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Abstract

This thesis presents a novel way of scene analysis in imagksideos. Tradi-
tional scene analysis using object detection involves aflbuman labor for labeling
the images, and also has the difficulty of handling a largeberrof objects categories.
Our approach to scene analysis is unsupervised in natuven@ivideo, we want to
“discover” the objects of interest. No single labeled im&gesed to pre-train or ini-
tialize the system. Still, the system is able to discoverdtbiects of interest. It works
on a wide variety of videos and it can discover objects betangp a large set of dif-
ferent categories. It works in crowded scenes with distigdiackground pattern and
motion. It works in partial occlusions and total removal.eTgrobabilistic framework
consists of an appearance model and a motion model. Therappeamodel exploits
the consistency of object parts in appearance across frarhesnotion model exploits
the motion continuity across frames. Together, they pmwagdpearance and location
estimates of the objects of interest. This framework presid basis for higher level
video content analysis tasks.
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Chapter 1

Introduction

1.1 Goal

This thesis presents a framework for discovering usefiéabjfrom images and videos. A system
that could automatically extract objects from images amtk@$s would be of great importance.
Applications are countless: surveillance, image and vislesrch, robots with vision capability,

computers with visual interfaces, smart vehicles. Thigptdraserves as an introduction to the

thesis.

1.2 Problem definition

Data mining is the process of extracting implicit and uséffdrmation from data. In this work,
our data consists of images or videos. Let us consider im@gésThere are two types of input:
single input image vs. multiple input images.

The task of making sense out of a single image is called ungispe image segmentation. One
can identify the structure within a single image by analgzemaller patches and grouping them
into larger segments using plausible psychological rulée outcome? An image segmented into
multiple regions by drawing outlines along the boundariesegments, as if a human would do if
asked to do the same task. An image segment does not nelgessadspond to an object, since an
object (e.g., a car) can consist of multiple segments (vehe@ehdow, body) that have very distinct
visual properties and are naturally segmented into distagions.

In this thesis, we are interested in the other scenario: iphillinput images. One can still

3



4 1. INTRODUCTION

segment the images one by one separately, but more thamtieatan analyze the images jointly.
The outcome? One can identify “objects”. In the example abdwe have multiple images that
consist of cars, we might be able to figure out that the wheetlseowindows are smaller parts of
a larger entity that repeats over and over again in diffeir@ages. In this way, the concept of a
larger entity that is composed of smaller parts emerges.

A video is a sequence of images. More than that, it is a samplfra scene usually with a
high enough frequency so that things move in a relativelyamavay. Exploiting the temporal

continuity for data mining is also of out interest in thisdise

1.3 Probabilistic Graphical Models

For a computer to reach human vision capabilities is not @y k. There is too much infor-
mation in images, yet too few time and space to analyze theon.efample, binary images of
size1000 x 1000 pixels can have!'Y%0%% different variations, which is larger thaif!90%  f al|

of these variations contain valuable information, theningrdata in such a large space would be
infeasible.

Fortunately, images often have inherent structure thaidgootentially reduce the amount of
variations. For example, in natural images, neighboringlpioften share similar properties such
as color or texture. Another important structure is thaeéotg are composed of parts, and scenes are
composed of objects. Once we recognize some parts in an jmagaeave better clue about what
the other parts in the image might be. Exploiting these surtdructures for scene understanding
and object detection is one of the current trends in compigem and pattern recognition research.
With such a hierarchy at hand, tRé°0°0% variations become more organized, and data mining
becomes more reasonable.

If it is indeed true that within th@!°%%%% variations there is a lot of redundant information,
then our hope is to represent thes€"9% variations by some other factors that are not directly
observed, yet carry the structure and explains the largeuairaf variations that are observed.
These factors are callddtent or hidden variables The relationship between a latent variable
(e.g. the concept of a “car”) and an observed variable (hegirhage pixels that constitute a car)
can be described bymobabilistic graphical modellin general, a probabilistic graphical model de-

scribes the mathematical relationship betwéedimensional hidden variables aifidimensional
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observed variables, with < H. Latent variables might represent human interpretatidtisecreal
world, or they might simply exist for theoretical convenien In other words, it is up to the human
to interpret the underlying meaning of latent variablesthiis thesis, the latent variables can be
considered as the hidden (unknown beforehand) objectaa@sgve would like to discover.

A nice property of using probabilistic graphical modelshattbuilding such a system requires
much less human labor in terms of data preparation, as oggossome state of the art object
detection systems based on discriminative models thaireequensive human power to prepare
training data. This unsupervised nature is especiallyraele when the human experts do not
have enough data to train the system, or no training datallatiraladdition, the avoidance of
requiring labeled images poses several other advantagest, & image may consist of many
objects in a complex layout. So far there is no common apprtannotating images at the object
level. Second, there are many visual illusions showing diféérent people may have different
understandings of an image, hence the subjectiveness neigilit in negative impact on image
annotations. In summary, it is very expensive and difficoltollect large mount of accurately
annotated images for constructing a image understandistgray Considering the abundance of
images and videos available on the Internet, probabilgtéphical models provide a promising
direction.

A special type of probabilistic graphical models caltegic modelshas been used in the sta-
tistical text understanding community and later in computsion. Since images and videos have
some distinct properties that text does not have, theseegiep inspire our extensions to existing

topic models. Below we will give an overview of topic modetslaour extensions.

1.4 Topic models

Topic models have been used in the statistical text undawelistg community for automatically
discovering topics from a collection of documents. In coitepwision, documents are analogous
to images and words are analogous to visual words, beingngeantized local feature descriptors.
An image is considered a mixture of “topics” and each topicossidered a mixture of words. In
our work, the foreground object and background clutter lagehwotopics

First, we find a number of patches to generate the visual wdidsse patches are determined

by running interest point detectors; see [1] for a collattiBeatures are then extracted from these
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patches by Scale Invariant Feature Transform (SIFT) [2]ding al28-dimensional local feature
descriptor for each patch. In all of our experiments,imtentionallydiscard color information and
extract patches and SIFT descriptors from grayscale imageder to make object discovery more
challenging. Patches and features extracted from cologes§3] can easily be used instead.

The SIFT descriptors are then collected from all images awtiov quantized using k-means
clustering. The resulting cluster centers (we use = 200) form the dictionary of visual words,
{wy,...,ws}. Each patch can then be represented by its closest visual. weatches are now
represented by discrete visual words instead of contin&de$ descriptors. Note that acquisition
of visual words does not require any labeled data, which shit unsupervised nature of this
system. This also means they are general enough to be appkedide range of different tasks.

Denote the images b{, ..., dx} and define topic variables (k) indicating if theit" patch
in imaged;, is originated from the foreground object or from the backa clutter.{z;(k)} are
hidden variables; it is our goal to infer their values. Defihe conditional probabilitied®(z|d)
and P(w|z) for each patch as followsP(z = zrg|d = d;) indicates in imagel; how likely a
patch originates from the foreground objedP(z = zpg|d = d;) is defined likewise.P(w =
w;j|z = zpq) indicates how likely a patch originated from the foregrowtgect has appearance
corresponding to visual word;; P(w = wj|z = zp¢) is defined likewise.

In the following, we will give an overview of five approachesl to A5, which we will later

refer to.

1.4.1 ALl: No location or shape info

A patrticular topic model called Probabilistic Latent Setm@Analysis (PLSA) has recently been
applied to object discovery [4][5] and has shown good restt. SA asserts that the probability of

observing a patch in imagéoriginated from topic: with appearancev is given by
P(d,w,z) = P(w|z)P(z|d)P(d). (1.2)

Using inference methods, one can infer the values of theshidiopic variables based dt(z|d, w)

[6]. One important drawback of PLSA is that it is based on thg-bf-words image representation
which completely ignores the position of the visual wordsother words, if we randomly shuffle
around the patches in the image, PLSA would still infer thmeshidden topic for each patch! This

is often not desirable because the spatial configuratioratifies can give us a clue about their
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identity. Approaches that use PLSA in text [6], video [7] tH émages [4] would suffer from this
inherent drawback.

One point worth mentioning is, PLSA is known for its capabilof handling polysemy: if a
visual wordw is observed in two image$ andd; , then the topic associated with that word can
differ in d; andd; : arg max P(z|d;, w) can be different fromarg max P(z|d;, w). In other words,

PLSA allows a visual word to have different meanings in défeé images.

1.4.2 AZ2: Spatial location

Whenw is merely an appearance descriptor and contains no sp#taination, the model does
not care about the spatial ordering of th&. This is problematic when spatial information is an
important cue for recognition. A number of approaches haentemployed in the literature to
include spatial location information of local descriptéos recognition [8][9][10][11] [12] [13].

We can use a topic model to specify where the object is moedylibcated. Let- denote the
location of a patch. For a patch in imagevith appearance and location-, the joint distribution
P(d,w,r) has the formP(d, w,r, z) = P(d)P(z|d)P(w|z)P(r|z). P(r|z) is a spatial distribution
that models where a patch with topics more likely to occur. This model can be useful in modeling
pedestrians for instance less likely to walk in the sky. ddahg location information more or less
solves the ambiguity mentioned A1, that is, the spatial ordering af's now has an impact on the
discovery of topics, even when the topic appearance has Ergiguity (large overlap between
the distributionsP(w|z;) and P(w|z;), i # j). The spatial distributionP(r|z) uses the same
parameters across all documents, hence it is a global ¢ocatodel, and it is not translation nor

scale invariant.

1.4.3 AS3: Spatial clustering

In Section 2 we will introduce a model that is based on therapsion that an object normally
consists of patches that co-exist tightly rather than scadtaround loosely. The location and scale
of the object is hypothesized through a spatial distribuftgdr|d, =) , wherer denote the location of

a patch, and the joint distribution B(d, w, r, z) = P(d)P(z|d)P(w|z)P(r|d,z). The algorithm
for finding the topic and object location and scale can be etwas performing joint spatial and
appearance clustering. Different thAg, the parameters for the spatial distributitr|d, =) are

estimated per image, hence it provides translation an@ soedriance. Notice that this approach
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only models the spatial clusterina behavior of natchesthides not model the relative position or

the ordering between patches

0

Figure 1.1: The graphical model. The outer plate indicdteggraph is replicated for each image,
and the inner plate indicates the replication of the graphefch patch. The topic variableis
hidden.

1.4.4 A4: Correspondence

We extend the topic model framework to incorporate infororatabout spatial configuration.
Rather than building a shape model as in constellation rsdddl], pictorial structures [15], or
fragment-based models [16], we will exploit the fact thamitar objects in different images are
more likely to have strongorrespondenceand extend the topic model to include this extra piece
of information.

Correspondence-based object recognition has been iridheglire for nearly forty years. Even
though computing correspondence is computationally esipenit is still popular, because of its
promising performance. Recent work by [17][18][19] [20kusorrespondence as a central ele-
ment in their object recognition framework. However, thmiodel and learning algorithm differ
substantially from what is proposed here.

Our use of correspondence is to provide a non-parametrieseptation of the location of the
consistenpatches. By using correspondence methods that take indoigicthe spatial distortion of
a correspondence and allow partial matching, the more rea@lpatch has, the better chances the
patch belongs to a foreground object, as opposed to baakgutter. This piece of information
is employed by the topic model in the form of a featurer reward More precisely, the reward
for a patch is high when this patch is repeatedly matchechagather patches in other images.
On the other hand, patches from random clutter are lesg likefind as many matches, which

results in lower rewards. This is precisely the notion tHgects of interest normally show higher
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consistency across images and it is the consistency thaatebbject apart from background clutter

or other objects.

1.4.5 AS5: Temporal consistency

Extending topic models from still images to motion videoguiees the integration with a temporal
model. We propose a novel spatial-temporal framework tkas uopic models for appearance
modeling, and the Probabilistic Data Association (PDAgfifor motion modeling. The spatial and
temporal models are tightly integrated so that motion aoibés can be resolved by appearance,
and appearance ambiguities can be resolved by motion. \¥i#nsve experiments, we show

promising results that cannot be achieved by appearancetmwmmodeling alone.

1.5 Limitations of the system

One important question to ask is, when and where the syste® mlat work. The answer is as
follows: if two objects are always stationary with respeceach other (no relative motion), and if
they always co-occur in each and in all frames, then the ousgstem cannot separate them.

My understanding of why human beings might still be able fwasate them into two distinct
objects is due to the availability of additional visual ctlest the system is not utilizing yet. For
example, one of the two objects could be highly salient imicalhile the other object has a very
dull appearance. In this case, human might focus more onisbally appealing one, and hence
implicitly considering them as distinct objects. Anoth@spibility is that, human has prior expe-
rience of seeing one object in a situation where the secojettolvas not present. Both cases can
be incorporated into our system framework, as we discussbel

In the first case, additional features such as color salieaoybe represented as random vari-
ables. By introducing additional conditional probabildistributions (such as the ones we used
in Markov Random Field image segmentation and in Geomeipits(Stent Regions), we can au-
tomatically learn the correlation between, say, the coédiescy and how likely the object is of
interest. If this new feature is distinct for these two olgewe have chances to separate them.

In the second case, we simply need to find data where two shigetseparated. Once we
present the system with images where only one object apdbarsystem is then able to tell them

apart.
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The current system is based on a limited number of visual, @res introducing more visual
cues would certainly increase the system’s capability. &l@x, as easy as it sounds, the extraction

of visual cues itself is a challenging topic.
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Discovering objects in images
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Chapter 2

Spatial Clustering

2.1 Semantic Shift algorithm

Here we introduce the Semantic-Shift algorithm that exjblitakes spatial structure into account.
Semantic-Shift consists of a modified version of PLSA, whitets an extra spatial distribution
component, and after every iteration of Expectation-Mazation [21], the probability of each
word belonging to a specific topic (i.e., the latent semawoitieach word) is being updated. As a
result, the location and scale estimates of the foregrobjetbare shifted. Inspired by the mode-
seeking ‘mean-shift’ algorithm [22][23], our algorithmedes for the semantics or topics, hence

named 'semantic-shift’.

2.1.1 Model description

We assume that in each image there is no more than one simg@gdand object. Experiments on
the UIUC car dataset (see Fig.2.2) show that even if therenatéple cars (foreground objects)
in one image, Semantic-Shift still can produce good resadtkong as the following assumptions
are satisfied. We make the assumption that the foregrourattolips no holes and has a convex
shape. Both assumptions hold for most objects. The reasareagthese assumptions is because
we want to model the image area occupied by the object as asf@aysvhich is convex in a 2D
image. Since there is no specific reason our model should ffned to a Gaussian except for
simplicity, it should be possible to loosen the Gaussiarpshessumption so that the model can

handle more complicated shapes of objects.

13
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We introduce the conditional probabilit}#(r|d, z). The dependence of positionon image
d allows the foreground object to had#ferentlocations and scales in every imagde In other
words, the foreground object is allowed to be at vastly diffié positions in both learning and
testing. The scale can also vary freely over different insagallowing different locations and
scales in different images is desirable, as it provides #séslfor scale-invariance and translation-
invariance. The dependencerobn z allows the foreground object and the background clutter to
have different locations and scales. We model the locatistnilaition of the background clutter
as the probability of the complement of that location beimgfiround. This describes the realistic
situation that, at a particular location, the higher thebpfulity of being foreground, the lower the

probability of being background.

2.1.2 Location and scale estimation for foreground object

The conditional probability?(r|d, z) is computed for each topic in each image. Denote the topic
2z, that corresponds to the foreground objectzag and call it the foreground topic. Since we
want the system to be unsupervised, we need to create anamsgol rule for deciding which

of the two topics,z; and zs, is the foreground topiero. We achieve this by assuming that the
foreground topic has on average a smaller spatial suppamtttie background topic. We call this
stepforeground topic identificationas described below.

In the literature, finding a robust estimate of location aodles under the univariate model
assumption is not new. In our experiments, we simply takewbghted mean and weighted
standard deviation as estimates of the location and scaleedforeground object. Specifically,
we define the spatial support of a topig in an imaged; as the weighted standard deviation of

the positions of all interest poinl{sﬁ“, } , where each interest pomg is given a weight

Id \
vp = P(2i|d;, wj), wherew; is the visual word corresponding to povrgv. The weighted standard

deviation is defined as

o | Sy — w2 o)

ik
di| =1 §~Idil
LI,

where/i;;. is the weighted sample mean of the positions of all interegitp. After foreground

topic identification, we denote the location and scale esénof the foreground object in image
asji; re andag; re, and the corresponding topic ass. We assume the interest points belonging

to the foreground topic have a spatial distribution in therfef a GaussianP(rgﬂzF(;,di) =
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N(T‘ﬂﬂﬂ@pg,&@pg). The spatial distribution of the background is then set ®odbmplement of
the former distribution, meaning that the more likely theefiround, the less likely the background,

and vice versa.

2.1.3 Model fitting

The goal is to maximize the log-likelihood,
L= ZZZn(di,wj,rgi)logP(di,wj,rgi) (2.2)
i P

where the joint probability”(d;, w;, rgi) factorizes as
P(dj, wj,r8) = P(d;)P(2k|d;) P(w;|2) P(rd |z, d;) (2.3)

We use a modified version of the EM algorithm where the locatind scale of the foreground
object are estimated in each iteration. We use E’-step ansltéf to denote the two iteration steps.

d/L . .
') is updated as in

In each iteration of Semantic-Shift, the posterior prolighiP(zy,|d;, w;, r
Eq. (2.4). This quantity tells us how likely the visual warg at positionrgi in imaged; is part
of the foreground (or background) object. Using this pastgorobability, we can compute the
location and scale estimates of the foreground object, pkaieed in the previous section. This
explains Eg. (2.8).

Here is the Semantic-Shift algorithm:

E — step:
P(zk]di,wj,rgi) o P(zk\di)P(wj]zk)P(rgi]zk,di) (2.4)
M’ — step :
P(wj|z1) o Zan, (z1|di, wy, e o) (2.5)
P(z|d;) ZZTLZW zk|d2,w], p ) (2.6)

X ZZnijp (27)
i P

P(r%|2, d;) updated according to Sectiani.2 (2.8)
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wheren;j, = n(d;, w;, r%). Note that these equations need normalization to make thebap
bility distributions. Both learning and inference (tesigdt) use the above iterative procedure to
obtain the conditional probabilities, except that durinfigience (test stage) the factBw;|zy) is
kept fixed and not being updated anymore.

After each iteration, the location and scale estimates @ffoheground topic are shifted to a
new value, and the Gaussian distributiB(rrgi\zk, d;) is updated accordingly. Notice that the E’-
step depends on the terﬁ(rgi|zk, d;), i.e., the “shift” of the location and scale estimates plays
central role in the overall iterative scheme.

It is worth mentioning that, even though the location andeseatimates are found on a per
image basis, they are actually tightly coupled with all tigetem parameters across all images,

since the same conditional probability tatéw|z) is used by all images.

2.2 Experiments

The red and green ellipses in Fig. 2.1 and 2.2 representfireed most likely topics of each visual
word; red indicates that the system labels the particugioreas foreground. Comparing PLSA to

Semantic-Shift, it can be seen that foreground objects are precisely located by Semantic-Shift.

Figure 2.1: Results on test data. Left column: PLSA. Rightrmm: Semantic-Shift.
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Figure 2.2: Results on test data. Left column: PLSA. Rightmm: Semantic-Shift.
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Chapter 3

Discovery Integrated with Segmentation

3.1 Introduction

Image segmentation can be categorized into interactivenaneinteractive. Interactive systems
such as ‘Magic Wand’ [24] and ‘Intelligent Scissors’ [25Magoractical importance in image edit-
ing. These systems start with a user specified region or rgogtour and use texture or edge
information to achieve segmentation. Recently, there leas improvements on further reducing
the amount of required user interaction to achieve compaisdggmentation performance. In the
GrabCut method [26], only a rough bounding box is neededchvld a significant improvement

over previous methods.

Suppose the user wants to segment the same type of objecafsehof images, instead of a
single image. In previous interactive systems, the uset spexify the object within each image,
which can be time consuming. If the target objects sharaicecharacteristics, these character-
istics can be shared across images. Hence it is possibletbefueduce the required amount of

human interaction.

In this work, we would like to investigate how well we can segrnasetof images withzero
mouse clicks. On a high level, this is achieved by the intesadetween a method that provides
rough bounding boxes of the target objects in each imageaandthod that uses the bounding
boxes as seeds to achieve foreground-background segimenitte method that provides bound-
ing boxes will be called ‘automatic object discovery’, ahé method that achieves segmentation
is based on the ‘GrabCut’ method [26].

19
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We present a novel approach to background cutout for imaitieggdWe show how background
cutout can be achieved without any user labeling. This i®mrast to current methods, where the
user needs to label each image separately. Our method usesatic object discovery methods to
provide location and scale estimates of the object of istethese estimates then provide seeds for
initializing color distributions of a segmentation alghm. We show that our approach can achieve
similar performance as traditional methods that requisssu® specify for each image a bounding
box of the target object.

We will review image segmentation by GrabCut in Section 3\& will then detail the auto-
matic object discovery method in Section 3.3, and its imtgva with GrabCut in Section 3.4. This

is followed by experiments in Section 6.4, and a summary ctiGe 3.6.

