient image

regions using the Harris-Laplace interest point detectors[126]. Another scheme is to abandon the

use of interest point detectors [128] and sample image patches uniformly from the image. We adopt

this approach for the Caltech-4 dataset. Each region or patch is then converted into a128-D SIFT

[129] descriptor. For the MSRC dataset, we follow the commonapproach [114] of computing

dense filter-bank (3 Gaussians, 4 Laplacian of Gaussians, 4 first order derivatives of Gaussians)

responses for each pixel.

The local feature descriptors are then collected from the training images and vector quan-

tized using K-means clustering. The resulting cluster centers form the dictionary of codewords,

{w1, ..., wJ}. We useJ = 100 for the MSRC dataset, andJ = 1000 for the other two datasets;

these are common choices for these datasets. Each local feature descriptor is then assigned to the

closest codeword and forms a visual word.

For the MSRC dataset, we used the spatial histogram in Fig. 9.4(b), in order to facilitate com-

parison with the recent work of [114]. We followed the specs in [114] with 15 distance bins of

equal spacing, the outermost bin with a radius of 80 pixels, and no scale normalization being per-

formed. For the Caltech and PASCAL datasets, we used the spatial histogram in Fig. 9.4(a), where

the scale is normalized according to the patch size or interest point size as explained earlier, and

the outermost bin has a radius equal to 15 times the normalized patch size. The scale invariance
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Figure 9.6: Integrated vs separated: After around 800 rounds of boosting, the proposed method

outperforms baseline both in (a) testing accuracy and (b) required training time.

can be observed in Fig. 9.5 from the different distances between red-green word pairs.

9.4.1 Integrated vs Separated

Here we present themain result. In Fig. 9.6 we show the experiment on the 15-class MSRC

dataset. We use a multiclass version of AdaBoost [120] for feature selection, and linear SVM for

classification as explained in Sec. 9.2. In Fig. 9.6(a), we see that the accuracy settles down after

about 800 rounds of boosting. Accuracy is calculated as the mean over the diagonal elements of

the 15-class confusion matrix. In Fig. 9.6(b), we see the integrated feature selection and extraction

scheme requires only about 33% of training time compared to thecanonicalapproach where feature

extraction and selection are twoseparateprocesses.

Surprisingly, we can see in Fig. 9.6(a) that, in addition to being more efficient, the proposed
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scheme also achieves better accuracy in spite of its greedy nature. This can be explained by the

fact that2nd order features are sparser than1st order features and hence statistically less reliable;

the integrated scheme starts with the pool of first order features and gradually adds in2nd order

features, hence it spends more quality time with more reliable 1st order features.

In Fig. 9.6(c)-(e) we examine some temporal behaviors of thetwo methods. In Fig. 9.6(c),

we show the cumulative number of2nd order features being extracted at each round of feature

selection. While the canonical procedure extracts all features before selection starts, the proposed

scheme aggressively extracts2nd order features in earlier rounds and then slows down. This loga-

rithmic type of curve signifies the coupling between the feature extraction and the feature selection

processes; if they weren’t coupled, features would have been extracted at a constant (linear) speed

instead of a logarithmic.

In Fig. 9.6(c), we also noticed that at 800 rounds of boosting, only about half of all possible

2nd order features were extracted. This implies less computation in terms of feature extraction, as

well as more efficient feature selection, as the feature poolis much smaller.

In Fig. 9.6(d), it appears that the canonical approach selects 2nd order features at roughly the

same pace as the integrated scheme, both selecting on average 0.7 second-order features per round

of boosting. But in fact, as shown in Fig. 9.6(e), the overlapbetween the selected features of the

two methods is small; at 800 rounds of boosting, the share ratio is only 0.14. The share ratio is the

intersection of the shared visual words and visual word pairs of the two methods divided by the

union. This means that the two methods have very different temporal behaviors.

9.4.2 Importance of feature selection

Here we compare with the recent work of [114], where feature selection is not performed, but first

and second-order features are quantized separately into dictionaries of codewords. A histogram

of these codewords is used as a feature vector. In Table 9.1, all three methods use the nearest

neighbor classifier as in [114] for fair comparison1. We see that our method yields state-of-the-

art performance, compared to the quantized (Method 2) and non-quantized (Method 1) versions.