3.2 Image Segmentation by GrabCut

The GrabCut method [26] is based on interactive graph cufs y2hich provides an energy mini-
mization framework for segmenting a single image into fooegd (object) and background. Hard
constraints are obtained by the user who specifies certedfsms foreground or background. Soft
constraints incorporate both boundary and region infamnatMinimization is done using a stan-
dard minimum cut algorithm. The obtained solution giveshist balance of boundary and region
properties among all segmentations satisfying the canstra

More specifically, two Gaussian mixture models (GMM) aredusemodel the RGB color of
each pixelz,, one for the foreground and one for the background. A vekter {ki,....kn}
assigns to each of th¥ pixels a unigue GMM component, one component either frombdek-
ground or from the foreground model, accordingyp= 0 or 1. The energy functiol = U + V/

consists of a node potentiél(a, k.0, 2) =Y _D(an, kn, 0, 2,) where

1
D(ap, kn, 80, 2,) = —log m(ay, kn) + 3 log det X (v, k)

1

+ §(Zn - N(ana kn))Tz(am k‘n)(Zn = (e, kn))

so that the parameters are

8 = {m(c k), p(a k), S, k), = 0,1,k = 1L..K}
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and a smoothness potential
Via,z) =7 Z [t # an) exp —f || zm — Zn||2
(m,n)eN
where[.] is the indicator function,V is the set of neighboring pixels, andand 5 control the

strength of the smoothness term. Once the energy functidefiised, thesegmentation magke.,

the foreground-background identity, of each pixel) is found through the following steps:

1. User selects a bounding box by mouse clicking. Pixeldgaeitsf bounding box are marked

as backgroundq, = 0). Pixels inside the box are markedas unknown.

2. Computer creates an initial image segmentation, whénenhown pixels are tentatively
placed in the foreground class and all known backgroundp&® placed in the background

class.
3. Gaussian Mixture Models (GMMs) are created for initiakfground and background classes.

4. Each pixel in the foreground class is assigned to the ni@dy IGaussian component in the
foreground GMM. Similarly, each pixel in the background ssigned to the most likely

background Gaussian component.

5. The GMMs are thrown away and new GMMs are learned from tkel giets created in the

previous set.

6. The energy function is minimized to find a new tentativeegpound and background classi-

fication of pixels (i.e., minimize the energy functiéghover ).
7. Repeat from Step 4 until convergence.

Convergence properties are discussed in more detail if2@]7]
Notice that, without Step 1, the system does not know theratiaracteristics of the back-
ground regions, and hence it cannot determine which regiom$oreground and which are back-

ground.

3.3 Automatic Object Discovery

As mentioned in the introduction, if multiple images are ® degmented, and if these images
contain the same type of object (call them the target objéictd the user wants to segment, then

it is possible to analyze the region characteristics thasistently occur across images. It is the
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consistency that tells the foreground from the backgroyaita In this section, we will introduce

such a method.

Topic models such as Probabilistic Latent Semantic Angl§RLSA)[6], were originally used
in the text understanding community for unsupervised tojscovery. In computer vision, topic
models have been used to discover object classégpims from a collection of unlabeled images.
As a result, images can be categorized according to thestdp&y contain. In the context of

unsupervised object detection, the object of interest hadbackground clutter are the twapics

Visual words (or textons) [28] are vector quantized locglegrance descriptors from patches.
Objects can be represented as collections of visual wordsvidiscuss in more detail in Section
6.4 on how the visual words are generated. Following thetiooi® used in the text understanding
community,w € W = {ws,...,wyy|} is the visual word associated with a patehe Z =
{zFr¢, zBc} 1s @ hidden variable that represents tbpic (foreground or background) associated
with a patch, and € D = {di, ..., d|p|} is the index of the image associated with a patch.

PLSA assumes the joint distribution @&fw,andz can be written a®(d, w, z) = P(d)P(z|d)P(w|z).
PLSA is known for its capability of handling polysemy: if asuvial wordw is observed in two im-
agesd; andd;, then the topic associated with that word can diffed;iandd;: arg max P(z|d;, w)
can be different fromarg max P(z|d;, w). In other words, PLSA allows a visual word to have

different meanings in different images.

We augment the PLSA model in the following way. We introduoeeatra variable in the
graph. This variable is directly associated with th@alues in GrabCut (Section 3.2). The idea
is to use the segmentation mask produced by GrabCut to gh@automatic object discovery
method. This sounds like the opposite direction of what veesaeking for: we wanted to use
automatic object discovery to provide seeds for initializthe color distributions in GrabCut. But
as we will see later, automatic object discovery and Grala@uintimately connected, each feeding

information to the other.

Figure 3.1 shows our proposed graphical model. The outée pidicates the graph is repli-
cated for each image, and the inner plate indicates theceioln of the graph for each patch. The
topic variablez is hidden. The- value for each patch is obtained by looking up the segmentati
mask: if this visual word corresponds to a patch that is segedeby GrabCut as foreground, then
r = 1; otherwisey = 0.

The segmentation mask is correlated with the hidden teioreground or background). This
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T

Figure 3.1: The proposed graphical model for automaticatlgjescovery.

correlation is expressed in the graphical model as the tim £ to r, or P(r|z). We consider the
r value of each patch as an additional featuithat is related to the hidden topic variakie We

learn the parameters using the EM algorithm:

E —step:
P(z|d,r,w) = k1 P(z|d)P(w|z)P(r|z) (3.1)
M — step :
P(w|z) = ko Zm(d,w,r)P(z\d, r,w) (3.2)
d,r
P(z|d) = ks Z m(d,w,r)P(z|d,r,w) (3.3)
P(r|z) = kq Zm(d,w,r)P(z|d, r,w) (3.4)
w,d

wherek;, ..., k4 are normalization constants, andd, w,r) is a co-occurrence matrix that counts
the triples(d, w, ).

A typical distribution of P(r|z) is shown in Figure 4.3. From this table we can see how-the
value is correlated with. The foreground topier¢ strongly suggests that the GrabCut segmenta-
tion mask is also foreground at the corresponding positidnile the ambiguity of the background
topic is higher and does not as often correspond to GrabGatkground. The automatic object
discovery method is doing inference based on the co-oaqueeseof the visual words across images
(as PLSA doesyandalso based on the segmentation mask returned by GrabCuEMadégorithm
figures out from data how to optimally make judgements froes¢htwo “sensors”: the GrabCut

sensor (which provide§r}) and the appearance sensor (which proviges).
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r=0 r=1
Zrg 0.29 0.96

ZgG 0.71 0.04

Figure 3.2: A typicalP(r|z).
3.4 Automatic Seeding

In this section, we will use automatic object discovery t®igis seeds without any user interaction.
Here are the steps:

1. Automatic object discovery determines the topic of eashal word. In the first iteration,
we do not know yet which topic corresponds to the foregrounjdct. Use the topic whose
positions of visual words has smaller variance as foregtolimese visual words are called

the foreground visual words.

2. Find a bounding box for each image: The location and sdaleedbox are the median and
four times the standard deviation of the coordinates of dheground visual words. We use

the median as it is more robust to outliers than the mean.

3. Run GrabCut, except that using the computed boundingrst®ad of using user input. Get

segmentation mask for each image.
4. Use segmentation mask to updatesthalues in automatic object discovery.
5. Repeat from Step 1 until convergence.

We found this iterative algorithm typically converges ingié or four iterations.

Notice that, during automatic object discovery, inforroatis flowing across all images because
all images share the sani¥w|z) and P (r|z) distributions, whereas during GrabCut, segmentation

is done only locally within each image.

3.5 Experiments

We use the Caltech face data set [29] to illustrate the psoaed results of our method. The method

is general and can be applied to other object types as wellravdomly sample twenty images
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from the Caltech face data set, and resize theda®ox 296 pixels.

In GrabCut we use patches found by the Watershed transfiorm@0] instead of raw pixels
as basic units. This speeds up the processing. Using raus iaa provide better segmentation,

while the method stays the same.

In automatic object discovery the basic units are the viaaatls, which are created as follows.
First, elliptical patches are detected by the Hessian Affiterest point detector [1]. We use a
codebook size 0500 for quantizing the SIFT descriptors [2] of these patches inisual words.

It is worth mentioning here that the SIFT descriptors, andckethe visual words, carry texture
information, while the patches used in GrabCut carry catdorimation. Hence our automatic

background cutout method is utilizing information from lhégpes of features.

Figure 3.3 demonstrates results. Figure 3.3(b) is the tre$imteractive GrabCut, which re-
quires the user to specify a bounding box as shown in Fig@@)3.Notice that we use Watershed
segmented patches instead of raw pixels for speed up, heacedult does not closely follow the
object contour, but raw pixels could certainly be used exté-igure 3.3(c) to (h) shows the result
of our automatic method. The red and green crosses in (g) @) the foreground and background
visual words. Based on the foreground visual words (the rex$)) a bounding box is calculated
(not shown). Our method produces the results (d)(f)(h)r dfte first, second, and third iteration,
respectively. The automatic result in Figure 3.3(h) is caraple to the interactive approach in
Figure 3.3(b).

One of the reasons the result is not perfect is due to the wagalealate the bounding box.
Our experience with GrabCut is that the result is quite $s@adio the preciseness of the bounding
box, in terms of how close the box covers the object. If too Imb&ckground is included, then the
segmentation is rough. On the other hand, if the box is todlsthan some part of the object will
be cutout. For example, comparing Figure 3.3(e) and (g¢esihe visual words inside the human
face are labeled more correctly in (g), the bounding bogistér in (g) than in (e), resulting in the
better results in (h) than in (f). Additional results arewhadn Figure 3.4. We currently compute
the bounding box using median and variance, but more sagatistl robust statistics might provide

better boxes.
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(a) Old method: draw a box (b) Result of (a)

(d) Result of (c) (f) Result of (e)

(g9) Automatic, iter 3 (h) Result of (g)

Figure 3.3: See Section 6.4 for details.

3.6 Conclusion

First, we have shown how background cutout can be achievddzgro user labeling. This is
in contrast to current methods, where the user needs to &t image separately. We have
shown that, by using the estimated foreground-backgrouswalwords in the automatic object
discovery method, a bounding box can be automatically céedgpand used to initialize GrabCut.
In return, the foreground-background segmentation maskrabCut can be used to update the
features in automatic object discovery, and hence refimedgdreground-background labeling of
visual words in the next iteration. Second, our method nateg texture and color information in
a novel way: automatic object discovery uses visual wordisghvcaptures texture around interest
points; GrabCut uses color from patches found by Waterstetsformation. Compared with

previous automatic object discovery methods that only afpeon sparse interest points [31], our

method provides finer segmentation.
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Figure 3.4: Results.
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Chapter 4

Utilizing Correspondence Information

We propose a combination of a topic model approach and ganetence-based approach, and
show significant improvements over current topic models tii@del the location of patches. Our
approach is advantageous over existing topic model appesatue to a non-parametric represen-
tation of the object’s spatial configuration. With this nparametric representation, we can obtain
better estimates of the labels for each patch, thereby\aopisignificant better localization and

categorization results.

4.1 Reward by Correspondence

Figure 4.1: An image and three exemplar images. Red lingsatelcorrespondences found be-

tween patches.

In the introductory chapter we mentioned approach2sand A3, which make use of spatial
information, but do not explicitly consider the spatial figaration of patches coming from the
object of interest. Normally the patches from the objecfarenore consistent than patches coming
from background clutter. In the context of unsupervisedobfletection, it is the consistency of

patches across images that tells an object apart from theylmamd clutter: similar objects that

29
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appear repeatedly in the data set will demonstrate a censispatial configuration, while the
patches from random background clutter lack consistertisgpaonfiguration. Similarly, in the
context of image categorization, same object classes shmilar spatial configurations, which are

distinct for every object class.

Our intent is to extend the topic model framework to incogperinformation about spatial
configuration. Rather than building a shape model as in etbasbn models [14], pictorial struc-
tures [15], or fragment-based models [16], we will explbi fact that similar objects in different
images are more likely to have strongrrespondenceand extend the topic model to include this

extra piece of information.

Correspondence-based object recognition has been iridheglire for nearly forty years. Even
though computing correspondence is computationally esipenit is still popular, because of its
promising performance. Recent work by [17][18] [19] [20kusorrespondence as a central ele-
ment in their object recognition framework. However, thmiodel and learning algorithm differ

substantially from what is proposed here.

Our use of correspondence is to provide a non-parametrieseptation of the location of the
consistenfpatches. By using correspondence methods that take inbwigicthe spatial distortion
of a correspondence and allow partial matching, the morelmeata patch has, the better chances

the patch belongs to a foreground object, as opposed to maskd) clutter.

This piece of information is employed by the topic model i fbrm of an extra feature, or
reward More precisely, the reward for a patch is high when this Ipagcrepeatedly matched
against other patches in other images. On the other hanchgsafrom random clutter are less
likely to find as many matches, which results in lower rewar@iis is precisely the notion that
objects of interest normally show higher consistency acnosmges and it is the consistency that
tells an object apart from background clutter or other disjeThe more good matches a patch gets,
the higher its reward, and the resulting reward map, agnfitesd in Figure 4.2, is a non-parametric

representation of the location of the consistent patches.

It is important to use correspondence methods that resmdt dppearance and geometric
costs. Correspondence methods such as [18] [20] are amesg.tiThey measure the cost of a
correspondence by observing how similar feature pointscatieeir corresponding feature points,
and how much the spatial arrangement of the feature poictsisged. These methods also allow

outliers to be excluded from the correspondence.
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Figure 4.2: Correspondences between patches across ifneaddisies on the left) provide strong
information of the object configuration. This informati@hown at the bottom right as a “reward
map”, is incorporated into a topic model in our approach taeegice object localization and image

categorization.

Computing correspondences between all paird/afmages in a data set is expensive, and to
avoid the exponential complexity, we generate a list'@xemplars to correspond with each image.
By narrowing down fromV to C, we decrease the correspondence computation ¥3rtimes to
NC times, which is linear to the number of images in the dataBeis is in contrast to systems
that need to run correspondend@ times for image categorization, such as in [19]. We generate
the list of C' exemplars by running PLSA and choosing the top ranked imfageseach topic. The
images are ranked according Rid|z). In the experiments, we us® exemplars per topic. See

Figure 4.1 for examples where an image is matched to somepdxeimages.

4.1.1 Finding Correspondences

We want to find the correspondence between patches acrossmages,d; and d;, that are
appearance-wise and geometrically consistent. Suppesedhen patches inl;. It would be naive
to find the single best match based on appearance and wougiivech geometrically consistent
correspondence. Instead, we use the correspondencettaigani [20] to find out the appearance
and geometric consistent matches.

We first find thek-nearest neighbors for each patch based on appearance; laitie enough

so that only appearance-wise very disagreeing matchesegled. Suppose candidate match
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marries patclp in d; and patchy’ in d;, written in shorthand as = (p, p’). The appearance affinity
of the candidate matafy denoted byA(a), is calculated as the correlation coefficient of the feature
descriptors of patcp and patchy’.

Supposé = (g, ¢'). Then the geometric affinity is defined as:

_— —

/o !
G(a,b) = max(0,1 — Cy - w)
2P’ lllaq'

G(a,b) is dimensionless so it does not change when the two vep?éramdcﬁ are multiplied by

(4.1)

a constant('; controls how tolerant this metric is to distortion.

The final affinity matrix)/ has elements$//(a,b) = G(a,b)A(a)A(b), wherea = (p,p’)
andb = (q,q’). Pairs of candidate matches will have low affinit§(a, b) if either the geometric
affinity or one of the appearance affinities is low. The cqroeglence algorithm we adopt from [20]
figures out the final geometrically and appearance-wiseistems matches based on the dominant
eigenvector of the affinity matrid/. Partial matching is achieved by setting the paramétgein
Equation 4.1 large enough (we uSg = 1.5), so that candidate matches that potentially match by

appearance but distort the correspondence too much argdexicfrom the final result.

4.1.2 The reward map

The geometrically and appearance-wise consistent camegmces that are found in the previous
section tell us which patches often co-occur; it also erssusethat, when patches co-occur, they
co-occur in a geometrically consistent manner. We counntimaber of matches each patch has
and create a “reward map” (Figure 4.2). In the context of pasuised object detection, we would
expect patches from the object of interest to have more ragt¢hus the reward value is a good
indicator of whether a patch belongs to the object of interes

Using the reward map to locate the object of interest is oftengood enough. As we will
explain later in better detail, the reward map is indeedetated with the topic variables but the
correlation is not high enough to provide accurate estinatif the topic. In fact, the“quality” of
the reward map depends on the number of exemplars ones ustessWe use a very large set
of exemplars (which would be inefficient, because findingespondences is at least linear to the
number of exemplars), many patches from the foregrounccobjil not have consistent matches
in other images. This is because the intra-class variafismular objects in the real world is often

very large, and having appearance-wise and geometricatigistent matches is rare.
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Instead of directly using the reward map to locate the objeetuse the framework we intro-
duced in the introductory chapter. We consider the rewahdevaf each patch as an additional
featurer that is related to the hidden topic variable Empirically, we found that using(r|z)
performs better than using(r|d, z), probably because of fewer parameters and less overfitting.

We learn the parameters using the EM algorithm:

E —step:
P(z|d,r,w) = k1 P(z|d)P(w|z)P(r|z) (4.2)
M — step :
P(wl|z) = ko Zm(d,w,r)P(z|d, r,w) (4.3)
d,r
P(z|d) = k3 Y _m(d,w,r)P(z|d, 7, w) (4.4)
P(r|z) = ky Zm(d,w,r)P(z|d, T, W) (4.5)
w,d

whereky, ..., k4 are normalization constants, andd, w, ) is a co-occurrence matrix that keeps
the counts of triplesd, w, r) [6].

A typical distribution of P(r|z) is shown in Figure 4.3. Notice that we have quantized the
reward values into 4 bins using k-means quantization. Ihisrésting to see that background
topic zp has almost all its rewards concentrated at the first bin (Imcpatches originated from
background clutter often have very few matches), while ttredround topiczgo has rewards
distributed more evenly. Still, the first bin of both topisshiighly concentrated, which implies
that directly using reward values to tell foreground fronchground has a lot of ambiguity. This
is still true if we quantize the rewards into a larger numbgbios. Hence, instead of directly
using the reward values for object detection, we integtaitedorrespondence-based information
into a topic model. The EM algorithm will figure out from datavihto make judgements from
these two “sensors”: the correspondence sensor (whichde®vewards{r}) and the appearance
sensor (which provides visual wordgy}). This integration allows us to use a very small number
of exemplars. Even so, the performance significantly im@gsosver traditional topic models\1

to A3, as we will show later.
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Figure 4.3: A typicalP(r|z).

4.1.3 Remarks

By using correspondences, we introduce spatial configuratito topic models. We don’t make

assumptions and postulate a model for the shape of the oljedher do we make assumptions

as inA2 andA3, about the location and clustering of the object. These lammplicitly taken into

account by using the reward map. It will be of future intetestombine A2 and A3 together in

this correspondence-based topic model framework.

Here is a summary of the advantages of this framework:

1.
2.

The nice property of PLSA (namely, handling polysemynlseirent in the new method.

PLSA can only handle polysemy across documents but ndinvitocuments: the same
visual wordw; can be assigned to different topics in different imagestg@drdependency)
but a visual word within an image will always be assigned #mes topic, regardless of its
spatial relationship with other patches. AR, A3, and our proposed method, the additional

featurer allows the topic model to handle polysemy within documents.

. In situations where finding geometrically consistentahes is difficult (e.g. , when objects

have large deformations), methods that purely rely on sporedence would fail. In this
case, the reward map would turn out flat or erroneous. Howeuemethod will learn this

fact and rely on the appearance information instead of thancemap.

. Topic models can take advantage of information from bimkaggd clutter. Pure correspondence-

based methods cannot.

4.2 Experiments

In the following experiments, we do not compare WiR, since it does not provide translation

invariance, which is crucial in our experiments.
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4.2.1 Small objects (synthetic data)

The number of patches sampled from the images is the mostintitl parameter governing recog-
nition performance using bag-of-words representatioi. [8®reover, in topic-model approaches,
unless the object of interest occupies a reasonably lam@opion of the image, it will not have

a sufficient number of detections to compete with patches ttee background, meaning that the
image is misclassified as background. To show that the peabapproach allows the foreground
object to have much fewer patches than in other approactegserform the following experiment:

the task is to detect dumbbells in cluttered scenes, and adghy increase the amount of back-
ground clutter. In Table 4.1, we see the proposed methodslieavier background clutter than

the other topic models.

Classification Localization
Proposed Al A3 Proposed Al A3
x1 100 83 88 86 74 81
x2 88 64 69 78 62 66
x5 68 52 54 65 53 52
x10 62 53 51 56 47 52

Table 4.1: Small objects experiment in Section 4.2.1. Bydasing the number of background
patches from one times the number of foreground patchemttines, the performance of the

proposed method drops far less drastically than the baselathods.

4.2.2 Confusing background (synthetic data)

In this experiment, we show that under the presence of clsaingecation, scale, occlusion and
deformation, topic modelal and A3 perform very poorly. The task is to detect dumbbells in
cluttered scenes. Synthetic images are generated by eingetuhlinear distortions (using pinch,
punch, and perspective transforms with the software Rap)sof the dumbbell in cluttered back-
grounds (Figure 4.4). To confuse the appearancansert patches from the object into the back-
ground Clearly, if appearance alone were used to classify thénpatthere is no way to distinguish
object from clutter, because it is the spatial configuratibthe patches that tells the object from
the clutter apart. This is demonstrated in Table 4.2(a). éraahstrate the effect of occlusion, we

removed some patches from the dumbbell. To verify multiptance detection, two or three dis-
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@)

Classification Localization
Proposed Al A3 Proposad Al A3
100 50 50 96 50 50

(b)

Classification| Localization

Proposed Proposed
Size fixed 100 96
Size varied 86 83
Distortion 91 86
Occlusion 84 84
Combination 81 79
Multiple 100 92

Table 4.2: Classification and localization accuracy (%)Section 4.2.2. (a) A1 and A3 perform
poorly because the data is ambiguous in appearance. (b)ropesed method still works well

under different kinds of distortions.

torted versions of the dumbbell were embedded randomlyeistiene. These variations are shown
in Table 4.2(b). Note that the number of objects in the scenmknown beforehand and the same

parameters are used throughout these experiments.