In addition, since the2nd order features need not be exhaustively computed and also novector

quantization on2nd order features is required, our method is also much faster than the method in

1We re-implemented the work of [114], because they used an untypical quantization scheme to generate1
st order

codewords, and results are not comparable; also, their spatial histogram is square-shaped.
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[114].

Proposed Method 1 Method 2 [15]

Feature selection √ × ×

Quantization × × √

Accuracy 75.9% 71.3% 74.1%

Table 9.1: Importance of feature selection.

9.4.3 Linear SVM on weighted decision stumps

As explained in Sec. 9.2, we propose to concatenate the weighted output of all weak classifiers,

{α1y1(x), ..., αM yM(x)}, from AdaBoost as a feature vector and then run a linear SVM. Results

are shown in Table 9.2. The superior result over AdaBoost comes from a re-weighting of the terms

{α1y1(x), ..., αM yM(x)}.

PASCAL
(EER)

MSRC
(1-accuracy)

AdaBoost classifier (1st order feat) 13.4% 24.1%

AdaBoost classifier (1st & 2nd order) 12.1% 21.2%

Linear SVM on weighted decision stumps 10.9% 16.9%

Table 9.2: Performance on the PASCAL car-vs-rest and MSRC 15-class datasets.

The best results [126] reported on the PASCAL VOC2006 and VOC2007 datasets employ the

Spatial Pyramid [130] technique on top of the bag of words representation. The Spatial Pyramid

technique is orthogonal to the proposed method and combining them is expected to yield even

better results.

9.4.4 Increasing the order

In Fig. 9.7, we experiment on the MSRC dataset and see that theclassification accuracy obtained

from using a feature pool of1st and 2nd order features is higher than using1st order features

alone. Including3rd order features does not improve accuracy. We generated3rd order features by
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counting the number of times three codewords(wa, wb, wc) fall within a radius of 30 pixels, i.e.,

the spatial histogram has only one bin. Third order featuresare generated every time a1st order

feature is selected (which corresponds towa) and paired with each of the previously selected2nd

order features (recall that a2nd order feature comes from a word pair,(wb, wc)), or vice versa. The

reason for reducing the number of bins to one is to account forthe data sparseness of higher-order

features, which we will discuss later.
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Figure 9.7: Accuracy and feature complexity.

9.4.5 Robustness of co-occurrence counts

Instead of assigning a local feature descriptor to a single codeword, one can assign it to the top-

N closest codewords. In Table 9.3, we vary the parameterc1 from one to four and ten, which

is the number of codewords each image patch is assigned to. Inthree out of four categories, the

performance of the bag of words representation (using1st order features only) degrades asc1

increases from one to four or ten, which manifests the popular practice of assigning a descriptor to

a single codeword.

Yet, the top-N technique can help avoid the data-sparseness problem of2nd order features.

We define the parameterc2 as the number of visual words each image patch is assigned to when

constructing2nd order features. Notice thatc1 andc2 can have different values. In Fig. 9.8 we

show the benefit of increasingc2 from one to ten when constructing spatial features. In Fig. 9.8(a),
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Figure 9.8: Effect of parameterc2 on the spatial histogram bin counts. (a) Usingc2 = 1. (b) Using

c2 = 10.
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Figure 9.9: Effect of increasing the number of visual words apatch is assigned to.

two normalized spatial histograms with twelve spatial binsare collected from two different face

images. The size of the bubbles indicates normalized bin counts. Recall that spatial histograms

collect spatial co-occurrence of word pairs; in this case the specific word pair corresponds to a

person’s nose and eye from real data. Ideally the two histograms would be nearly identical, but

image variations and clustering artifacts prevent it from being so. In Fig. 9.8(b), using the top-