4.2.3 Unsupervised categorization and localization

Patches are detected by the Hessian Affine interest poiattdet We use a codebook size5oi
for quantizing the SIFT descriptors into visual words. THETSdescriptors are then projected

from 128 to 30-dimension using Principal Component Analysis.

Equal Error Rate Area under ROC
Proposeq Al A3 Proposed Al A3
Motorbike [ 1.9 12.5 3.3 99.8 | 91.2 99.5
Airplane 3.8 10.2 134 | 99.1 | 95.7 92.6

Face 2.0 5.1 2.3 99.5 | 96.0 98.9
Car Rear 8.6 18.8 22.3| 92.3 88.3 88.0

Table 4.3: Image-level classification results (%).

Table 4.3 shows the receiver-operating characteristicQR&yual error rates (EER) and the
area under ROC curve. Clearly, methods that consider $p#Etiamation outperformAl (PLSA).
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Figure 4.5 has further analysis on the motorbike data set.

Figure 6.2 shows the localization performance. Scores @mgpuated based on the posterior
probability P(z|d,w) in Al, and based o®(z|d,w,r) in A3 and inProposed The proposed
method shows significantly better performance in localiratFigure 4.7 shows some localization
results. The top 15 highest scoring patches are indicatetiedbyellow ellipses. Notice that the
proposed method has much less false alarmsAtiafiPLSA) andA3.

4.3 Conclusion

We have shown how topic models can benefit from finding cooedgences and using the “reward
map” as an additional feature. We have also shown that imadit topic model approaches can
perform poorly when the appearance of the background cistextremely confusing. Our method
is more robust than traditional topic models when the amotibackground clutter is significantly
larger than the number of patches from the object of intemghich is a major problem when

applying traditional topic models to images.
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Figure 4.4: Synthetic images for Section 4.2.2. Topic mea@del and A3 cannot distinguish be-
tween the object and the background because it is the spatifijuration of the patches that tells
the object from the background apart. See performance ile 7ab.
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Figure 4.5: Classification of Caltech motorbike versus é&ltbackground images. The top figure

shows that, among the motorbike images, most images haueaBd0 to 600 patches (foreground
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plus background). The bottom figure shows the number of wyocigssified motorbike images

with respect to the number of patches in the image. Togetheisee that the proposed method
performs better tharhl and A3. We also see that images with fewer patches are more often

classified incorrectly. The proposed method classifiesriectly 16 out of 826 motorbike images,

all of them having less than 150 patches in the image.
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Figure 4.6: Patch-level classification result on Caltechiammke data set. For each method, its
top 20% confident patches are classified as foreground veesikground; the closer the posterior
probability P(z|d, r,w) (or P(z|d,w) in Al) of a patch is to 0 or 1, the higher the confidence of

the patch.
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(b) A3 (c) Proposed

Figure 4.7: Localization results.
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Chapter 5

Handling Multiple Objects

We propose an iterative method for discovering objects iages. In each iteration, the current
estimate of the layout is processed by a sequence of peatgptuwping rules. Perceptual grouping
appears to be the basis of visual organization of human. dorigerned with the problem of the

formation of wholes from parts. The method does not rely enrtlixture of Gaussian model and

hence avoids the model selection problem. We use synthedicesal images to demonstrate that
the obtained result is better than that obtained by othehoadst

5.1 Introduction

In the field of scene understanding, an image can be condidara set of objects arranged in a
spatial layout. A central problem is that of segmenting tinage into objects. In order to ex-
tract the underlying objects, one can use image segmemtati@yout extraction methods. Image
segmentation methods partition an image into regions thagist of similar color, texture, or po-
sition. This partitioning often operates on a single imadgecomparison, image layout extraction
partitions an image by objects and uses information frontipialimages.

The method we propose has its root in an unsupervised lgamethod called Probabilistic
Latent Semantic Analysis (PLSA)[6]. This model has eattieen used in the text and linguistic
domains. PLSA is a generative model, and can be used toiietérpw a document is generated. A
document is considered as a mixture of “aspects” (“topjcaid each aspect consists of a mixture
of words. The power of PLSA originates from the fact that atpean be learned in an unsuper-

vised manner given a set of document-word pairs. It is heapalde of accumulating information

43
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from multiple documents.

One important drawback of PLSA is that the set of documentdwmairs ignores the layout
or order of words in a document. PLSA as a generative modetngdr generating a document
without structure. In other words, if we arbitrarily shufflee words in the document around, we
get the same latent aspects (topics). As a result, the peafure of PLSA still leaves room for
improvement. Sivic et al. [4] add spatial information intetfeature representation and leave the
PLSA model unchanged. Liu and Chen [13] extend the PLSA maxlélexplicitly model spatial

structure.

However, using a Gaussian or mixture of Gaussians to modes$phatial distribution of the
objects in each image is not ideal for several reasons., FissGaussian distribution decays quickly
around the peak and has long tails. Real world objects haiferomnonzero support inside the
object boundary and zero support outside of it, and henc&#ussian distribution does not model
the spatial distribution genuinely. Second, since the ramobobjects varies from image to image,
a Gaussian mixture model requires the specification of theben of mixture components per
image. In this case, model selection methods such as thesBayiaformation criteria (BIC) or the
Akaike information criteria (AIC) require not only loopimyver the possible number of mixtures

components, but also over each image, hence being congnatyi expensive.

We propose an iterative layout extraction method that i®dtham perceptual grouping [33].
This method does not rely on the mixture of Gaussian modehande avoids the aforementioned
problems. Perceptual grouping appears to be the basisuafi\dgganization of human. Itis respon-
sible for the formation of wholes from parts. In psychologgneric principles such as proximity,
similarity, closure, simplicity, etc., have been identifi®r the grouping process. Of special inter-
est is proximity, which states that elements which are dosgach other will be grouped together.
In each iteration, after we obtain an updated estimate ofay@ut, we process the layout by a

sequence of perceptual grouping rules that agree with hymaeeption.

In the following, we will first describe the probabilistic mel. We then describe the perceptual
grouping method for refining the posterior map to obtain tragial distribution. Finally, we present

experimental results.
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5.2 Probabilistic Model

As mentioned in the introduction, if multiple images contéie same type of object, then it is
possible to analyze the region characteristics that ctemtlg occur across images and thereby
segment the object. It is the consistency that tells thegforend from the background apart. In

this section, we will introduce such a method.

Images are represented as collections of visual words %torte) [28], which are discrete
(vector quantized) local appearance descriptors extidoden image patches. We will discuss in
more detail in Section 6.4 on how the visual words are geedraFollowing the notations used
in the text understanding community, € W = {w1, ..., wy} is the visual word associated
with a patch,z € Z = {zrqg,2Bc} IS @ hidden variable that represents tbpic (foreground
or background) associated with a patch, ané D = {di,...,d|p} is the index of the image

associated with a patch.

Each image is considered as a mixture of topieézy|d;) is the probability of topic:;, occur-
ring in imaged;. Assume there are a predefined numbe#Zdatent topics{z1, ..., zz}. Using
inference methods, it is then possible to infer the lateriatées of the model. In our experiments
we will consider the case df = 2, but extending it to more topics is feasible. Each topic ithier
considered as a mixture of word#&:(wj;|z;) is the probability of wordw; occurring in topiczy.

We denotdV as the total number of (visual) wordgys, ..., wy }.

We introduce the spatial distributioR(2i|d;, z). The dependence of positiarf: on image
d; allows the foreground object to have different locationd acales in every imagé. In other
words, the foreground object is allowed to be at vastly diffié positions in both learning and
testing. The scale can also vary freely over different insagallowing different locations and
scales in different images is desirable, as it provides #séslfor scale-invariance and translation-
invariance. The dependenceasﬁ on z allows the foreground object and the background clutter to
have different locations and scales. The supersdyift to indicate that the patch positions can be
different for each image, and is omitted in the sequel to Bfynilhe notation.

We define an image-word-position co-occurrence taffld, w, z), with n(d;, w;, a:gi) denot-
ing the number of occurrences of waig at positionz® € {z, ..., xfé”} in imaged;, where|d;|
denotes the number of patches in imalgeln other wordsy(d;, w;, azgi) = 1ifin imaged; there

is a wordw; at positionzd:, andn(d;, w;, z%) = 0 otherwise.
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(a) Synthetic (b) Synthetic (c) Face (d) Background

Figure 5.1: Synthetic and real objects used in the expetsnen

The joint distribution of document, topics, position, andrds is formulated as

P(di,wj, 21, xp) = P(wj|z) Pz |di)p(p|di, z1) P(d;). (5.1)

5.3 Parameter Learning

The goal is to maximize the log-likelihood,
L= ZZZn(di,wj,xgi)logP(di,wj,xgi) (5.2)
o j P
This can be achieved by the EM algorithm [21], which altezsdietween the E-step and the M-
step. The E-step updates the posterior distribution agvisl|
P(z|d;, wj, zp) < P(zg|di) P(wj|zg) P(zp| 2k, di) (5.3)

The M-step updates the individual conditional distribnfo The update equations of the topic
distribution, P(z|d;), and the appearance distributidi(w;|z;), can be derived by the Lagrange

multiplier technique as in [6] and they are as follows:

P(wjlzr) o< Y > nigpP(z|di wj, xp) (5.4)
i D

P(zldi) o< > 0> " migpP(klds, wj, xp) (5.5)
Jj p

wheren;;, = n(d;,wj,x,). The left hand side of these equations are normalized tonbeco
probability distributions.
A standard EM algorithm would attempt to solve the updateagqgn for the spatial distribution
as follows:
0" = arg max Z n(d, w,z)p(z|d, w, z)log pe(z|d, z) (5.6)
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where we usey(z|d, z) to emphasize that the distributigr{z|d, z) is parameterized by. In
the Semantic-shift algorithm [13], the spatial distributip(x|d, z) is assumed to be a Gaussian
distribution and an update equation can be derived fronethBuring the EM iterations of the
Semantic-shift algorithm, we observed the spatial clirseof a single bump to occur due to the
strong prior assumption that one and only one bump existgiimtage pixel domain. Since images
can contain multiple objects, a natural way to extend thénowkis to allow multiple bumps to exist
in an image. Gaussian mixture models are often used to Besoulti-modal data. However, spec-
ifying the number of mixture components is nontrivial simeeh image can have different number
of objects, and hence model selection using the BIC or Al€ida requires not only looping the

number of components, but also over all images. This is coatipnally very expensive.

Motivated by the spatial clustering behavior in the Sentashift algorithm, where nearby
patches with high posterior probability are grouped togetind noisy patches are gradually sup-
pressed, we consider the process of finding the optimaladpigiribution as a perceptual grouping
process. In psychology, several generic principles haea ldentified to account for the human
visual grouping process. These principles include praxinsimilarity, closure, simplicity, etc..
However, to the best of our knowledge, there is no mathemibtimodel that describes all Gestalt
principles under one framework. We therefore propose tormage processing techniques to real-
ize the spatial clustering behavior as that observed in émeaBtic-shift algorithm, thereby avoid-
ing making unrealistic assumptions about the spatialidigion such as mixture of Gaussians that

don't fit the true layout well.

In this work, we use a non-parametric representation forstiaial distribution. Denote the
distribution parameters of(x|d, z) by 6. Specifically,# contains the values of(z|d, z) at every
x, for eachd and z. This is equivalent to storing a two-dimensional ‘postemoap’ for each
image and topic, which contains the value of the posteriobgbility for each image patch. Within
the EM iterations, we aim at removing small elements and k&meously group elements that
are close to each other. We use simple morphological imageepsing to achieve this result.
We first erode the posterior map, then dilate it. This can kaerstood as a realization of the
proximity principle, which states that elements which al@se to each other will be grouped
together. The perceptual grouping process does not neetligva a clean segmentation within the
current iteration. Instead, since the perceptual groupiogess occurs repeatedly during the EM

algorithm iterations, a suboptimal grouping step can taawignificant changes in the posterior
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estimation in the next iteration. We will illustrate thidexft in the experiments.

In literature, there are many attempts to simulate the hurapability of perceptual grouping,
e.g. in [34]. We suggest that methods such as these couldcbporated into the estimation of
the spatial distribution as well.

Another alternative is to use a Markov Random Field (MRF) todel the spatial distribu-
tion. In that case, we could have associated the hiddersstath the hidden variables. The
smoothness prior can roughly achieve the proximity prilecipliowever, finding the solution of a
two-dimensional MRF is an NP-hard problem. Hence, evenghanathematically the problem
is well defined, the approach is not always elegant. On therdthAnd, using morphological pro-
cessing or image filtering techniques, we can intuitivetyonporate the Gestalt principles into the

estimation procedure.

5.4 Experiments

5.4.1 Synthetic images

We created 20 synthetic images of siz& x 18, each containing one or two objects. Objects
consist of visual words uniformly sampled from 13 visual de&r Background consists of visual
words uniformly sampled from 10 visual words. In total thare 20 distinct visual words, so the
objects and background share 3 visual words. Each pixetgponds to a visual word, so there are
360 ‘patches’ per image. Examples of the layout of the objace shown in Fig. 5.1(a)(b).

During each EM iteration, the ‘posterior map’ is estimatedamples are shown in the first
column in Fig. 5.2. The posterior map has many smaller grofips<els which appear to be noise
and larger groups of pixels that appears to be the foregrobjett. After erosion and dilation,
we obtain the result in the second column in Fig. 5.2. Notie imany smaller groups of patches
with higher posterior probability are suppressed, ancelaggoups are clustered. These cleaned up
results are the estimated spatial distributidm|d, ) and are passed into the E-step in the next EM
iteration. The algorithm converges after 20 iterationse Tost likely latent aspect of each visual
word can be computed by

2" = arg max P(z|d;, wj, xp) (5.7)
z

Over99% of patches are correctly identified as foreground vs baekgto This result cannot be

achieved by the Semantic-shift algorithm (results not stjarging a single Gaussian assumption.
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Figure 5.2: From top to bottom: the posterior map (left figuaed the perceptual grouping result

(right figure) at iteration 3, 4 and 9. Viewed in color.

Also, as mentioned earlier, model selection becomes ag ifsising multiple Gaussian distribu-
tions. On the other hand, considering the spatial disidbuestimation as a perceptual grouping
process, one can easily apply erosion, dilation, edgespries) smoothing, or other techniques

during the spatial distribution estimation.

5.4.2 Realimages

We use 50 face images and 50 background images from the Rattage dataset, and another 15
face images from the CMU face dataset. Some of the face in@ggain two or more faces. All

images are converted to grayscale and resizedh@ox 200. We use the Harris-Laplace interest
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Figure 5.3: Posterior map of some face images at iteratiotvVizZdved in color.

point detector to obtain around 200 to 2000 interest regpmismage. Since the interest points
cover the image only sparsely, we downsample the imag88 to 20 before performing image

erosion and dilation. The algorithm converges at arounde3@tions.

In Fig. 5.3 we show the ‘posterior map’ at the final iterati@ue to the non-parametric rep-
resentation, the spatial distribution can easily acconat®a@n arbitrary number of foreground

objects, such as the multiple faces in the bottom of Fig. 5.3.

Since the image dataset consists of face and non-face iagesan consider a (unsupervised)
classification task. Comparing the proposed method wittsraantic-shift algorithm, we obtain
the ROC curve shown in Fig. 5.4, where the upper curve is thpgsed approach. For fair com-
parison, since Semantic-shift was originally designedafeingle foreground object, we did not

use the 15 images that contain more than one face.
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Figure 5.4: ROC curve for face vs non-face classification.

5.5 Conclusion

We proposed an approach for object discovery that incotgsnaerceptual grouping into the EM
algorithm. This method can achieve similar spatial clustebehavior as the Semantic-shift al-
gorithm, and yet it is not confined to the problem of model ca. Also, it allows easy in-
corporation of other image processing techniques intodbp.l The method also achieves better

performance on an image classification task.
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Discovering objects in videos
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Chapter 6

Utilizing Temporal Information

Here we present a probabilistic framework for discoveribgects in video. The video can switch
between different shots, the unknown objects can leaveter #re scene at multiple times, and the
background can be cluttered. The framework consists of paaapnce model and a motion model.
The appearance model exploits the consistency of objetd jpesppearance across frames. We use
Maximally Stable Extremal Regions as observations in thelehand hence provide robustness
to object variations in scale, lighting and viewpoint. Thgpearance model provides location
and scale estimates of the unknown objects through a corppaletbilistic representation. The
compact representation contains knowledge of the scere ailfject level, thus allowing us to
augment it with motion information using a motion model. Fiiamework can be applied to
a wide range of different videos and object types, and pesvid basis for higher level video
content analysis tasks. We present applications of vidgecbdiscovery to video content analysis
problems such as video segmentation and threading, andndéraie superior performance to

methods that exploit global image statistics and frequemset data mining techniques.

6.1 Introduction

Video object discovery is the task of extracting unknownegl§ from video. Given a video, we

want to ask what is the object of interest in this sequencénout providing the system any exam-
ples. This is very different from object detection in the qauter vision literature, see for example
[35], where the characteristics of the object of interestlaarned from labeled data. Object de-

tection not only involves a lot of human labor for labeling timages by putting bounding boxes
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on the object of interest, but also has the difficulty of swalio multiple objects. Since the object
of interest in a sequence can be any type of object, it is vifigudt to train a comprehensive
object detector that covers all types of objects. The stateecart multi-class object detector has a
recognition rate only aroungb — 60% for recognizing 101 pre-defined object categories [36] and
requires over 3000 human labeled images.

Our approach to object discovery is unsupervised in natodabeled images are needed for
training the system, and no examples are used for specifiim@bject of interest. A high level
intuition of how this can be achieved is as follows: In a vidiéthere is a car appearing in multiple
frames, we might be able to figure out that the wheels or thelovis are smaller parts of a larger
entity that repeats over and over again in different imagethis scenario, the concept of a larger
entity that is composed of smaller parts emerges. The snpalhts that constitute the larger entity
can be generic, and do not need to have semantic meaningaswheels or windows in this
example.

Our approach works well on small objects in low resolutioded. The object of interest
sometimes has as few as a single feature point out of overbiditkground feature points. The
system is designed for videos where only a single objecttefast will be extracted. We consider
this less of a limitation but more of an advantage. In mangeg] even though there are multiple
objects, there is only one object that is of main interest.r @roposed method is intended to
discover this major object of interest.

DISCovering Objects in Video, or DISCQV, involves two preses:

1. Atthe image level, extracting salient patches that abesbto pose, scale and lighting vari-
ations, and are generic enough for dealing with differepesyof objects. These salient

patches serve as candidate parts that constitute largee®nt

2. Atthe video level, constructing appearance and motiodetsmof larger entities by exploiting

their consistency across multiple frames.

6.2 Related work

One approach to video object discovery is to observe the sagme over a long time and build
a color distribution model for each pixel [37][38][39]. Uswal objects can then be identified if

some pixels observe substantial deviation from their Irg: color distribution models. These
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kind of background modeling approaches are suitable farosglirveillance with a static camera,
but if an image sequence is obtained from a moving camera,ahpixel does not correspond to a
fixed scene position; unless we can accurately registenthge sequence, we cannot build a color

distribution for each pixel.

Some methods exploit optical flow to discover objects. @ptitow is the apparent motion
between a pair of images. The problem is difficult becauselatla of constraints (the aperture
problem) and insufficient sampling near occlusion bourdaf#0]. Since optical flow computes
local image gradients, it is best suited to successive phifames, not to low frame rates with
large motions [40]. Using such short duration flow field, in]j4the optical flow of each frame
is clustered, providing initial estimates of object pasits in each frame. In [42], frame to frame
optical flow fields are concatenated to obtain longer rangespondences, providing information
to determine if a motion is consistent in direction over tiniikis consistency is useful in rejecting
distracting motions such as the scintillation of spectitsion water, and the oscillation of vegeta-
tion in wind. Using such long range optical flow field, howewamne must refine the field at each

step to avoid drifting, as mentioned by [40].

While optical flow provides a dense but short range motiou fiigdature tracking using distinc-
tive textured patches provides long range but sparse mbé&tth In [43], the correspondence of
distinctive feature patches are found across successivees and grouped according to their co-
occurrences. Our approach also uses distinctive textatethes, but we do not explicitly compute

the correspondences across frames, which can be compattiexpensive.

Our work also differs from layer extraction methods [44][4% which the frames in a video
are partitioned into a number of regions, in each of whictelsisshare the same apparent motion
model. In contrast, our approach allows for a very low fraite,rin which case methods relying
on image registration (as in [44]) cannot register the bemkgd across frames. Our approach does
not compute affine transformation between patches as iny@b¢h would have the same problem

at low frame rates.

In [46][47], multiple object detectors of airplanes, binlds, people, etc. provide as input to
the data mining algorithm a feature vector describing tlesg@nce and absence of each of these
objects. However, as mentioned in Section 6.1, the statlkeoitt 101-class object detectors has
a recognition rate only aroungb — 60% [36] and requires huge amount of training data, and

hence these type of object recognition approaches havesimhdifficulties. Some systems build
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specialized video object detectors by using labeled dateio an object detector and then track
its trajectory or exploit prior knowledge of the color dibtrtion of the target, such as the human
skin color distribution [48][49]. Some require track imiization (initial position of the target) and

target appearance initialization [50] [51]. These appheacare not intended for object discovery,

since they require prior knowledge of the appearance otipnsif objects.

As mentioned earlier, our approach works well on small dbkjetlow resolution video, where
the object of interest sometimes has as few as a single éeptint out of over fifty background
feature points. This is in contrast to methods that explaitla set of textures of the foreground
object [52][53] [54].

In [55], a spatial scan statistic is applied to detect chssiteepidemiological and brain imaging
data. In [56], the challenge is to find sets of points that confto a given underlying model from
within a dense, noisy set of observations. As in many spdagh mining methods [57], these
methods focus on point patterns where the ‘density’ of thetpa@onveys information. In our data,
different appearance features are extracted from diftereage patches, and hence not only the

density but also the identity of each atomic unit plays a nolebject discovery.

Recently, topic models [6] have been applied to unsupealviggect discovery in images
[4][5][58][13] and videos [31][7]. We follow the approacHi [81] and present applications includ-
ing video segmentation and threading. In the image domainhawve an appearance model and
a spatial model of patches. In the temporal domain, we usetmmand data association model
that is tightly coupled with the appearance and spatial ididas framework yields a principled
and efficient object discovery method where appearancaiistisimultaneously with motion in a
completely unsupervised manner. The appearance modalr#scior appearance variations and
background clutter; the motion and data association moc=uats for the randomness in the
presence/absence of features due to appearance measuneisen The features we use are sim-
ple spatial features demonstrating the generality of ostesy; more sophisticated spatial-temporal

features [59][60] could certainly be used as well.

In Section 6.3, we will introduce the DISCOV framework. Wdlstart from the image repre-
sentation, which uses generic region detectors and desip/Ne then introduce the appearance
and motion models, which provide an unsupervised methodifmovering the object of interest
in video sequences. In Section 6.4, we present experimezgalts and also present applications

of video object discovery for video segmentation and thiregad
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6.3 The DISCQV framework

6.3.1 Representation of images

Visual words, or textons, are used as atomic units in our @ragresentation. They were used in
various applications, such as photometric stereo [61kathjecognition [62], image retrieval [5],

etc. Next we will discuss in detail how to generate visualdgor

Figure 6.1: Maximally Stable Extremal Regions (MSERS). tLgfosition of MSERs. Middle:
coverage of MSERs. Right: Output of DISCQV, showing the o&ced object regions.

First, we find a number of patches to generate the visual wioods These patches are deter-
mined by running the Maximally Stable Extremal Regions (NR3Bperator [63]. Examples are
shown in Figure 6.1. MSERs are the parts of an image wherédocdrast is high. This operator
is general enough to work on a wide range of different scendsoljects and is commonly used
in stereo matching, object recognition, image retriev, as mentioned earlier. Other operators
could also be used; see [1] for a collection. Features aredkigacted from these MSERSs by Scale
Invariant Feature Transform (SIFT) [2], yielding128 dimensional local feature descriptor for
each MSER. Whether or not to use color information is largglglication dependent. If the data

mining task is to discover all instances of a specific objategory, such as all cars in a video, then
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color information should not be used because the color califieeent across different instances of
the same category. On the other hand, if the data mining $askdiscover a single object instance,
then color information provides good discrimination agaiother objects in the video. Color in-

formation can also be useful when shape and grayscale ¢eatarnot discriminative enough. In

this work we extract MSERs and SIFT descriptors from gragsaaages; patches and features
extracted from color images [3] can easily be used instead.

The128 dimensional SIFT descriptors are collected from all image$vector quantized using
k-means clustering [64]. The resulting cluster centers (we usé = 50) form the dictionary
of visual words,{w,...,w;}. Each MSER can then be represented by its closest visual. word
MSERSs are now represented by discrete visual words insteamhtnuous SIFT descriptors. Note
that acquisition of visual words does not require any ladbelata, which shows the unsupervised

nature of this system.

6.3.2 Appearance and spatial modeling

Denote the image frames Hyl1, ..., dy} and define hidden variables(k) indicating if thei"
MSER in framed,, originates from the object of interest or otherwise. We vdfer to the MSERs
that do not belong to the object of interest as backgrounyidliogter. { z; (k) } are hidden variables;
it is our goal to infer their values. Define the conditionablpabilities P(z|d) and P(w|z) for each
MSER as follows:P(z = zuj|d = d;) indicates in framel; how likely a MSER originates from
the object of interestP(z = z,4|d = d;) is defined likewise P(w = wj|z = z4,) indicates how
likely a MSER originated from the object of interest has agpace corresponding to visual word
wj; P(w = wj|z = z,) is defined likewise.

Denote the position of thé" MSER in framed,, asr;(k), and its hidden variable ag(k), i =
1,...,mg. The index; are sometimes dropped to avoid cluttering equations. Dafinmage-word-
position co-occurrence tablg(d, w, r), with n(d;, w;, r;(k)) denoting the number of occurrences
of word w; at positionr;(k) in frame d;, where|d;| denotes the number of words in franig
In other words,n(d;, w;,r;(k)) = 1 if in frame d; there is a wordw; at positionr;(k), and
n(d;, wj,r;(k)) = 0 otherwise.

We introduce the spatial distributiopgr|d, z.;) andp(r|d, z,4). They describe how the ob-
ject of interest and the background clutter are spatiakyrithuted in the image. The dependence

of positionr on framed allows the object to have different locations and scalesvaryeframe.
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Allowing different locations and scales in different frasrie desirable, as it provides the basis for
translation and scale invariance. This concept has beahhyséhe Semantic-Shift algorithm in
[13]. However, in the next section we will constrain the @bjposition to follow a motion model.
Another important distinction with [13] is that, while in3]a foreground topic identificatiostep
is required to correctly identify the hidden variable thatresponds to the object of interest, we
found this step unnecessary. The foreground, i.e., thebbjfenterest, can be automatically iden-
tified due to the un-symmetric nature of the distributips|d, z.,;) andp(r|d, z, ).

Assume the object of interest is located at image coordinatigh horizontal and vertical scale
o5, andg,. These estimates are related to the motion model to be eldfaithe next section. The
spatial distribution of the object of interest is defined as:

1
(r—8)TS"(r — )+ ky

p(I‘|d, Zobj) = ko (61)

whereY is a diagonal matrix with elemenﬁgf andé? which are related to the scale of the object.
The values of? andé? are unknown and yet to be estimated. Before we detail theneiex es-
timation procedure in Section 6.3.4, it is worth mentionihgt the parameters of the appearance,
spatial, and motion model (in Section 6.3.3) are estimateshiiterative manner, and it does not
matter which of the models is initialized first. The use of tegularization constant; (we use

k1 = 1) avoids numerical issues whén— i)7>~!(r — ) approaches zero. The spatial distribu-
tion is a probability mass function and the constianis used to ensure its mass adds up to one.
This is achieved by summing up — #)” S~ (r — #) + k; over all MSERs; in framed.

The spatial distribution of the background clutter is siyjngéfined as a uniform distribution.
We found empirically our distributions perform better thizose in [13], one reason being that
their background spatial distribution requires paramaiaing, which is often difficult and data
dependent.

Our probabilistic model that combines appearance, logaticale, and motion information is

expressed by this joint probability distribution:
p(d,w, z,r) = p(r|d, z) P(w|2) P(z|d) P(d) (6.2)

and it postulates the conditional independencéd ahdw given z, and hence provides a compact
representation of the joint probability. It also providelasis for efficiently finding the maximum
likelihood estimates of the unknown appearance mogéis|z), P(z|d), 67 and&2, which we

will detail later in Section 6.3.4.
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6.3.3 Motion modeling

Motion modeling provides the location and scale estimaies, and s, used in the spatial dis-
tribution in (6.1). Define the statg k) as the unknown position and velocity of the object to be
discovered, wherg is the video frame index. We assume a constant velocity matiodel in the
plane and the state evolves according(o+ 1) = Fs(k) + v(k) , whereF is the state matrix and
the process noise sequendg:) is white Gaussian with mean zero and constant covariancgéxmat
[65].

Suppose at timg there are a number af;, observations. Each observatioiik) is the position
of an MSER. If an observatiory (k) originates from the foreground object, then it can be exgaes
asr;(k) = Hs(k) +w;(k), whereH is the output matrix [65], and the observation noise seqeienc
w; (k) is assumed white Gaussian with mean zero and constant aoeanmatrix. We do not build
a motion model for the background clutter.

We want to establish the relationship between the obsenstind the states. Since we do not
know beforehand if an observation is originated from thezobpf interest or from the background
clutter, we have a data association problem [65]. The Piitidtat Data Association (PDA) filter
[65] solves the data association problem by assigning ebsargation an association probability,
which specifies by how much the observation deviates fronmtbdel’s prediction. In the original
PDA filter, the association probabilities are calculateddohon deviation of observations from
the predicted states, where the states consists of onltigroaind velocity, and appearance is not
utilized. Here instead, we use the posterior probabjity,;|d, w,r) as association probability.
The posterior probability can be calculated as follows:

p(r|d; zon; ) P(w|zon; ) P(2obs|d)
;p(ﬂda z)P(w[z)P(z|d)

P(Zobjld, w,r) = (6.3)
It naturally includes location information (througlir|d, z.,;)) and appearance information (through
P(w|z7)). Then, the state estimate can be written as:

mg

S(k|k) =Y 8i(klk)p(zi(k)|di, w, v (k) (6.4)
=1

wheres; (k|k) is the updated state estimate conditioned on the event tfiatis originated from

the foreground object. This is given by the Kalman Filter][&$ follows:

8:(k|k) = 8(k|k — 1) + W(k)w;i (k) (6.5)
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wherev; (k) = r;(k) — £(k|k — 1) is the innovation§(k|k — 1) is the observation prediction, and
W (k) is the Kalman gain [65]. The state estimation equationslaesame as in the PDA filter
[65].

We estimater;,, anda,, as the interquartile range [66] of all MSERS, weighted byrthesterior
probability. In implementation, we duplicate points in iheage space according to the posterior
probability, and then compute the interquartile range eséhpoints. The interquartile range pro-

vides a more robust scale estimate [66] than the weightediatd deviation used in [13][31].

6.3.4 Maximum likelihood parameter estimation

The distributionsP(w|z), P(z|d), and P(d) of the appearance model are estimated using the

Expectation-Maximization (EM) algorithm [21], which maxizes the log-likelihood
£=3"3"5" n(dy, wy, vi(k) log p(d, wy, i (K)) (6.6)
k J 7

The EM algorithm consists of two steps: the E-step computegpbsterior probabilities for the

hidden variables; the M-step maximizes the expected camgega likelihood:

E —step:

p(zi(k)|dy, w;,ri(k))

= c1P(zi(k)|dg) P(w;|zi(k))p(ri(k)|2 (k), di) (6.7)

M — step :

P(wjlzi(k)) = 2 Y Y ngap(zi(k)ldy, wj, vi () (6.8)
k 7

P(zi(k)|dy) = c3 Y Y magap(zi()|dy, wj, wi () (6.9)
7 A

P(dp) =ca » Y i (6.10)

i 7
p(ri(k)|z(k),dy) updated according to Section 6.3.3 (6.11)

whereny,;; = n(dy, w;,r;(k)), andey, ..., ¢4 are normalization constants which have values so that

all functions are valid probability mass functions.
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We see that the spatial distributigrir;(k)|z;(k), d) is updated within each EM-iteration,
which means that the temporal information enters the Ekditen and influences the appearance

estimation.

6.3.5 Initialization

To handle the case where the object may disappear from tine scel re-enter the scene, we re-
initialize the motion model when the position of the objecgstimated to go out the scene, or when
the color histogram of the whole scene changes beyond arcéirtashold. This implementation is
particularly important for video sequences which are gabted, so that the camera view changes
between the object of interest and other objects.

The distributionsP (wj;|z), P(z|dy), andP(dy) are all initialized randomly. The spatial distri-
bution parameters are initialized at the center of the frartle scale equal to half the size of the

frame. The state estimagds initialized to the center of the frame and with zero veipci

6.4 Empirical study

The experiments are conducted on several real-world dédasealidate our framework. Seven
video sequences were downloaded from YouTube.com withut®o 320 x 240 and are sampled
at one frame per second. Practical internet video analysi®ms are expected to handle such
low frame rate videos in order to keep up to speed with theamstunt of available online videos
nowadays. We have tried downsampling the original videtzsvarious frame rates and found that
one frame per second is good enough to retain the contené wiolviding good computational
efficiency. Such low frame rate poses higher difficulty to sgstem, as object motion could be
large and appearance changes could be significant. Theatucdtthese videos range from 67 to
711 seconds, as shown in Table 6.1. In the video segmentateriment (Sec. 6.4.2), the fraction
of frames containing the object of interest ranges from ®1®.85, hence the videos represent a
variety of different shooting styles. The average duratibma shot ranges from 3 to 5 frames in
all videos except in BIKE. These videos hence contain a latgeber of shot transitions, posing
difficulty to methods based on motion. In the localizatiopesments (Sec. 6.4.4) we included
two extra videos that contain no shot transitions to demmatesthat our method works equally well

in such situation.
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In summary, these video sequences pose the following clogfe the object of interest can
have wild changes in appearances, including scale, poddjgiting variations; the background
can be highly cluttered and non-stationary; the object eand and re-enter the scene multiple

times, which may occur due to large camera motion or postrgddf the video sequence.

6.4.1 Baseline methods

Here we briefly describe the baseline methods.

Baseline-NM:

This is the Semantic-Shift algorithm in [13]. It is an objelcscovery method developed for image
collections. When we apply it on our video sequences, we traeh video as a collection of

images. Motion information is not used, hence we call it BaseNo Motion.

Baseline-NL:

This is the Probabilistic Latent Semantic Analysis aldoritin [6][4]. Similar to Baseline-NM, it
is an object discovery method for still images. Since onlyegpance information is used but not

the location of the image patches, we call it Baseline-Naoadltioo.

Baseline-FREQ: Frequent closed itemset mining

In the data mining literature, an itemset refers to a seteohd, which in our application refers to a
candidate set of regions that could represent an objectexeist. A frequent itemset is an itemset
that occurs at least a certain number of times, and hence likelg corresponds to an object of
interest. A recent data mining algorithm ‘CLOSET+' [67] dliwers frequent closed itemset, such
that for each discovered frequent itemset there exists persat of equal frequency. This helps
in reducing the final number of itemsets to be considered. A@SET+ algorithm requires the
minimum itemset frequency as an input parameter. Settiagriimimum frequency too small will
result in too many frequent closed itemsets, and many of tiéght not correspond to the object
of interest. Hence we start from the largest possible mininfitequency, which is equal to the
number of frames, and gradually decrease it untifrequent closed itemsets are found. We found

M = 10 to give the best results.
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Baseline-KM1: K-means clustering on image-word co-occugnce matrix

This approach assigns a feature vector to each frame, wierfedture vector is the histogram of
visual words. In [4] it was reported to perform worse thandiag-NL. The Euclidean distance is

used for computing the distance between feature vectors.

Baseline-KM2: K-means clustering on color histogram

This approach assigns a feature vector to each frame, wheredture vector is the RGB color
histogram of all pixels within the frame. We u$é regular bins for each color channel and con-
catenate the three histograms. The Chi-Square distanseds68]. We foundV = 10 to give the

best results.

6.4.2 Object-oriented video segmentation

Consider a video in which the camera is switching among a murabscenes. For example, in
the test drive scene in Fig.6.2, the camera switches bettveedriver, the frontal view of the
car, the side view, and so on. We would like to cluster the &aimto semantically meaningful
groups. In classical temporal segmentation methods, thisasity between two frames is assessed
using global image characteristics. For example, all pix@k used to build a color histogram
for each frame, and a distance measure such as the Chi-Sdjgtmece is used to measure the
similarity between two histograms [68]. K-means clustgror spectral clustering methods can
then be employed. This method is suitable for shot boundatgction [68], because when the
camera switches between shots, color information provadgsod indicator of scene transition.

However, using color information alone cannot provide objevel segmentation. This is
because the object of interest often occupies only a smdliopahe scene, and the global color
statistics are often dominated by background clutter. Alsing color alone cannot provide the
knowledge of ‘what’ makes the frames separated into diffegeoups.

Our DISCOV framework provides a natural way for object-ntézl clustering, and is also
able to point out ‘what’ is exactly the factor that separdtesframes. In Table 6.1, we compare
DISCOQV to five baseline methods. Each video sequence hasimhabject of interest, e.g., the
PEPSI and PEUGEOT1 sequences are commercial advertisewleate the object of interests are

the Pepsi logo and the Peugeot vehicle respectively, an8ENZ and PEUGEOT?2 sequences
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Baseline Baseline Baseline Baseline Baseline
Sequence # of Frames DISCOV NM NL FREQ  -KMI KM
BIKE 67 (24) 96.0%  88.0% 80.0% 32.0% 60.0% 52.0%
BENZ 711 (232) 64.0% 55.9% 57.2% 53.2% 51.8% 50.7%
PEPSI 181 (62) 73.6% 67.8% 69.0% 632% 69.0% 54.0%
PEUGEOT1 92 (15) 63.1% 74.3% 71.4% 51.4% 62.9% 54.3%
PEUGEOQOT2 273 (231) 68.9% 56.1% 57.6% 359% 67.0% 52.8%
Xeﬁztges — 67.9%  60.5% 61.0% 49.8%  58.5%  51.9%
v

Table 6.1: Video segmentation performance. Numbers implaesis indicate the number of frames

containing the object of interest. Detailed in Section®.4.

are test drive videos featuring a car, hence the object efésts in each video are naturally well
defined. The BIKE2 and HORSE sequences used later in thézatah experiment are not used
here because they did not contain transitions from one phjeanother. The frame rate is one
frame per second and the motion of both the object of intenedthe background are fast, making
it non-trivial to apply optical flow or layer extraction meiths for discovering objects. In addition,
all sequences frequently transition between differentsshibhe average duration of a shot ranges
from 3 to 5 frames, which is relatively short compared to tlkew length. This also demonstrates
the difficulty of using optical flow based methods. The grotmudh data labels the presence or
absence of the object of interest in each frame. We evalbateliject discovery performance as a

detection problem. The classification rates are shown iteTah.

DISCOQV ranks the images according Riz.;|d;) for all framesd;; same for Baseline-NM.
This has the interpretation of ranking the images accorttinjow likely it contains the object
of interest. Since a ranking is obtained, we report the iflegson rate at the point where the
false alarm rate equals the false reject rate. BaselineBdiseline-KM1 and Baseline-KM2 are
clustering methods and do not have knowledge of which alesteesponds to background clutter
and which cluster corresponds to the object of interest. Oeptite the classification rate for both
clusters in turn and report the result with the higher cfasgtion rate. Baseline-FREQ assigns
different number of frequent closed itemsets to each fraand,we rank the frames according to

how many frequent closed itemsets it contains inside.



68 6. UTILIZING TEMPORAL INFORMATION

Baseline-KM1 performs slightly worse than Baseline-NLisTis consistent with the report in
[4]. Baseline-NM has similar performance as Baseline-Nk. 8#0 see that global color informa-
tion provides little discriminative ability (Baseline-KRB) and performs the next to the worst. This
is due to the large color variations in the background duttdich dominates over the object of
interest. Baseline-FREQ has the lowest classification fidies shows that the number of frequent
closed itemsets in a frame is not a good indicator of the pisef the object of interest. DISCOV
outperforms all the others in four out of five experimentsthe PEUGEQOT1 sequence, the result
of DISCQV is worse than Baseline-NM and Baseline-NL becaigbe shooting style; the object
of interest appears at random locations with fast shotitians, hence the baseline methods that do
not model the motion perform better. Overall, DISCOV haslé&zeling performance in weighted

average classification rate, where the weighting comes frenmumber of frames.

6.4.3 Object-oriented threading

The capability of object-oriented video segmentation sstgyan application called “threading”,
where all occurrences of an object are linked together. ading is different from keyframe(s)
extraction [69]. The aim of keyframe extraction is to obtaiset of frames that covers all aspects
of a video sequence, yet these frames need not contain thetabjinterest. Our aim of object-
oriented threading is to obtain a set of frames that inclutesobject of interest, hence being
different from keyframe extraction. Whether threading eyfkame extraction is more useful is
application dependent; it is better to understand themfeesseit video summarization techniques.
Both methods attempt to cover the temporal domain whileatlirey focuses more on the object of
interest.

Our approach to threading is object-oriented. First, w& tha images according to how likely
they contain the object of interest (usiftfz.;|d;) as in Section 6.4.2). We put the top twenty
frames with the highest values into a candidate set. Singg/rmmong these twenty frames are
visually similar and hence redundant, we apply k-meandeling (withk = 5) using their RGB
color histograms as features and pick from each clustertaevith the highest value d?(z;|d;),
resulting in the five frames as shown in Fig. 6.3. Even thoighRepsi logo appears in only 87
out of 181 frames, each of the five candidate keyframes amnthie Pepsi logo. Likewise, the
Mercedes-Benz appears in only 278 out of 711 frames. The dindidate keyframes correspond
to the435'™", 468" 690", 694", and704!" frame in the BENZ video and ttg9*" 42" 55" 146",
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and179" frame in the PEPSI video, showing very little temporal rethncy (frames are sampled

at one frame per second).