N technique, the two histograms become more similar to each other. The reason that2nd order

features benefit more from this technique than1st order ones is due to the sparsity of co-occurrence

of a word pair. The chance ofco-occurrencebetween a pair of visual words within a specific

spatial bin is at the order of approximately1/(J2 × 12), whereJ is the size of the dictionary of

codewords. Compared to the order of1/J for the histogram of visual words, slight image variations

and clustering artifacts can result in larger disturbancesin the spatial feature bin counts than in the

visual word bin counts. The top-N technique increases the bin counts (before normalization)and

reduces the sensitivity to variations. In Fig. 9.9 we see thepopulation of a particular codeword
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getting denser asc2 increases. In Fig. 9.9(i)(ii), this codeword rarely appears ‘correctly’ on the chin

of the face. Increasingc2 increases its occurrence on the chin, but also increases itsoccurrence at

other locations, so increasingc2 indefinitely would lead to performance degrading. Overall,this

suggests that using a small value ofc1 but a moderate value ofc2 should give the best result. Indeed,

using AdaBoost as classifier, we found that (c1 = 1, c2 = 10) gives state-of-the-art performance,

as shown in Table 9.3.

(1,1) (4,4) (10,10) (1,10)

Face
1st order feat 4.15 3.23 5.53 4.15

1st and 2nd order feat 1.84 1.84 0.92 0.92

Motorbike
1st order feat 1.50 2.00 2.75 1.50

1st and 2nd order feat 1.50 1.25 1.00 1.00

Airplane
1st order feat 2.75 4.00 4.00 2.75

1st and 2nd order feat 2.25 2.50 2.00 1.75

Car
1st order feat 1.00 1.50 2.25 1.00

1st and 2nd order feat 0.50 0.75 1.00 0.50

Class

(c1,c2)

Table 9.3: Equal error rates (%) for the Caltech-4 dataset. By integrating feature selection and

extraction, state-of-the-art results are obtained.

9.5 Conclusion

We have presented an approach for integrating the process offeature selection and feature extrac-

tion. The integrated approach is three times faster than thecanonical procedures of feature selection

followed by feature extraction. In addition, the integrated approach can achieve comparable or even

better accuracy than the exhaustive approach, in spite of its greedy nature.

Our approach is generic and can be used with other feature selection methods. It can also be

applied to all kinds of spatial histograms. In this work, we considered non-parametric histograms

(with spatial bins), but parametric ones could be used as well, where the parameters (e.g., the mean
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and covariance of point clouds) could be used as features.

Finally, we presented detailed experiments on three different object categorization datasets

which have been widely studied. These datasets cover a wide range of variations on object category

(20 in total), object scale (most noticeably in the PASCAL dataset) and pose. For each dataset, we

used different state-of-the-art local feature descriptors. These experiments demonstrate that our

approach applies to a wide range of conditions.
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Conclusion

137





Chapter 10

Conclusions and Future Work

In this work, we introduced a probabilistic framework for object discovery in images and video.

The framework presents the following features:

1. Fusing appearance, location, geometry, global and localmotion

2. Handling multiple instances

3. Extensions to semi-supervised learning

4. Applications in retrieval, segmentation, categorization

In the future, there are several interesting directions to continue on. There are many other

visual cues that could be integrated into our framework. Oneinteresting direction is to utilize

the occlusion boundary cues. The likelihood function in theparticle filter could make use of the

occlusion boundary cue by assigning a lower likelihood to ellipses which contain an occlusion

boundary. This will effectively encourage the system to discover objects that obey the occlusion

boundaries.

One motivation of doing unsupervised object discovery is because state-of-the-art object de-

tectors are still very limited in the number of object categories they can handle. However, some of

the object detectors are already running very reliably, such as face detectors. As more and more

object detectors become reliable, we could use them to extract visual words that are informative

and semantically meaningful. Our framework can then be usedon a mixed representation of lower

and higher level visual words.

Currently the model is based on visual words, which are cluster centers. However, clustering

introduces quantization artifacts. This contributes to the semantic ambiguity and consequently

139
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makes discovery more difficult, because the discovery is then responsible not only for discovery, but

also for disambiguating the meaning of visual words. One solution to this problem is to combine the

clustering and discovery into one optimization problem. This is doable, because k-means clustering

is in fact a special case of mixture of Gaussians, which can berepresented as a graphical model. If

we combine the mixture of Gaussians graphical model into thecurrent graphical model, then we

can do joint optimization.
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