Sequence Szli:l/i%n DISCOV Baseline-NM Baseline-NL
BIKE 69.2% 92.3% 1.33 92.3%  1.33 88.5% 1.28
HORSE 20.0% 65.0% 3.25 50.0% 2.50 50.0% 2.50
BIKE2 50.0% 96.6% 1.93 82.8% 1.66 74.1% 1.48
PEUGEOT1 100.0% 81.7% 0.82 77.9% 0.78 58.6% 0.59
PEUGEOT2 86.3% 71.7% 0.83 57.8% 0.67 59.6% 0.69
BENZ 55.7% 68.3% 1.23 65.7% 1.18 59.3% 1.06
PEPSI 14.9% 345% 2.32 31.2% 2.09 19.5% 1.31

Table 6.2: Localization performance. Detailed in Sectigh4

6.4.4 Object of interest localization

In order to see if the discovered objects truly corresporttidmbject of interest, here we evaluate
the localization performance. The ground truth data pewia bounding box around the object of
interest in each frame, and the frames that do not contaiohfeet of interest are not evaluated.
Each object discovery algorithm assigns to each MSER ar&tbpr ‘background’ label. Each
MSER has a center position. The average position and cowariaf all ‘object’ MSERS provides
a rough estimate of the object position, scale and shapet i&\fmiade if the estimated position and
scale matches well with the ground truth bounding box withicertain threshold. The reported
numbers shown in percentage are the hit rates averaged astevaleo sequence. It should be
noted that since occasionally some background clutterssigraed an ‘object’ label, these outliers
can move the average position of all ‘object’ MSERSs outslu hounding box, hence showing
lower hit rates.

Results are shown in Table 6.2. The trivial solution is a @ailgorithm: always return the
center of the frame as the position estimate of the objechiefrést. Since larger objects are
more likely covering the center position, the trivial sabut provides a sense of the difficulty of
each video sequence. The numbers next to the percentagestiasebetween the hit rate of the

algorithm and the trivial solution. The larger the bettet.cdn be seen that DISCQOV clearly
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outperforms Baseline-NM and Baseline-NL.

Figure 6.2: Samples of two video sequences from YouTube.c@ap two rows are 14 out of
711 samples of the BENZ sequence. Bottom two rows are 14 oli8bfsamples of the PEPSI

sequence. Images are displayed from left to right.

6.4.5 Computation speed

The computation time for DISCOV on a 100-frame video seqaémnaround 30 seconds for MSER
extraction and 80 seconds for running the EM algorithm. TKesligjorithm is written in MATLAB

and not intentionally optimized for speed.

6.5 Handling Multiple Objects

In the previous sections, we considered a model that asstmaesis at most one OOI per frame.
To deal with multiple objects, we consider a Sequential Mddarlo framework.

We use a particle filter to address the aforementioned prablef the original DISCOV pa-
per. We call it the unsupervised particle filter because xatamed in the Introduction section,
prior work on using particle filtering for tracking requiresiman intervention [70],[71],[72],[73]

or human labeled data [74], or has been using a simplifiecsbaptfilter [75].
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- ! ! - - LIGHT CRISP REFRESHING: ag |

Figure 6.3: Results of object-oriented threading (Sedib6€). Each frame in the top row contains

the black Mercedes vehicle; in the bottom row, each frameabas the PEPSI logo. This pro-
vides an object-oriented overview of the whole video seqgeaeén a different way than traditional

keyframe extraction.

Observations

Color Images |~::| Particle | ) Weighted »| Location Maps

Filter Ellipses

Posterior Maps E
: \>| Topic Distribution

| Appearance Distribution

Figure 6.4: Algorithm flowchart. Notice that while the loicat maps are estimated for each frame,

the topic and appearance distributions are shared actdssnaés.

6.5.1 Overview

Define the ‘posterior map’, or ‘P-Map’, as the ‘image’ thairsis the posterior probability zp;|d, w, )
of each pixel. The P-Map is updated according to (6.3). Mdtat some pixels can be covered by
more than one MSER patch. In that case, we assign the pixeldxenum value; some pixels can
be covered by none of the MSER patches. In that case, we dksigixel a close-to-zero posterior
probability (we used0~? in the experiments). Similarly, the ‘location map’, or L-platores the
probability p(r|d, zrc) of each pixel.

A region in the P-Map with high values indicates the potémtidgstence of a foreground object

at that location. But the P-Map can have spurious regionsiiegdialse positives or false negatives.
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The purpose of using the particle filter is to ‘clean up’ th&IBp. The cleaned-up P-Map becomes
the L-Map in the next EM iteration. Therefore, the clean-upcess is crucial to the performance of
video object discovery. The clean-up is based on the foligwgrior knowledge: first, that objects
tend to move in a smooth manner; second, that objects tereldpdiially clustered in space.

We use a particle filter for the clean-up process. Notice thatparticle filter replaces the
role of the PDA filter (a variation of the Kalman filter) in theiginal DISCOV framework. The
advantages of the particle filter over the PDA filter are: (1dain handle multiple objects, (2) it
can handle complex shapes, (3) it is inherently a multipleeltheses framework, and (4) it allows
us to use a non-linear observation model. While there egiter PDA-like filters such as the
JPDA filter [65] that can handle (1)-(3) as well, it is the fttuproperty that makes particle filters
especially suitable for our purpose.

The input to the particle filter includes the P-Map as welltas @riginal color image frames
(see Fig. 6.4), collectively denoted gs wherek is a frame index. As in the control and tracking

literature, we cally the observation to the particle filter.

6.5.2 Importance Sampling

We first briefly review the basics of Importance Sampling.

The expectation of a functiofi under the probability distributiop is as follows:

E,[f(x)] = / 7 f@)p(a)da (6.12)

Suppose we hav® particles, or random samples,, ...z, that are sampled from. Thenp can

be approximated as follows:
N
1 %
p(z) = NZ_;&(QC — ) (6.13)

Substituting the approximageinto E,[f(x)], we obtain

1N,
Eylf(2)) = 5 D _ ) (6.14)
i=1

Since sampling from is sometimes difficult, we consider another option heretelid of sampling
from p, we sampleV random samples;y, ...z, from another distributior, which is often called
the ‘proposal distribution’. Also define the particle wetigh, as follows:

w(z) = 22
@) =1 (6.15)



6.5. HANDLING MULTIPLE OBJECTS 73

It follows that £, f ()] can be computed as follows:

_ [ f@u@a@)ds 5 30 fae)w®

Ey[f ()] = : (6.16)
P [ w(z)g(z)dx + Zfil w(@)
which further simplifies to
o iy 0 )0
Eplf@)] =3 @) =y = 2 fa®) (6.17)
i=1 Zj:l w i=1
wherew® 2 w(2(?) and
(@)
@ _ " 6.18
v .
Zévzl w® ( :

Notice that in order to computel”) we only need to knowp(z) up to a multiplicative constant.

This fact is useful when exhaustively evaluating all pdgsdutcomes of(z) is intractable.

6.5.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods (also called parfittkrs) is an extension of Importance
Sampling. It consists of a two step recursion:
Predict:

p(@plyon_1) = / (e )p(@e1lyon_1)der (6.19)

and Update:

P(yrlzr)p(Tr|yor—1)
TElvor) = 6.20
Plzelyork) I p(ykler)p(@k|yor—1)dok (6:20)
Sequential Importance Resampling (SIR) is a popular SMQatetThe proposal distribution

is defined through this recursive equation:
q(zoklyor) = a(@olyo) [ | a(@rlzon—1, vour) (6.21)
k
If we replacep(z) with p(zo.k|yo.x) andg(x) with g(zo.x|yo.x) in the derivation of Importance

Sampling, we obtain:

() _ P(@gklyor) _ 1 Pk 21 )p(al))
RN RG] ’ Wor) (6.22)
a(@oplyor)  a(zoplvor) P(Yo:k
If we define . .

Q(x(()z;)k’yO:k)
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then o 0

i w 3 w* 1
o = Ha = (6.24)

Zj Wy, Zj wy,

and . | ‘
0 Poklzi)p(S)) p(yo:mréi})
wk ' _ q(‘r(Z) |y01k) _ P(yo;k717df0ﬁk71)

= CRRWNC IR (6.25)

. o o
wily Pl ey g e vou)
(I(wo;k71 [Y0:x—1)

The v,(f) are called the normalized particle weights. Based on thelitonal independence as-
sumptions shown in the graphical model in Fig. 6.5, we have
p(yO:ka ‘T((]ZL)

R p(yel2l”, yr_1, 2 p(@P 2 ) (6.26)
p(yO:k—la ‘TO:k—l)

so that the un-normalized particle weights can be compw@earsively:

(@) (@) (@);,,.(9)
(i «(i p(yklwk 7yk—17$k_1)p(wk ’wk_l)
wk( = wk(—)l

(6.27)

Q(Z'S) ‘x(()z;)k_p yO:k)

Figure 6.5: Graphical model defining the conditional indefance assumptions.

In theory, we would sample from the proposal distribut@@mlxéfi_l,y&k), and obtain sam-
ples {;n,(j)}. Each sample is then weighted by four term@k|xfj),yk_1,xgll), p(:n,i“knfﬁl),
q(:n,(j)|:n((ﬁ3€_1,y0:k) and w,’z(_’)l before obtaining the un-normalized particle weigdqj(i). Notice
that each of these functions can be subject to an unknowriptizdtive factor without affecting

the value of the normalized particle weights.
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6.5.4 Proposal Distribution

A proper proposal distribution (also called theportance density76]) is essential for keeping
the particle filter effective. In practice, we want to use aaramount of particles for run-time
efficiency. Hence, distributing the particles effectivetythe state space is important. It has been
shown [77] that the optimal proposal distribution which immizes the variance of the particle
weight conditional upomréf%z_1 andyq.; has the form of;(xk\x,(ﬂl, Yk)-

Our approach is to build a proposal distribution from the Bp,?"“P, which is part of the
observationy,,. Different than all prior work in visual tracking, where tlobservation consists
only of the color image, our observation consists addiligraf the P-Map. The P-Map contains
information of the position and scale of the objects of iastr In this sense, mode (local maxima)
and scale seeking on the P-Map resembles the use of an objectat in [74]. However, mode
and scale seeking does not require labeled data or traifiagy abject detector, hence it fits in the

unsupervised object discovery framework.

Mode and scale seeking

Our approach of finding the mode and scale is to fit a mixture aigsians (MoG) (see [64] for
the EM algorithm we are using) to the P-Map, where the comapameter is the number of mix-
ture componentsk. In video object discovery of short video clips, such as tohet¥be videos
used in our experiments, the number of objects of intereahiideo are generally less than three.
Therefore, by controlling the value & over a reasonable range of values, we effectively impose
a prior knowledge on the number of objects of interest. Byntading multiple MoGs with dif-
ferent K values, we explicitly explain the possibilities of diffetenumbers of objects of interest
in each frame, and implicitly the possibilities of noise lie tP-Map, effectively maintaining mul-
tiple hypotheses over the number of objects of interesthéneixperiments, we us€ = 1,...,5.
In order to incorporate the prior knowledge on the numberméats of interest, an algorithm
that has direct control over the number of modes is prefeiweah algorithm that directly con-
trols the bandwidth of kernels (mixture components), sultha variable bandwidth mean-shift
[23],[78],[79],[80],[71].

Finding the optimal number of mixture components is a mod&tcion problem with rich
literature [81]. Even though greedy algorithms exist tratdhrunning time linear in the number of

data points and quadratic in the final number of mixture camepéts [82], in video object discovery,
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however, model selection becomes intractable: the numbebjects of interest can vary from
frame to frame, and hence if we jointly optimize over all fiesrin a video, the complexity is
exponential to the number of frames. Jointly optimizingroai frames is important, because the
number of objects of interest is strongly correlated acfi@saes.

Based on the prior knowledge on the number of objects ofasteand taking into account that
the P-Maps are noisy, we maintain multiple MoGs with difféareumber of mixture components
and collectall modes. I.e., instead of trying to determine the “correctiigaof X', we make use of
multiple MoGs and don’t care about determining the optimahber of mixture components. In
the experiments, we use diagonal MoGs &he- 1, ..., 6. Notice that thei values do not need to
be contiguous, nor do they have to start from one. Alterebtivone could use Variational Bayes

techniques [83] to estimate the mixture model.

Parts-based representation

The Gaussians collected from the MoG¢s)lectivelyrepresent the potential spatial positions of
the objects of interest. Notice that multiple Gaussians oudigctively describe a single object of
interest. The mixture model is therefore suitable for modetomplicated shapes and articulated
objects. This is similar in spirit to the ‘multi-ellipsoigepresentation in [84], where body parts are
collectively modeled by multiple ellipsoids.

To fine tune the scale of each potential object part, the atandeviations in the horizontal
and vertical axes are multiplied by a scaling factor for e@elussian. In practice, we use a set of
scaling factors = {0.75, 1, 2}, with the hope that one of the scaling factors will approdehttue
size of the object part.

After the position and scale estimates of each potentiaablgjart are obtained, each potential
object part is equivalent to an ellipse. We can estimate dlhacity of each ellipse as follows. First
we obtain the correspondence between ellipses in neigitbframes. In the tracking literature,
this is called the data association problem [65]. The néargighbor strategy [65] associates
ellipses in the current frame with the closest one in the iptsvframe. This simple strategy
keeps the number of associations at a minimum but is moreepgmerrors. We adopt a multiple
hypotheses strategy [65] where each ellipses is associatiedll ellipses in the previous frame.
For each association, we compute the estimated velocitypweyg subtracting the horizontal and

vertical positions of the ellipse in the previous frame fribra current frame. Each particle is now
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represented by the position, scale, and velocity as follows

(4)

(@) @), scale,”, scalez(f) , Uelﬁf) , Uelf)i) \ (6.28)

() = (pos),’, pos,
where the subscriptd and v denote horizontal and vertical coordinates, and the framdexk
being dropped for clarity. Since each ellipse is associatitil all ellipses in the previous frame,
the number of particles is the squared number of ellipsesceSihe first frame does not have a
previous frame, particles in the first frame are initializeith zero velocity and properly replicated
such that the number of particles is constant in all frames.

In summary, we use multiple MoGs to deterministically estienthe position and scale of
potential object parts from the P-Mag}™“?. As a comparison, the MoG (and its approximation
by a kernel density function) has been used in the partidierifig literature in fundamentally
different ways: to model the particle filter's posterior tdlsution in [85], or to model both the
posterior distribution and the likelihood function in [8&jd [71].

Unsupervised proposal distribution

The proposal distribution has the following form:

N
sl ) = = D by — ) (6.29)
i=1
where N is the number of particles, particle{s:g) }& | are obtained as described in the previous
section, and(xy, — xl(f)) denotes the Dirac-delta mass Iocated:,(cé?t

The proposal distribution has two important features: ,fttst proposal distribution is a func-
tion of the observation (noticing that particles are estedabased on the P-Map); second, and
more importantly, the proposal distribution does not ralyhoman labeled data. While these two
features have been individually presented before, theg haver been shown together.

The first feature was neglected by the CONDENSATION algoniffi0], which is a popular
particle filter algorithm due to its simplicity (for examplg’5] and [86]). The proposal distribu-
tion is chosen as the dynamic model (also called the pridribiigion [76]), p(x|2\"” ,), which
omits the observationy;, from the optimal distributionq(mk|m,(jzl, yx). Equation (6.27) for com-
puting the particle weights then greatly simplifies, as tbmimator and denominator cancel each

other out. The simplification comes at a price, because byrign the observation, the proposal
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distribution could generate few or zero particles arouradtthe state, which would result in poor
performance [76].

The second feature was neglected by the Boosted Partitde ], which uses an Adaboost
object detector to detect hockey players and thereby dgfimiproposal distribution. Similarly,
the color-based tracker in [86] detects regions of skinrcdhkince the observations (in their case,
the original color image frames) are taken into account & gloposal distribution, the afore-
mentioned problem of CONDENSATION is resolved. Howeveiirting an object detector or skin
color model requires human labeled data, hence the appi®achsuitable for unsupervised learn-
ing. On the other hand, while the work in [75] learns the fooegd and background models by
background subtraction and hence does not require humalethtata, its particle filter is based
on CONDENSATION and hence neglects the first feature.

Even though there is a vast literature addressing the twarkesindividually, there is no work
that has addressed them simultaneously. We call (6.29)utsupervised’ proposal distribution

due to the second feature.

6.5.5 Dynamic Model
The dynamic model is a linear equation,
T = Aw,(jzl + €x (6.30)

whereey, is a Gaussian noise vector with zero mean and standardideviat= (o7, o, ogeale, gseale gvel gueh)T

and
1 00010
01 0 0 01
001 00O
A= (6.31)
00 01 00
00 0O0T1O0
00 0 001

i.e., assuming constant velocity and constant scale.

For a pair of ellipses in frame—1 and framen, one can compute the probability

larley) ) = N (wg — Az |0, diag(c)) (6.32)
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wherediag(o) is the covariance matrix formed by the diagonal elementsrtdiom theos vector
and zeros elsewhere. We use= (1,1,10,10,0.1,0.1). The scale parameter is given relatively

larger freedom to change to accommodate abrupt changezeiimsieal video datasets.

6.5.6 Observation Model

The likelihood function in (6.27) is defined as
p(yk]w,(j),yk_l, xl(ﬁl) x exp{Aplog Lp + A¢log L¢} (6.33)

which consists of the P-MAP likelihood functidnr and the color likelihood functioi.,. We use

Ap = A\¢ = 1074 in the experiments.

P-Map likelihood

The P-Map (log-)likelihood captures the intuition that fystem prefers image regions with higher
posterior probability being covered by candidate ellipsestead of lower ones being covered. A
naive implementation would be
1 &
log Lp(y"™, x;) = i Z(yfmap —0.5) (6.34)
J
wherej is an index over the pixels covered by ellipsg and 4; is the area of:;. However, for
candidate ellipses on the P-Map where the center has thestigiosterior value and gradually
decreasing values on the sides, this would encourage edlifigt degenerate to a point (that is

the mode). A corrected version of the above equation wouhdéencourage larger ellipses is as

follows:
1 Ai Bi
log Lp(y"™ ™, 2:) = = (3 (""" = 0.5) = > (5" = 0.5)) (6.35)
7 P, 3

wherek indexes the set of pixels on a band of finite width along thendawy of ellipser;, and

B; is the number of such pixels, aidd = A; + B;. In the experiments, we noticed that using a
boundary with width of 1, 2, or even 3 pixels would signifidgritnprove the performance over
0, which reduces to (6.34). We use a width of two pixel. Todyetinderstand (6.35), consider
the example shown in Fig. 6.6: suppose the P-M&Pp*? has value 1 (shown as white) inside a
circular region, and value 0 (shown as gray) outside. Supp@shave a set of two circular-shaped

candidate ellipses, the inner one shown with round dotteliheuand the outer one shown with
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dashed outline. While (6.34) would assign equal likelihtmthese two candidate ellipses, (6.35)
would assign a larger likelihood to the outer ellipse, whaglctly covers the white area.

Figure 6.6: lllustration for the definition of P-Map likebbd.

Color likelihood

The color likelihood term is based on the (1) object attoactnd (2) background exclusion prin-
ciples [86],[84]:

log Lo (yk, 2, g1, 2 ) = B 0D ) — B ) (6.36)
—_—
(1) (2

where the first term favors the histogram similarity betwtreni™ ellipse in the current framéz,,(f'),
and in the previous framéz,,(ﬁl. The second term favors the difference in an ellipse’s appea
from the background. The background color histogramses image pixels that are not covered
by any of the ellipses. The similarity is based on the Bhatagya coefficient,B(h,, hy) =
> Vha(3)hs (7). We use 10 histogram bins for each of the R, G, and B color aiann

6.6 Experiments

6.6.1 Synthetic Data Experiment-1

In this experiment, we want to demonstrate the capabilitthefparticle filter within a single EM
iteration, given synthetic observation data. The dataistmef 8 frames of P-Maps and color
image frames, simulating a single object moving in cludebackground. In thé™ frame, we
added structural noise simulating background clutter. Sthectural noise is represented by high
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posterior probability in the P-Map. The goal is to show thHa particle filter is robust to the
structural clutter.

The data is shown in Fig. 6.17. In the first column of Fig. 6\4& see that the color of both the
object and the background are contaminated by noise. Ireteng column, the top figure shows
the P-Map, and the bottom figure shows the L-Map, which is titewd of the patrticle filter. We
can see from the L-Map that despite the color noise and stalatlutter, the particle filter tracks
the target throughout the video. The computation time i5 8donds per frame using MATLAB

on a Intel Core2 Duo 3GHz machine.

6.6.2 Synthetic Data Experiment-2

The second experiment has the same setup as the previousxorpf that there are two objects
instead of one. In thé!" frame, instead of adding structured clutter, we let one efdhjects
disappear, simulating occlusion, and then re-appear indé. The goal is to show that the particle
filter is robust to occlusion.

The data is shown in Fig. 6.18. In the first column, we see ti@toblor is again contaminated
by noise. In the bottom figures of the second and third row, aresee that the particle filter can

quickly recover from occlusion.

6.6.3 Synthetic Data Experiment-3

The previous two experiments demonstrated the particte’§iltitility within a single EM iteration.
In this experiment, we run the whole DISCOV framework withE2d iterations, and the P-Maps
are automatically generated according to the DISCQV fraomkewT here are ten visual words. Two
objects are moving in linear motion as in Experiment 2 with $ame number of frames. The goal
is to illustrate that the particle filter is more suitable fiois task than the PDA filter in the original
DISCOV framework, because it can handle naturally handlkiphei objects.

We sampled 320 visual words for each frame from the generdistribution shown in Fig. 6.7
with a foreground topic distributio®(zr¢|d) = 0.5, and obtain the underlying histogram, shown
in Fig. 6.7. Both the generative distribution and the undegd histogram are hidden, and the goal is
to estimate the underlying histogram. From Fig. 6.7 we sagttie particle filter-based DISCOV
produces appearance distributions that are far more sitoilthe underlying histogram than the
PDA filter-based DISCOV.
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Figure 6.7: Visual word distributions.

6.6.4 Real Data Experiments

We collected 94 videos frommwwv. yout ube. com This data will be made available online.
Videos are converted to images in PNG format at a rate of 2dsgper second. To measure quan-
titative performance, we collected ground truth data inftllewing way: three persons without
knowledge of our system were asked to draw bounding boxesricgvthe objects of their interest.
Examples are shown in Fig. 6.8. We did not instruct the hurabgelérs an upper or lower bound
on the number of objects of interest, hence the number vemiesach video, but in all videos the
number of objects of interest is less than four.

We first use the mean-squared error (MSE) as performanceuneeaghich measures the dis-

crepancy between the human labeled bounding box and thensygtnerated P-Map for each
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Figure 6.8: Sample frames containing one object of intdtep), and multiple objects of interest

(middle and bottom). From left to right: original data, ®mstgenerated output, human labeling.

frame, as illustrated in Fig. 6.9. In Fig. 6.10, on the lefg show the mean-squared error averaged
over all frames for each video, then averaged again oveidabg; on the right, we show the mean-
squared error averaged directly over all frames from ake&l The purpose is to see whether the
results are biased by a subset of videos with more frames. ed/¢hat the two charts have very
similar results.

From the charts in Fig. 6.9 we see that the proposed DISCOwdreork with particle filtering
performs better than the original DISCQOV framework, and harmperformance is still the best. All

results are evaluated against the ground truth labels femsop 1. The human performance is mea-

Human Machine

e MSE =0.09

Figure 6.9: Mean-squared error of a single frame.
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suring the labeling of person 2 against the labeling of pedsoWe also see that the PLSA model
[4][6] shown by the ‘No Location’ bar performs the worst. We dot compare further with other
data mining techniques such as the frequent closed itenia@igri67], clustering on the image-
visual word co-occurrence matrix [87], or a straightfordvatustering on color histograms [87],
because the original DISCOV framework in [87] has alreadyalestrated superior performance

to those techniques.

Average Average
over 94 videos over 9074 frames

No Location
0.25 ) 0.25
Gaussian Model

020 Non-Gaussian

0.20

w 0.15 . Human |(_})J 0.15
g 0.10 = 0.0
0.05 0.05

0 0

Figure 6.10: Mean-squared error over all videos and all @am

To gain some understanding of the performance over ind@lidideos, we show in Fig. 6.11
the results of the first ten videos in our dataset. The prapBd8COV framework performs better
than the original DISCOV framework in general, with the extien of video number 6, 8, and
10. The reason can be explained by Fig. 6.9, which shows aefiarmideo number 6. In this
video, both persons labeled the vehicle as the only objeicttefest throughout the video. In this
case, the shape of the vehicle is well approximated by a @aysnd hence the original DISCOV
framework fits the data extremely well. On the other handptrécle filter is relatively more prone
to data overfitting. However, as seen in video number 8 andvh@re also only a single object
of interest exists throughout the video, the performanct@fproposed DISCOV framework can

approach the original DISCOV framework very closely, atitElidata overfitting occurs.

In Fig. 6.11 we see an anomaly where video number 1 has bedtearmance achieved by
the machine than by human. The reason is that person 1 anshp2rsometimes placed labels
differently, as shown in Fig. 6.12, hence the high mean+sglarror.

In addition to the mean-squared error, we show in Fig. 6.&3pttecision-recall (PR) curve.
Since the P-Map consists of probabilities for each pixelvdnying a threshold value on the P-Map
we can classify pixels in each frame into those that belorgntobject of interest and those that

do not. The precision is the number of pixels in all frames #na correctly classified as belonging
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Figure 6.11: Mean-squared error over first ten videos.

Figure 6.12: Different people have different concepts géatof interest.

to an object of interest divided by the total number of pixelall frames labeled as belonging to
the object of interest. The recall is the number of pixeldliframes that are correctly classified as
belonging to an object of interest divided by the total numidepixels in all frames that actually

belong to the object of interest. The PR curve is shown inhivd tolumn of Fig. 6.13.

Some frames are more suitable for evaluation purpose tleothiers; let us call them the good
frames. One way to select good frames is to select the onethéhlauman labelers agree with each
other on their labeling. We use the F-measure as similarigsuare, which is the harmonic mean of
precision and recall. The precision and recall values amgeted for each frame based on whether
each pixel is labeled the same or not. After ranking all frafm&sed on the F-measure, we selected
three sets of frames: the first set consists of thelp ranked frames, the 2nd subset consists of
the top50% ranked frames, and the 3rd set consists of all frames. Ubisptthree sets of frames,

we then evaluated the machine performance. This way of atimfimachine performance takes
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into account the consistency of human labelers.
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Figure 6.13: Precision-recall curves.

In Fig. 6.14, we show the MSE again, this time using the “\gtiresult of the three human
labelers. The voting result is obtained as follows: for epdtel, if most human consider it as
object of interest, then labeled it as so; otherwise, thelpslabeled as background. Using the

voting result, we again see that the non-Gaussian appraatbrms the best.

Average Average
over 94 videos over 9074 frames
. No Location
0.25 ) 0.25
Baseline Model
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Figure 6.14: Mean-squared error over all videos and all &am

The EM-algorithm is used both in the construction of the &isuord dictionaries and in up-
dating the location map, appearance distribution, and tdigiribution (Fig. 6.4). It is well known
that the EM-algorithm is sensitive to initialization andstdifficulty escaping local extrema [81].
Here we want to see whether this causes different perforesairc different runs. We ran the
whole system repeatedly for 50 times with random parameiialization and recorded the mean-

squared error at each run. In Fig. 6.15 we see that the MSHttiawériation over different runs,
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demonstrating that the overall system is stable enoughowmide consistent results.
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Figure 6.15: System stability/sensitivity to random mlitzations.

In Fig. 6.16 we study the effect of the visual word dictionaize on the overall performance.
We vary the dictionary size from 10 to 5000 and record theaay@MSE over all videos. The MSE
gradually decreases and then increases, showing that tineabplictionary size is around 100 to

1000. Within this range, the performance is relatively msseve to the visual word dictionary size.
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Figure 6.16: Effect of dictionary size on mean-squaredrerro
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Figure 6.17: Frames 1, 3, 5, 7 shown in rows. Middle and righiron: different levels of noise.
Top: posterior distribution. Bottom: location distriboti after particle filtering. System is robust

to noise and clutter (in frame 5).

6.7 Conclusion

The video data mining and ‘object-oriented’ nature of ouprapch provides promising new di-
rections for video content analysis. At present, DISCOWarbvides a rough position estimate
of the object of interest. For keyframe extraction or videgraentation this might suffice, but in
some other areas such as high quality editing it might be tef@st to obtain a clearer contour
segmentation of the image pixels. This might require sajghited feature detectors in addition
to MSERs. We are also investigating applications in spa@dh mining tasks where traditionally
only the density of feature points were considered, wheld&@€OV is able to handle atomic units

with different appearances and thus different identities.
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Figure 6.18: Frames 1, 3, 5, 7 shown in rows. Middle and rigiiron: different levels of noise.
Top: posterior distribution. Bottom: location distriboti after particle filtering. System is robust

to noise and occlusion (in frame 5).
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Chapter 7

Object-Oriented Retrieval

State-of-the-art video retrieval methods use global insgtstics to provide low level descriptors

or use object recognizers to provide high level featuresndgJglobal image statistics can be hin-
dered by lack of explicitly characterizing the object ofeirgst hence prone to retrieving irrelevant
results, while using object recognizers can suffer fromirfgavo train a large number of object

recognizers for different types of objects.

We present a novel framework for content based video retrieWe use an unsupervised
learning method to automatically discover and locate theablof interest in a video clip. This un-
supervised learning algorithm alleviates the need foniingi a large number of object recognizers.
Regional image characteristics are extracted from thecbbjanterest to form a set of descriptors
for each video. A novel ensemble-based matching algoritmpares the similarity between two
videos based on the set of descriptors each video contaideod/containing large pose, size, and

lighting variations are used to validate our approach.

7.1 Introduction

We present a method for estimating the similarity betweenideos based on tlabject of interest
each video contains. Our method automatically extract®lipect of interest without resorting to
any object recognition.

Why do we want to avoid object recognition? Because ther® isunrent algorithm that can
handle the large number of objects a human can recognizéo meéntion its performance for the

objects it is trained to recognize. This poses a problem ifbeo/retrieval researchers: should we
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wait until the perfect object recognition system is devebbpo that we can perform video retrieval?

Instead of recognizing the object of interest, which is rofiee most important factor for re-
trieving similar videos, researchers instead have beeguher less important visual factors such
as the global color and texture of each frame. This works ifvélis the global property that the
user cares about; for example, to distinguish greenishtopside videos from bluish ocean-side
videos. However, if it is the object of interest the user saeout, global information can be unre-
liable because the object of interest often occupies ontgallgproportion of pixels in a frame and
cannot be captured by global image statistics. In Fig.&ftjLglobal image statistics capture the
mountain scene and ocean scene and hence relate the foos Vidgzontally. It cannot find out
that the top and bottom videos contain the same type of object

Our framework discovers the object of interest in each vidhemg gliders on the left and bears
on the right), thus being able to relate the videos verticadl in Fig.7.1(Right). More precisely,
once the object of interest is discovered and located imiceitames, we use a set of local features
extracted from the object of interest to represent a videstead of using global features. Video
matching and retrieval involves the ranking of databaseaosdaccording to their similarity to the
query video, where each video can be represented as a setwfferectors. We propose a novel
similarity function that operates on a pair of sets of featuectors. Distinguished from previ-
ous methods, the proposed similarity function also incafes statistics from the video database.
We compare our similarity function with the state of the artl ahow promising results both in

performance and in computation cost.

7.2 Background

Most work in literature on content-based video retrievdieszon global features such as color,
texture, or edge descriptors; for example [88]. The use gifidni level features to facilitate video
retrieval has become popular in TRECVID [89], see exampl[$d], where features such as the
presence of faces and cars are used. However, reliablycergahese high level features is very
difficult even with state-of-the-art object recognizerg][@nd, more importantly, it constrains the
applicability of video retrieval to scenes containing apanited number of specific object types.

Our approach of automatically locating the object of interdoes not require trained object

recognizers. It is general and can handle different typesbjgcts. There are many ways of
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Traditional: using global image statistics Proposedate the object of interest

Figure 7.1: One frame from each of the four videos is showe. S. 1 for details.

extracting the object of interest. Our approach differsfisaliency-based methods [93], since our
method focuses on consistency across multiple framesahstecolor or shape saliency in a single
image. Our work is related to unsupervised learning metliodsgiscovering objects in images

[58][5][4] and videos [31]. In [43][94], the correspondencf distinctive feature patches are found
across frames and grouped. Our approach also uses disgitextured patches, but we do not
explicitly compute the correspondences across framesshadan be computationally expensive.
Our method differs from the ‘Video Google’ work [51] since we not rely on a user to manually

outline the object of interest to facilitate video retrieva

Video retrieval involves computing the similarity betwegdeos. Ensemble matching methods
[95][96] [97] can be used to compare a set of samples to angtteof samples, where here a
sample is a feature vector representing the object of istténea particular frame. However, in
video retrieval the problem is not only to match two videosdigo to rank the whole database of
videos. Hence a better method should take into account afistits of the whole database while
performing video to video matching. In other words, the anitly function should be a function of
not only the two videos to be compared, but also the rest ofittems in the database. In Sec.7.3 we
present a novel similarity function that has this propeFtye concept of utilizing database statistics
for image retrieval has been exploited in [98], but theredswmited to comparing a feature vector
to a feature vector instead of a set of feature vectors toaf $eature vectors. Besides, the method

there only applies to binary feature vectors.
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Figure 7.2: Sample frames showing the result of extractiagpbject of interest. We can handle oc-
clusions, disappearance (top left video), non-rigid mogtop right and bottom left), size variations
(bottom right video), and different types of objects. Thisachieved without using single-frame
color saliency methods or object recognizers. Good framesofding toP(z4|d)) will be used to

extract features from.

In Sec??we introduce a framework for localizing the object of in&ran a video. Once the
object of interest is localized, local features are exé@and compared across videos using the
similarity function introduced in Sec.7.3. In Sec.8.5 wewlexperimental results and conclude
with Sec.7.5.

7.2.1 OOl bounding box

The estimated spatial distributigrir|z,, d) tells us the location of the OOl and also provides an
estimate of the size of OOI. As shown in Fig.7.2, a boundingdround the OOl is used to specify
the region from which we will extract features for video ntatg. We use a bounding box with
size that is twice the standard deviation of the Gaussianilmiton p(r|z4,d). The choice of
using a bounding box versus an elliptical region for featxtraction does not yield significant

difference in results.

In the Experiments section we will detail the features weasttfrom within a bounding box.
As mentioned earlier, our framework allows the OOI to disspor become occluded in some
frames. This can be detected by observing the valyg of|d). Frames in which the OOI disap-
pear or being heavily occluded should be excluded from featutraction. We will detail in the

Experiments section how to determine which frames to eixteatures from.
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7.3 Video matching

We use{V} to denote the database of videos &do denote a query video. We represent the
i" video V' by a set of feature vectory/’ = {vj,...,vi }, whereK; is the number of frames
we extract features from. Each feature veatpthas dimension/, i.e.,vi, = [vi,,...,vi,]". The
features we use are histogram features, i.e., the featlueszé{j are normalized or un-normalized
counts of physical properties such as color or texture widn image subregion. Similarly, the
query videoQ consists off feature vectorsQ = {qs, ..., qs }, each vector also with dimensioh
Note that the number of feature vectors are generally @iffefor each video.

Next we will discuss how to calculate the similarity betwetie query videoQ and any
database vided’. This similarity will be used in a query by example task, whail database

videos are ranked according to their similarity to the quedgo.

7.3.1 Sample-mean matching

A naive way to compute the similarity betwe@nandV is to average the feature vectors witlgn
andV separately and then use any standard similarity measuke&ors. However, information
is lost during the averaging process. We call this approanipte-mean matching. A more sophis-
ticated way is to fit the set of feature vectordrandV separately with a probability distribution,
and then measuring the similarity between the two distidingt Yet another method is to perform

ensemble matching, as we will detail in the next section.

7.3.2 Ensemble-based matching

Ensemble matching methods [95][96] [97] generally consitie task of obtaining a similarity
function which operates on pairs of sets of feature vectgpags ofensemblesEnsemble match-
ing provides a natural way to calculate the similarity betm® andV when a video is considered
as an ensemble. The kernel principal angle [96] is the arejleden the principal subspaces of two
matrices, each matrix composed of feature vectors as caludva will use it as a baseline method
in the experiments.

Proposed methodOur method differs in that we take into account the staisticthe database
from which the ensembles are drawn. In other words, our E@gpaimilarity function is a function

of threeterms: Q, V, and{V}. This idea of taking into account the database statistisgrgar
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to the work in [98].

Since we use histogram features, we may assume each featiiog within an ensemble fol-
lows a multinomial distribution, i.ep(v,|@) is multinomial with unknown parametes The
parameter® for different videos can be the same or different; if two wdeontain the same ob-
ject of interest, we assume they share the same paranfieiéreot, we assume they have different

parameters. Based on this assumption, we define the simifianiction as the ratio

p(V, Q‘0V7Q)
p(VI6v)p(Ql6q)

R — (7.1)

The numerator can be interpreted as how likélandQ were generated with the same parameters
Ov ,q, i.e., the two videos contain the same object of interesie dénominator says how likely
they were generated with different parameters. Hence d@ R is a measure of how similé&v
andQ are.

Since the parameters are unknown, we assume a prior diginbover the parameters and

integrate them out in the Bayesian fashion. We assume tharéegectors within an ensemble are

i.i.d. such that
(ZJUk])l J Vhs
p(V10) 0) e (7.2)
? Hp B E[(nmu L12)
p(Qlo) = Hp (ail6) = H((z q”,) Hej”) (7.3)
i Hj (¢i5!) j
and the parametesfollow a Dirichlet distribution,
r Z‘]a J
p(0) = ( ]> H (7.4)
Hj J

where the hyperparameteris a vector of dimensiod, with o; being set to the average over the
dimension; of all feature vectors within the databag4d/}. From here we see that the similarity
function takes into account the statistics of the whole laga instead of only focusing & and
Q.

It can be shown that the rati@ is as follows:

R— Cﬁ (Zf qij + aj) (fo ki + aj)

; S i+ ok vk +

(7.5)
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The constant is irrelevant to the ranking of videos and can be ignored. Suramation over the
features of each database vidgg, v, can be computed and stored off-line. This renders the
ratio R into the form of R’ as follows:

e li[ (Zf Gij + %’) ¢

I
j 20 Gij ¢

(7.6)

wherec; is a constant that can be computed and stored off-line. Tére ¢t can hence be com-
puted very efficiently online with complexity linear withsjgect to./, the dimension of a feature
vector. Empirically, the ratio can be computed orders of mitage faster than the kernel principal
angles [96], which we will use as a baseline method. The kemecipal angle method involves
heavy Singular Value Decomposition. Even with the simpflicif our method, no precision is

sacrificed, as we will show later in the experiments.

7.4 Experiments

We collected 150 videos from the internet. We sampled eatdovat two frames per second. The
total number of frames is around 20,000. We categorized itfeog into 15 categories such as
bear, cheetah, giraffe, helicopter, and space shuttle.valae the performance, we randomly
select a video as query and use the rest of the videos as satalize database videos are ranked
according to similarity to the query video and a recall-ien curve is obtained for each query.
This is repeated 100 times.

We have two contributions and want to evaluate them one by éest, we want to show
that extracting features from the object of interest foreaidretrieval yields better results than
using global image statistics. We will call these two apphes OOl and GLOBAL, respectively.
Second, we want to show that the proposed similarity functiotperforms (1) kernel principal

angles and (2) sample-mean matching using Euclidean destan

7.4.1 OOl versus GLOBAL

We experimented with three different types of featuresluiting (1) color, (2) texture, and (3)
MSER+SIFT. The OOl and GLOBAL methods are then comparedgussia proposed similarity

function for retrieval.
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Figure 7.3: Comparing OOl with GLOBAL. OOI consistently fiems better. The error bars show

the standard error about the mean. See details in Sec.7.4.1.
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For color features, we use the CIE-Lab color space and clpstels into 36 clusters. In
GLOBAL, a frame is represented by a histogram over the eitiegge. In OOI, a frame is repre-
sented by a histogram over pixels inside the bounding boigwik shown by the yellow boxes in
Fig.7.2. Results are shown in Fig.7.3(a).

We also experimented with texture features. We use the s#terebfinks as in [99] in the CIE-
Lab color space. The filter responses are clustered intoli86cs and the same representation as
for color features is used. Results are shown in Fig.7.3(b).

For MSER+SIFT features, we first find MSER patches, computd $atures and then quan-
tize them, as in Sec. 3.1. The same representation as farfeaknires is used. Results are shown

in Fig.7.3(c).

OOl is better than GLOBAL

From Fig.7.3 we see that OOI consistently performed bettan tGLOBAL, regardless of the
choice of features. Fig.7.4 shows some examples. The rehad®OIl performs better can be

attributed to at least two factors:

1. The GLOBAL method does not have knowledge of the objecht&rest. Our framework
provides the advantage of extracting the most relevantifesit that is, features from the ob-
ject of interest. Since features from background will it@ply distort the similarity measure
(unless itis the background that we are interested in), extracting featfrom the whole

frame is a disadvantage.

2. The OOI method explicitly models the proportion of paileginated from the object of
interest versus the background witiz |d). This information is used to prune away frames
that are less likely to contain the object of interest, whighhelpful when the object of
interest is occluded or disappears due to shooting stylditng. We achieve this by simply
retaining the to0% of frames with larger values aP(z|d). In contrast, the GLOBAL
method does not possess this information and is hence pooineltiding more irrelevant

background information into features.

Before we conclude this section, we will discuss the feature experimented with.
Since the object of interest is often very small in a framel, @iso because of the relatively low
resolution of the videos480 x 324) and compression artifacts, texture features did not parfo

significantly better than color features. We expect a coation of texture and color features to
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Figure 7.4: Examples where the GLOBAL method performs wahse the OOl method. The
bottom left pair shows a hang glider in two different videos; since theathof interest is small,
global image statistics do not capture the object of inteaesl matches them closer to ocean
related videos and mountainous videos, respectively. botm right pair shows a windsurfer
and a hovercraft; the GLOBAL method considers these twoogdgmilar, while the OOI method

is able to differentiate them better.
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gain further improvements, but this is not the focus herer gaal is to demonstrate that OOl is
better than GLOBAL.

The visual words based on MSER patches followed by SIFT feautraction were used in
Sec?? to locate the object of interest and here again for videageretl. Fig.7.3 shows that the
retrieval performance is worse than using color and textWke observed that, a feature that is
good for locating the object of interesithin a video is not necessarily good for matchexgyoss
videos. One reason is that different videos within the saategory contain the same object class
but not necessarily the same object identity. MSER+SIFiufea are probably too discriminative
for video retrieval tasks so that objects of the same class/ith different identities have distinct
features, thus having a negative impact on the performdndkee Video Google work [51], similar
features were used with good results, but the goal thereawasrieve frames containing the object
with the same identity as the one the user manually labekhalrscenario, features that are highly

discriminative are desirable.

7.4.2 Comparing similarity functions
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Figure 7.5: The proposed similarity function, SIM, outpenis the state of the art, KPA. It also
runs orders of magnitude faster, an important factor foewicetrieval applications. The error bars

show the standard error about the mean. See details in $&c.7.

In Fig.7.5 we compare three different similarity functidios video matching using color fea-

tures and the OOI method. The proposed similarity functaall jt SIM) performs the best, fol-
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lowed tightly by ensemble matching using kernel principaglas (KPA), and significantly out-
performs the naive baseline sample-mean matching usintidean distance (call it SAMP). We
observed the same result for the other two types of featltrissworth emphasizing that SIM runs
orders of magnitudes faster than KPA, because KPA involireguar Value Decomposition. This
offers an important advantage of our proposed similaritycfion, especially for video matching
and retrieval applications.

Computation speed On a Intel 3.2 GHz Linux machine, processing a 1 min comgeksgleo
using color features for video matching takes around 1.5faniMSER+SIFT extraction, 2 min for
extracting the OOI, and 0.5 min for color feature extractidideo matching using our proposed
similarity function is roughly as fast as computing Eucidadistance. The MATLAB code is not

optimized for speed yet.

7.5 Conclusion

While object recognition has not yet reached the maturitiaridling all types of objects human
can recognize, our contribution is to use an unsupervisachiley method to extract the object
of interest, hence enabling object based retrieval. We dstreted that using the automatically
located object of interest one can perform better videaeretl than using global image statistics.
We presented a new ensemble matching algorithm and comipavigitl the state of the art. Our
method offers several orders of faster computation withogg of precision. The high precision
can probably be attributed to the fact that it takes into antthe statistics of the database from
which ensembles are drawn. It would be of future interesptiyethis algorithm to other problems,

such as object recognition from videos.
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Utilizing Information from Human
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Chapter 8

Discovery with Frame-Level Labeling

8.1 Introduction

The endless streams of videos on the Internet often comtalevant data. Our goal is to cut video
clips shorter and retain the frames that are relevant to $ke input. We assume the user has an
“object of interest (OOI) in mind, which can, for example, be a car, a book, or slsene of a
forest. The system will infer which frames contain the OQiisTapplication can be used, e.g., for

shortening surveillance videos or TV programs.

We propose a novel method for removing irrelevant frames feovideo given user-provided
frame-level labeling for a very small number of frames. Wetflrypothesize a humber of can-
didate areas which possibly contain the object of inteasd, then figure out which area(s) truly
contain the object of interest. Our method enjoys sevevairéble properties. First, compared to
approaches where a single descriptor is used to describeoke frthme, each area’s feature de-
scriptor has the chance of genuinely describing the objeittterest, hence it is less affected by
background clutter. Second, by considering the temporndiraty of a video instead of treating
the frames as independent, we can hypothesize the locdtiba candidate areas more accurately.
Third, by infusing prior knowledge into the topic-motion ded, we can precisely follow the tra-
jectory of the object of interest. This allows us to largedguce the number of candidate areas and
hence reduce the chance of overfitting the data during legurwe demonstrate the effectiveness
of the method by comparing it to several other semi-supedvisarning approaches on challenging

video clips.

105



106 8. DISCOVERY WITH FRAME-LEVEL LABELING

We consider the case where the system is provided with vaitelil information. Specifically,
the user will label at least one frame as relevant and an&tme as irrelevant. These labels are at
the frame-level instead of at the pixel-level. Althoughadilevel labeling (such as using a bounding
box or segmentation mask to specify the location of the O@) provide more information, we

intend to explore the possibility of letting the user pravitbarser and less tedious labeling.

We formulate the task as a self-training multiple instamegning problem. For each frame, we
postulate a number of candidate areas, and use a multipénaeslearning algorithm to simulta-
neously find out whether the OOl exists in the frame, and ibég] where it is located. The reason
that we go one step beyond our goal (that is, trying to loda¢eQOIl) is because we are able to
exploit the temporal smoothness property of video objexrtonsolidate their locations. That is to

say, objects tend to move in a continuous manner from franframae.

We use sporadically labeled frames to train a multiple mstdearning algorithm called MIL-
Boost [100]. It was originally applied to a face detectiomlgem. In their work, images are
manually labeled by drawing a rectangle around the head efsop. In our system, we only have

frame-level labels, i.e., no rectangles are available.

Our semi-supervised framework can be distinguished fraor prork in several aspects. Our
work does not require pixel-level labeled data. In[101&rfeng requires both pixel-level labeled
data and frame-level labeled data. An object detector igilyi trained on the pixel-level labeled
data, and the learned model is used to estimate labels fénatine-level labeled data. Asillustrated
in Fig. 9.1, we discover’ the OOI since no bounding box is given, which also dististais our
work with the video object retrieval work in [51][94], whetke OOI is explicitly labeled at the

pixel-level.

Image retrieval systems often allow users to provide p@sdnd negative feedback, hence the
task of image retrieval can also be cast under the selfitigaifi02] or multiple instance learning
[100] framework. Nonetheless, our system exploits tempofarmation of videos in a novel way,
which distinguishes itself from the image retrieval liter@. In [103], activities in a video are
condensed into a shorter period by simultaneously showiualgjpte activities. It does not intend

to discoverthe frames that contain the user-desired OOI from limitest ugout.

Our method is based on the bag-of-words representatiorghvitipart-based. Different than
other part-based methods such as the one-shot learningvirank [104], we leverage motion con-

sistency to improve recognition, while the one-shot laagriramework did not utilize that.
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Figure 8.1: Frames are unlabeled (top left), labeled aluaat (middle left) or relevant (bottom
left). The system will find out what the object of interestiis {his case, the black vehicle) and

remove frames that don'’t contain the vehicle.

Our contribution can hence be summarized as folldly#\ novel application that summarizes
videos based on the implicitly specified OQ).A novel system that uses weakly labeled data for
object discovery in video.3) A novel method that takes advantage of the temporal smosghne
property during semi-supervised learning.

In section 8.2 we define the type of user labeling informatiwt is available to the system. In
section 8.3 we introduce a baseline method, where feattithe dframe-level are used for semi-
supervised learning. In section 8.4 we explain in detailgr@posed method. In section 8.5 we
will compare the proposed method with the baseline methddsameral variants of the proposed

method. Finally, we conclude in section 8.6.

8.2 Frame-level labels

The amount of user label information as well as its formatdasajor impact on system design.
The amount of user label information can range from all fraibeing labeled to none. For those
frames being labeled, the labeling can be as detailed agdprgwbounding boxes for each frame
(which we call pixel-level labeling), or as coarse as “théie does (or does not) contain the OOI”

(which we call frame-level labeling).
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Figure 8.2: (a) Labeling at the frame level assumed in thiskwd-rames can be unlabeled, or
labeled as positive or negative. (b) The bounding box typ&loéling provides more explicit

information regarding the object of interest, but is alsaenedious in the labeling process.

Here we consider the more challenging task of having as iaplyt frame-level labeling; see
Fig. 8.2 for a comparison. This kind of ‘weak labeling’ is yatifferent from traditional object
detection; see for example [35], where the characteristidhe OOI are learned from plenty of
pixel-level labeled data. This is also different from theewmt video retrieval work in [51][94].
Traditional object detection not only involves a lot of humlabor for labeling the images by
putting bounding boxes on the OOI, but also has the difficaftgcaling to multiple categories
of objects. Since the OOI in a sequence can be of any catejasyyery difficult to train a

comprehensive object detector that covers all types ottdje

8.3 Semi-supervised learning at frame-level

Our first attempt to achieve the goal of VideoCut is to use smipervised learning at the frame-

level. Each frame is represented as a histogramisafal words or textons[105]. To generate
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visual words, we use the Maximally Stable Extremal RegidfSER) operator [63] to find salient
patches'. MSERs are the parts of an image where local contrast is f@jher operators could
also be used; see [1] for a collection. Features are exttdicien these MSERSs by Scale Invariant
Feature Transform (SIFT) [2]. In this work we extract MSERd &IFT descriptors from grayscale
images. Patches and features extracted from color imagésdan also be used instead. The SIFT
features from a video are vector quantized using K-Meanst@ling. The resulting = 50 cluster
centers form the dictionary of visual wordsyy, ..., w;}. Each MSER can then be represented by
its closest visual word.

The histograms of the labeled frames along with their labetsfed to the system to train a
classifier. The classifier is then applied to the unlabeladchés. Frames with high confidence
scores are assigned pseudo-labels. The pseudo-labetet dambined with the original labeled
data and the classifier is trained again. The classifier wasuBascrete AdaBoost [107]. We
will use this method as a baseline method in the experimenkss kind of self-training [102]
procedure has been used extensively in different domabg][[l01] and achieved top results in
the NIPS competition [107].

8.4 Semi-supervised learning at sub-frame level

Random Patch Temporally Consistent
Candidate b :%r —> Candidate
Areas ro ; ity Areas
S-MILBoost Area S-MILBoost » Frame
Classifier Probability Classifier Probability i
(b) Random Candidate (c) Temporally Consistent
(a) Flowchart Areas Candidate Areas

Figure 8.3: Semi-supervised learning at sub-frame levelgusemporally consistent candidate
areas.
There are two issues with the frame-level learning fram&woSec. 8.3.

1The word ‘region’ should not be confused with the ‘candidateas’ to be introduced later. Each candidate area

contains a set of MSER patches.
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1. The OOI can be small and the visual words from the whole érane usually dominated by
background clutter. Hence the full-frame histogram regméstion is not a truthful represen-
tation of the OOI.

2. Objects in video often follow a smooth trajectory, whick wall thetemporal smoothness
property. With frame-level learning, the temporal smoothness pitgpeannot be readily

exploited.

We address these issues by learning at a sub-frame leveB.B(g) shows the proposed system
flowchart. In each frame, we propose a numbdéRahdom Candidate Aredisat potentially contain
the OOI (illustrated in Fig. 8.3(b)). This will be detailenl $ection 8.4.1. The candidate areas are
passed to a self-training version of MILBoost (S-MILBoaoat)d assigned afArea Probability a
score that tells us how likely this candidate area truly bg#oto the OOI. This will be detailed
in section 8.4.2. After each candidate area receives a,sserassign each image patch (MSER)
a Patch Probability which is defined as the largeAtea Probabilityamong the candidate areas
that cover that image patch. Given tRatch Probability in section 8.4.3 we will explain how to
obtain theTemporally Consistent Candidate AredBasically, this is achieved by fitting a model
which simultaneouslyiscoversthe OOI andracksit across frames. The&emporally Consistent
Candidate Areasire illustrated in Fig. 8.3(c); using them, we train S-MILd¥b once again. As
we will show in the experiments, this new S-MILBoost classifivill be more reliable than the
previous one trained with thRandom Candidate Areaginally, the S-MILBoost classifier gives
us theFrame Probability which tells us how likely each frame contains the OOI. UghngFrame

Probability, we can determine the irrelevant frames and perform VidéoCu

Notice how the two issues mentioned earlier are resolvedsinguhis proposed flowchart.
First, the candidate areas are smaller than the whole frardeéhance include less background
clutter, which address the first issue mentioned above. riSiecbe candidate areas in one frame
can be temporally correlated with the candidate areas iméx¢ frame by performing ‘weak’
object tracking (illustrated in Fig. 8.3(c)), which addses the second issue. We emphasize that

this ‘weak’ tracking is different from traditional objecticking, as we will explain later.

In the experiments section we will compare our proposed fi@astovith some other methods,
which replace or omit some parts of the modules in Fig. 8.3f@&}he following subsections we

will explain the details and merits of each component in Big(a).
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Figure 8.4: Candidate areas, each represented by a histogex visual words. In the experiments,

we use a variety of different densities and spacings of ciateliareas.

8.4.1 Random candidate areas

Since the user labeling does not tell us where the OOI isdacéteither in the labeled nor in the
unlabeled frames), we need to set the candidate areas bagwiboknowledge, if any. At the
beginning, we use candidate areas with fixed size and unigpawing and call them the random
candidate areas. Each candidate area is represented a@sgaams of visual words, as shown in
Fig. 8.4. After we have a rough guess (using the techniquéseimext two subsections), we will
refine the candidate areas by placing them more denselyatbarestimated location of the OOI.
We call these later candidate areas as temporally constsiadidate areas. See Fig. 8.3(b)(c) for

illustrations.

8.4.2 Self-training MILBoost

Using a similar self-training procedure as in Sec. 8.3, wa fise the labeled frames to train a
multiple instance learning [100] classifier. As a resultleeandidate area of the labeled frames is
assigned an area probability, which is the probability #raarea contains the OOI. The classifier
is then self-trained with the unlabeled frames and pseadel$ included. As a result, the area
probabilities of candidate areas in unlabeled frames atiarad as well.

Different than in Sec. 8.3, we have multiple histograms pamg, instead of a single one,
therefore we use a multiple instance learning classifiet,Bdbst [100]. First let us define some
notations. We denote the histogram over visual words of didate area as;, ,, wherek indices
over frames and indices over the candidate areas inside frameet¢; € {0,1} denote the label

or pseudo-label of framg. Each frame has frame probabilityp,, and each candidate area has
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anarea probabilityp;, ,. Theframe probabilityis the probability that a frame contains the OQOI,
and thearea probabilityis the probability that the area contains the OOI. Since mdrés labeled
as positive as long as it contains the OOlI, it is natural to ehtite relationship betweep). and
Pk,a USING the Noisy-OR model [109h;, = 1 — [],c.(1 — pr.a). The likelihood is given by
L(C) = [T i (1 = pg) 1),

Asimplied by its name, MILBoost produces a strong clasgifery, ) in the form of a weighted
sum of weak classifiersC(z;,) = >, Mucu(Zra)s cu(Trq) € {—1,+1}. The strong clas-
sifier scoreC'(zy,,) translates into the area probability, ,, by the logistic sigmoid function
Pra = 1/(1 + exp(—C(zk,4))). Using the AnyBoost [110] method, the boosting weight,, of
each candidate area is the derivative of the log-likelih@adily to be shown a%];k—“pk,a. In round
u of boosting, one first solves the optimization problep.) = arg max,/( Z,w (T,0) T a- A
line search is then performed to seek for the optimal pammet i.e.,\, = arg max, L(C+Acy).

In summary, S-MILBoost produces a classifier that assigols flame a frame probability, and
each candidate area an area probability. Notice that theLBdbst classifier is always used in a

learning mode, during which the area and frame probalsildie estimated.

8.4.3 Temporally consistent candidate areas

The accuracy of the frame probabilities depends heavilyhemptacing of the candidate areas; as
an extreme example, if the OOI appears in a frame but noneeatdhdidate areas cover it, then
there would be no chance we could have correctly estimatétaime probability. This suggests
a refinement of the placing scheme of candidate areas basedrarinformation. Notice that, we
haven't yet exploited the temporal smoothness propertydsos.

We would like to use the temporal smoothness property toadfia placing of the candidate
areas. The temporal smoothness property is typically @epldhrough tracking the object. How-
ever, tracking requires manual initialization of the objlecation and size, information which is
not available to us.

The topic-motion model [31] simultaneously estimates thgearance and location of the OOI.
However, it was used in an unsupervised setting where onedpsor knowledge about the label
(object vs. background) of each image patch. In our caseatbe probabilities estimated by
S-MILBoost provides information that we could use as priookledge.

The topic-motion model was designed for the case where at omes OOl appears in each
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frame. But this is not a problem for our system, because a@sdsrone of the possibly many OOls
is discovered, the frame probability will be high. In otheords, we don’t need to identify every
OOl to decide if a frame is relevant or irrelevant. Also nettbat discovering the OOI is not our

ultimate goal.

Denote framé: asd;, wherek indices over all frames. Each patchdp is associated with a
visual wordw, a positionr, and a hidden variable € {z, z_}. Definep(z,|d;) as the probability
of a patch being originated from the OOl in frarheand likewisep(z_|d}) for the background.
We define a spatial distributiop(r|z , di) that models the location of the patches originated from
the OOI. We assume(r|z,, dy) follows a Gaussian distribution, but other distributiorssigh
as a mixture of Gaussians) could be used as well. Likewigg;_,d;) models the location of
patches originated from background and we assume it followaiform distribution. The third
distribution isp(w|z4), which models the appearance of the OOI. It is the normaliEstbgram
over visual words corresponding to patches originated fitloenOOI. Likewise p(w|z_) models
the appearance of the background. We assume that the jsinbdtion of wordw, positionr, and

hidden labek of a patch in framel, is modeled ag(z, r, w|dx) = p(z|di)p(r|z, di)p(w|2).

Define the state(k) as the unknown position and velocity of the OOl in fradje We assume
a constant velocity motion model and the state evolves dowptos(k + 1) = Fs(k) + £(k),
whereF is the state matrix and the process noise sequéficgis white Gaussian. Suppose at
time k there are a number ofi, patches. If a patch is originated from the OOI, then its po-
sition can be expressed agk) = Hs(k) + ¢;(k), whereH is the output matrix and the ob-
servation noise sequencg(k) is white Gaussian; otherwise, the position is modeled asi-a un
form spatial distribution. The state estimate can be writiss(k) = > "% §;(k)0;(k), where
Si(k) = 8(k™) + W(k)e;(k) is the updated state estimate conditioned on the event tiat is
originated from the OOI, where, (k) = r;(k) — #(k™) is the innovationf (k™) is the observation
prediction,s(k™) is the state prediction, anW (k) is the Kalman Filter gain [65]. The state es-
timation equations are essentially the same as in the PDk f@6]. The association probability
Bi(k) is defined agl; (k) oc N(€;(k)|0, X (k))p(zi(k)|w;,ri(k), dy), where the first term contains
motion information, the second term contains appearanddamation information, andf (k) is

the innovation covariance.



114 8. DISCOVERY WITH FRAME-LEVEL LABELING

Figure 8.5: Graphical model representation. Dashed liregat the typical plate representation.

Parameter estimation

The distributionsP(w|z), P(z|d), andP(r|z, d) are estimated using the Expectation-Maximization
(EM) algorithm [21], which maximizes the log-likelihod® = >, >~ >, nyji log p(dk, wy, ri(k)),
whereny;; = n(dy,wj,ri(k)) is a count of how many times a patchdp at positionr;(k) has
appearancey;. The EM algorithm consists of two steps. The E-step comphegosterior prob-

abilities for the hidden variables:

p(zi|di)p(w;|20)p(ri(k)|21, di)

= S p(ald)p(wsl)p (R, d) (6.1)

p(z|dy, wj, ri(k))

The M-step maximizes the expected complete data likelihtdel adopt a Bayesian approach
to estimating the probabilities, using-probability-estimation [111]. First, notice that tlagea
probability, p, ., computed from S-MILBoost contains prior knowledge abbet®OI. This prior
knowledge should be incorporated into the detection of taally consistent candidate areas. This

is a significant improvement over the algorithm in [31], whigas completely unsupervised.

Noticing that each patch can belong to multiple candida¢agrwe define thpatch proba-
bility as the largesarea probabilityamong the candidate areas that cover an image patch. The
patch probabilityis written aspasrz(2|dy, wj, ri(k)), with the subscript “MIL” emphasizing that
this probability is estimated from the outcome of S-MILBbo# simplified graphical model is
illustrated in Fig. 8.5, where the variahtés omitted to simplify illustration. Dashed lines indicate
groups of image patches having the same valug,gf;,. More specifically, dashed lines in red

correspond to the red box (candidate area) in the pictugeblre (yellow) nodes in the graphical
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model correspond to blue (yellow) ellipses in the picture then obtain:

> MhiPMIL(zildi, wy vi(k)) + 32, vzl di, wy, vi(k))

z1ld) = 8.2
plaildi) >t kgipmrr(2ldi, wy, vi(k)) + 32 5 nkgip(zildi, wy, vi(k)) 82)
> ki MkgiPMIL (21 g, wi i (k) + Y2k s nkjip(21]d, wy, vi(k))
p(wjlz) = : : (8.3)
> ki egipmr(zilde, wy ri(k)) + 325 s ngip(zi|dg, wy, Ti(K))
p(ri(k)|24, di) = N (ri(k)[E(k), Za,) (8.4)

wherez; € {z4, z_} is the value taken by; (k) andt (k) = HS(k) is the position estimate. The
covarianceX;, in the Normal distribution in Eq.(8.4) is the weighted casace matrix of the
observations:; (k). The weighted covariance matrix is the covariance matrtk wiweighted mass
for each data point, with weights equal to the associati@batbilities 5;(k). As a result, if the
association probabilities have high uncertainty, theiapdistributionp(r|z., d) will be flatter; if
low uncertainty, it will be sharper around the position af thOl.

Finally, we propose a number of temporally consistent adatdiareas that haw¢k) as center
and with various sizes, as shown in Fig. 8.3(c). We us$&acale ratio between two areas, with
the smallest one equal to the variance specifie@€pyin Eq.(8.4), and with no more than 5 areas

in total. Using various sizes is to increase system robastimrecase of inaccurate size estimates.

Figure 8.6: Sample frames. Name of video clip, from top tadyt Knorr, Benz, Pepsi, Whiskas.
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8.5 Experiments

We use 15 video clips from YouTube.com and TRECVID [89]. Sknfpames are shown in

Fig. 8.6. Most of the clips are commercial advertisementth &iwell defined OOl and range
from 20 to 356 seconds in length. We sample each video at tods per second. In total, there
are 3128 frames of siz&20 x 240. The frames have visible compression artifacts.

The video frames are ground-truthed as positive or negatigerding to whether they contain
the OOI; e.g., in a PEPSI commercial, we assume the PEPSIiddage OOI. Each video clip is
run twenty runs, where in each run we randomly selécframes from the positive frames and,
frames from the negative frames as labeled data, wigrand V,, are one or three. The rest of
the frames are treated as unlabeled data. Results are esteregr the twenty runs. Notice that the
labeled frames are labeled at the frame-level but not pexedk

Table 8.1 shows the average precision (area under pregcisiati curve) of different methods.
In the following, we will introduce the different companai methods listed in Table 8.1 while we
discuss the results. In general, we have the following olasiens:

Method 1: Supervised learningusing only labeled data is consistently outperformed by the
semi-supervised variants. When the number of labeled Bamkw, its performance is close to
by chance.

Method 2: Semi-supervised learning at frame leveperforms only marginally better than
supervised learning when the number of labeled frames mnaad(1+, 1—), but improves signif-
icantly as the number of labeled frames increases.

Method 3: Semi-supervised learning at sub-frame level withrandom areas consistently
outperforms semi-supervised learning at the frame levhls justifies our claim in Sec. 8.4 that
frame-level learning can be hindered when backgroundeclditminates the appearance features.
Using sub-frames (candidate areas) helps the learningggsdo focus on the features originated
from the OOI. The candidate areas consist of rectangleszef160 x 120 with equal spacing
between each other. In addition, a rectangle of 82ex 240 covering the whole frame is used in
here, in Method 4, and in the proposed method, in order todakeof large objects and inaccurate
size estimates. After training S-MILBoost, we did not refihe placing of candidate areas, as we
do in Method 4 and in the proposed method.

We experimented with different numbers of rectangles bywghay the spacing between them

and obtained different performances as shown in Fig. 8. &rd'ts a sweet spot at the number of
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Figure 8.7: Increasing the number of areas does not leadttedse in performance.

10 areas, which shows that the more candidate areas doesaesisarily yield better performance.
Even though increasing the number of areas will increasechia@ce that one of the candidate
areas faithfully represents the OOI, the chance of ovegjtalso increases, hence the drop in

performance. We also experimented with placing the areas nuncentrated around the center of
the frame but obtained similar results.

Initial Random Most Confident
Candidate Areas Area Propagation

Labeled
frame

Unlabeled L—-!"
A

Figure 8.8: lllustration of Method 4.

Method 4: Most confident area propagation: This method is the closest to the proposed
method. Instead of using ‘weak’ tracking, we assume the GQitationary within a shot. As
illustrated in Fig. 8.8, each unlabeled frame obtains its& candidate area by replicating, from
the nearest labeled frame, the size and position of the maftdent area. Nearness can be defined

as the visual similarity between frames or as the time difiee between frames. We found the
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latter to work better. The base area is then resized anatadpd within the frame usingla2 scale
ratio between two areas, with the smallest one equal to #eeadithe base area, and no more than
5 areas in total. Since videos often contain multiple scesngsitions or shots, we only allow the
replication to happen within a shot and not across shotshelfet are no labeled frames within a

shot, we place random candidate areas in that shot.

In summary, the proposed method outperforms all the othénads (Table 8.1). Together with
Fig. 8.7, this justifies our earlier expectation that propptaced candidate areas are crucial to the
performance; using a huge number of candidate areas ovbditiata and lowers the performance.
The temporally consistent candidate areas reduce the oeedlarge number of uninformative
candidate areas. Finally, in Fig. 8.9, we display some fsathat are inferred by the proposed

method.

Figure 8.9: Sample frames that are inferred as positive.llAwdox shows the candidate area with

highest area probability. Name of video clip, from top totbot: Knorr, Benz, Pepsi, Whiskas.
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8.6 Conclusion

We have presented an approach for removing irrelevant amevideo by discovering the object
of interest. Through extensive experiments, we have shbwanhthis is not easily achieved by
directly applying supervised or semi-supervised learmrahods in the literature developed for
still images.

On a higher level, our method can be considered as a trackatgrs but without manual track
initialization; the system finds out itself what the “bestdk” is, with the objective of agreeing with

the user’s labeling on which frames contain the object afrigwt.
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Semi-Supervised
Method 1
Sequence Labe] By Chang . -
q % upervised Method 2 Sub-Frame Level
Frame Leve
Method 3 Method 4 Proposed
Sor Tr 1 32.6 26.C 28 317 292 38.7
3+.3- 325 29.1 52.¢ 54.€ 48.¢ 58.2
- 14.1- 34.1 32.€ 342 41 39.1 42
P 3+,3- 33.7 39.2 53.C 57.7 50.€ 63.2
Whiskas 1+.1- 43.7 49.C 54.2 62.€ 64.1 65.2
3+,3- 435 53.C 71. 77. 78.1 73.€
. 1+1- 3.9 2.8 512 107 10.7 6.5
SkittlesFunny |55 2.0 41 113 21.2 22 22.7
cleanclear | 11 21.2 142 15. 45.2 41 36.1
34,3 19.4 21.1 41.€ 51.2 57.¢ 62.2
CatFood 1+1- 39.0 40, 417 62.7 65.1 66.€
3+,3- 38.2 58.2 76.C 91.4 91. 91.4
A 1+.1- 27.1 26.F 27.( 31.4 29.¢ 36.C
y 3+.3- 255 236 32.€ 42.7 34.7 36.2
1+.1- 25.9 )2 53.7 67.€ 58.¢ 58.C
CaramelNut |55 24.1 58.2 67.E 67.€ 70.2 70.2
Ko 1+1- 20.7 20. 32. 442 62.1 59.2
3+.3 185 20.2 48. 57.2 69.2 67.7
p— 1+1- 18.4 19.6 20.C 26.2 30.2 30.2
3+,3- 14.7 18.€ 22.1 25 2 36.2 38.(
Fiohisimal | 151 10.8 152 43 42.€ 53.F 59.€
g 3+.3- 105 18.7 50.7 44.2 40.€ 62.1
1+.1- 4.8 28 2.8 3E 3.7 4.2
SpaceShutle | 5" 42 3.6 12.7 27.7 275 25.1
. 1+1- 116 8. 38.1 27.¢€ 33.¢ 44.€
WeightAero | 5."3. 11.2 46.€ 56.2 40.€ 48 56.1
windTunnel | 11 24.1 147 15. 36.1 33.¢ 35.2
3+.3- 23.8 41.€ 47 56.€ 56.7 56.1
Horizon 1+1- 11.2 15.¢ 18.4 22.€ 28.2 34.1
3+.3. 10.F 18.C 41 44.1 48. 54.€
1+ 1- 21.9 21.9 28.7 37.1 39.0 41.2
Average
3+,3- 20.8 30.4 45.8 50.7 52.1 55.8

Table 8.1: Comparing the average precision (%). The numbkabeled frames are one positive
(14) and one negativel ) in the upper row, and three positives and three negativéseitower

row for each video sequence.



Chapter 9

Integrated Feature Selection and

Extraction

9.1 Introduction

In computer vision, the bag-of-visual words image repreg@n has been shown to yield good
results. Recent work has shown that modeling the spat@ioakhip between visual words further
improves performance. Previous work extracts higherfospatial features exhaustively. How-
ever, these spatial features are expensive to compute. dgesw a novel method that simultane-
ously performs feature selection and feature extractiaghét-order spatial features gpeogres-

sivelyextracted based on selected lower order ones, therebyimya@rhaustive computation. The
method can be based on any additive feature selection #igpsuch as boosting. Experimental
results show that the method is computationally much mdieiezit than previous approaches,

without sacrificing accuracy.

The traditional pipeline of pattern recognition systemssists of three stages: feature extrac-
tion, feature selection, and classification. These stages©i@mally conducted in independent
steps, lacking an integrated approach. The issues arelasgoll. Speed Feature extraction can
be time consuming. Features that require extensive comiputshould be generated only when
needed. 2Storage Extracting all features before selecting them can be cusonee when they

don't fit into the random access memory.

Many object recognition problems involve a prohibitivebrde number of features. It is not

121
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2nd Order
eature Poo

Figure 9.1: The top figure shows the traditional approachrevh& and2"¢ order features are
extracted before feature selection. Second-order featmeode spatial configurations of visual
words and are expensive in terms of computation and stofdgeproposal is to extraét*? order
features based on previously selectetl order features and to progressively add them into the

feature pool.

uncommon that computing the features is the bottleneckeoivitole pipeline. Techniques such as
“classifier cascade” [112] reduce the amount of computdtorfieature extraction in run time (in

testing), while the aim here is to improve the feature eximacand selection procedure in training.

In this work, we focus on thbag-of-local feature descriptotisnage representation [113] and
its recent extensions [114][115][116]. Local feature diggors are image statistics extracted from
pixel neighborhoods or patches. Recent work of [114][118]] focused on modeling the spatial
relationship between pixels or patches. We call the featariginated from local feature descrip-
tors asl*! order featuresand features that encode spatial relationship betweendd seo, three,
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or N patches ag8"?, 374, or N*" order features, respectively. Features with order latyzn bne
are calledhigher-order features These are analogous Mrgrams[117] used in statistical lan-
guage modeling. It is worth mentioning that, by higher-orfiatures, we dmot mean algebraic
expansions (monomials) of lower order ones, such as cross {g; z2), squares or cubesy).

In the recent works of [114][115][116], higher-order feas are extracteexhaustively How-
ever, these higher-order features are prohibitively espento compute: first, their number is
combinatorially exploding with the number of pixels or gas; second, extracting them requires
expensive nearest neighbor or distance computations igerspace [118]. It is the expensive
nature of higher-order features that motivates our work.

Instead ofexhaustivelyextracting all higher-order features before feature sieledegins, we
propose to extract theiprogressivelyduring feature selection, as illustrated in Fig. 9.1. Wetsta
the feature selection process as early as when the featateusists only ofi ! order features.
Subsequently, features that have been selected are usedti® lsigher-order features. This process
dynamically enlarges the feature pool in a greedy fashiothabwe don’'t need to exhaustively
compute and store all higher-order features.

A comprehensive review of feature selection methods isngise[119]. Our method can be
based on any additive feature selection algorithm such asting [120] or CMIM [121][122].
Boosting was originally proposed as a classifier and has laem used as a feature selection
method [112] due to its good performance, simplicity in igrpentation, and ease of extension
to multiclass problems [120]. Another popular branch oftdea selection methods is based on

information-theoretic criteria such as maximization ohdbional mutual information [121][122].

9.2 Integrated feature selection and extraction

Each image is represented as a feature vector which dyniymicereases in the number of di-
mensions. Initially, each feature corresponds to a distodeword. The feature values are the
normalized histogram bin counts of the visual words. Thesgufes are thés! order features,
and this is the bag-of-visual words image representatidd][1Visual words, with textons [105]
as a special case, have been used in various applicationitidndry of codewords refers to the
clusters of local feature descriptors extracted from pneijhborhoods or patches, and a visual

word refers to an instance of a codeword.
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1t order features Higher order features
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Figure 9.2: The ‘feature pool’ is dynamically built by alk@ting between feature selection and

feature extraction.

Our method maintains a ‘feature pool’ which initially castsionly of1*! order features. Subse-
quently, instead of exhaustively building all higher-ardleatures, the process tdature selection
and higher-order feature extractioare run alternately. At each rounfi&ature selectiorpicks a
feature, andeature extractiorpairs this feature with each of the previously selectedufest The
pairing process can be generic, and we will explain the implgtation in Sec. 9.3. The pairing
process creates new features which are concatenated &athesf vector of each image. In the next

round of feature selection, this enlarged ‘feature poadvies the features to be selected from.

In Fig. 9.2, we illustrate this process for the first few rosinth the first roundfeature selection
picks a feature (the light gray squares) from the ‘featurel’pand puts it in a1’ order list (not
shown in Fig. 9.2) that holds all previous selectetl order features. Since the list was empty,
we continue to the second round. In the second rofeature selectiomicks a feature (the dark
gray squares) from the ‘feature pool’ and places it in ffeorder list. At the same timdeature
extraction pairs this newly selected feature with the previously selbdeature (the light gray
square) and creates new features (the diagonally pattemextes). Thesz™? order features are
then augmented into the ‘feature pool’. In general, we maintai 1, ..., L*"-order lists instead
of only 1% order lists. If a selected feature has order then it was originated fromh; codewords,

and pairing it with another feature of ordes means that we can create new features that originate
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from a set ofL; + L, codewords.

Algor

ithm 1: Integrated-Feature-Selection-And-Spatial-Featurgdgetion

1 Sample weights;,g) —1/N,n=1,...,N.
2 k0.

3 for m=1,...,Mdo

4

10

11

12

13

Fit decision stumpy,, (x) to training data by minimizing weighted error function
N
T = 3 " 1 (0) # 1)

Denote feature index selected by decision stumijas

if i(m) corresponds to a%¢ order feature then

k—Fk+1

z(k) < i(m)

for j=1,...,k-1do

for each imagealo
BuildSecondOrderFeaturest), z(j))

end

Augment feature pool

14 end
15 end
N
S 00 I (ym (xn)#tn)
€y, — =L andq,, « In 1=fm
m N (m) " €m
16 > vn

17

18 end

n=1

(m+1) (m)

v = oy exp {an (ym(x5))}

19 Selected features afex;(1), ..., x;ap) } for any vectorx

In Algorithm 1 we detail the procedure of computing featuopsto the2"? order. We use

Discrete AdaBoost with decision stumps for feature sedectis in [112], although other feature

selection methods could be used as well. AdaBoost mainsases of sample weight$p,, },n =

1,..N
the wei

could b

, on the N training images (Line 1). At each round, a decision stumgsttb minimize

ghted error rate by picking an optimal feature andghold (Line 4). The selected feature

e al*t or 2"¢ order feature. If it is d° order feature, it is placed in the*-order listz(.)
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Figure 9.3: The orderl¢! vs 2"¢) of a selected feature in each round.

(Line 8), and then paired with all previous members inttfeorder list to generate ne@#¢ order
features (Line 11). The new features are augmented intcetitare pool (Line 13).

Lines 16 and 17 are standard update rules of AdaBoost. Ittepdhe sample weights in a
manner so that the decision stumps can focus on the souraeoof @&his eventually drives the
choice of features. Using AdaBoost as a feature selectmingqustified by its taking into account
the classification error when selecting features [121]. elmv, the concept of integrating feature
selection and extraction is general, and the feature diiraprocedure in lines 6 to 15 can be
embedded into other feature selection methods as well.

To show that different object categories result in diffétemporal behaviors of the integrated
feature selection and extraction process, we show in F3gth@. order of a selected feature at each
round of boosting, from rounds 1 to 200. AdaBoost is used iimark one-vs-rest classification
manner. In the first few rounds;’ order features are being selected and order features are
being built. Structured objects such as ‘Cow’ and ‘Buildisgon start to selec@™® order features.
At the end, structured objects tend to select mt€ order features compared to homogeneous
objects such as ‘Sky’. This agrees with the expectation skgithas less obvious geometrical
structure between pairs oft order features.

After feature selection and extraction, to make predicjame can:

1. treat boosting solely as a feature selection tool andhesedlected featuregx’(), ..., x*(M)},
as input to any classifier; or,

2. proceed as in AdaBoost and use a thresholded weightedYs(xm),= sign(znjvfz1 amYm (X)),
as the final classifier; or,

3. as we propose, use the set of weighted decision stumpg; (x), ..., apryn(x)}, as features
and train a linear SVM.

We will experiment with the last two methods later.
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9.3 Second-order spatial features

The algorithm introduced in the previous section is a genagthod for integrating the feature se-
lection and feature extraction processes. In this sectpnavide examples of building*? order
features, given a pair df*’ order features(w,, w;) (Line 11 in Algorithm 1). In the Experiments

section, we will explain hovg"? order features can be built.

Figure 9.4: Examples of spatial histograms.

Different kinds of spatial histograms can be used for bogd”™ order features. In Fig. 9.4(a),
we illustrate a spatial histogram with distance approxetyain log scale, similar to the shape
context histogram [123]. The log scale tolerates largeettamties of bin counts in longer ranges.
The four directional bins are constructed to describe theasgics ‘above’, ‘below’, ‘to the left’,
and ‘to the right’. In Fig. 9.4(b), directions are ignoredoirder to describe how the co-occurrence
of (w,,wyp) varies in distance. In [114], squared regions are used toogppate the circular
regions in Fig. 9.4(b) in order to take advantage of the iatidgjstogram method [124]. Of course,
squared regions and integral histogram can be used in olragowell.

The goal is to build a descriptor that describes howis spatially distributed relative ta,,.
Let us first suppose that there is only a single instanee,dh an image, but multiplev,’s. Using
this instance ofv, as a reference center of the spatial histogram, we count hemy finstances of
wy, fall into each bin. The bin counts form the descriptor. Sithee are usually multiple instances
of w, in an image, we build a spatial histogram for each instanee,pfand then normalize over

all spatial histograms; the normalization is done by sungrtfire counts of corresponding bins, and
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Figure 9.5: Second-order features. These are best vienaldn

dividing the counts by the number of instancesuQf This takes care of the case when multiple
instances of an object appear in an image. The whole progsssrimarized in Algorithm 2.

The spatial histograms yield translation invariant dgsors, since the reference center is al-
ways in respect to the center wourg, and describes the relative position of instancespf The
descriptors can also be (quasi-)scale invariant. This eachieved by determining the normalized
distance between instanceswaf andw;, where the normalization is done by considering the geo-
metric mean of the scale of the two patches. To make the gésicin Fig. 9.4(a) rotation invariant,
we can take into account the dominant orientation of a pdt2B][ However, rotation invariance
may diminish discriminative power and hurt performances]Jli object categorization.

In Fig. 9.5, red circles indicate words used as referenctecerhe red-green pairs correspond
to a highly discriminative2™ order feature that has been selected in early rounds ofihgodthe
images are those that are incorrectly classified when bilgrder features are used for training a
classifier. We can see th2it? order features can detect meaningful patterns in thesecisnalys
a result, most of these images are correctly classified bassifier using boths* and2"? order

features.

9.4 Experiments

We use three datasets in the experiments: the PASCAL VOC@8@6et [126], the Caltech-4 plus
background dataset used in [127], and the MSRC-v2 15-clatsset used in [114]. We used the

same training-testing experiment setups as in these riapesferences.
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Algorithm 2: BuildSecondOrderFeatures

1 Goal: create feature descriptor given a word pair
2 Input: codeword paifw,, wy)

3 Output: a vector of bin counts

N

Suppose there am¥, instances ofuv,, and N, instances ofu, in the image

)]

Initialize NV, spatial histograms, using each instancevgfas a reference center
6 for i=1,...,.N, do

Count the number of instancesoj falling in each bin

~

8 end

©

Sum up corresponding bins over thg spatial histograms

10 Divide bin counts byV,

For each dataset we use different local feature descriptoskiow the generality of our ap-
proach. For the PASCAL dataset, we adopt the popular chdifieding a set of salient image
regions using the Harris-Laplace interest point detedtt®26]. Another scheme is to abandon the
use of interest point detectors [128] and sample image patghiformly from the image. We adopt
this approach for the Caltech-4 dataset. Each region ohpatihen converted into 88-D SIFT
[129] descriptor. For the MSRC dataset, we follow the commapproach [114] of computing
dense filter-bank (3 Gaussians, 4 Laplacian of Gaussiansstdofder derivatives of Gaussians)
responses for each pixel.

The local feature descriptors are then collected from thmitrg images and vector quan-
tized using K-means clustering. The resulting cluster esntorm the dictionary of codewords,
{w1,...,ws}. We useJ = 100 for the MSRC dataset, anél = 1000 for the other two datasets;
these are common choices for these datasets. Each loaalfelgscriptor is then assigned to the
closest codeword and forms a visual word.

For the MSRC dataset, we used the spatial histogram in F¢)9.in order to facilitate com-
parison with the recent work of [114]. We followed the spat$lil4] with 15 distance bins of
equal spacing, the outermost bin with a radius of 80 pixeld,re scale normalization being per-
formed. For the Caltech and PASCAL datasets, we used thialspiastogram in Fig. 9.4(a), where
the scale is normalized according to the patch size or isttgr@int size as explained earlier, and

the outermost bin has a radius equal to 15 times the normdatiaech size. The scale invariance
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Figure 9.6: Integrated vs separated: After around 800 rewfidoosting, the proposed method

outperforms baseline both in (a) testing accuracy and ¢plired training time.

can be observed in Fig. 9.5 from the different distances éetwed-green word pairs.

9.4.1 Integrated vs Separated

Here we present theain result. In Fig. 9.6 we show the experiment on the 15-class MSRC
dataset. We use a multiclass version of AdaBoost [120] fatufe selection, and linear SVM for
classification as explained in Sec. 9.2. In Fig. 9.6(a), veetkat the accuracy settles down after
about 800 rounds of boosting. Accuracy is calculated as th@nnover the diagonal elements of
the 15-class confusion matrix. In Fig. 9.6(b), we see thegirgted feature selection and extraction
scheme requires only about 33% of training time compardudoanonicalapproach where feature
extraction and selection are tvgeparateprocesses.

Surprisingly, we can see in Fig. 9.6(a) that, in addition éing more efficient, the proposed
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scheme also achieves better accuracy in spite of its greatdyen This can be explained by the
fact that2" order features are sparser thith order features and hence statistically less reliable;
the integrated scheme starts with the pool of first ordeufeatand gradually adds ¥ order
features, hence it spends more quality time with more rigiats order features.

In Fig. 9.6(c)-(e) we examine some temporal behaviors oftwe methods. In Fig. 9.6(c),
we show the cumulative number 8f¢ order features being extracted at each round of feature
selection. While the canonical procedure extracts aluiest before selection starts, the proposed
scheme aggressively extra@ts’ order features in earlier rounds and then slows down. Tlia-lo
rithmic type of curve signifies the coupling between thedeaextraction and the feature selection
processes; if they weren't coupled, features would have bgtacted at a constant (linear) speed
instead of a logarithmic.

In Fig. 9.6(c), we also noticed that at 800 rounds of boostordy about half of all possible
2nd order features were extracted. This implies less computari terms of feature extraction, as
well as more efficient feature selection, as the feature iganluch smaller.

In Fig. 9.6(d), it appears that the canonical approach s8¢ order features at roughly the
same pace as the integrated scheme, both selecting on@@vagecond-order features per round
of boosting. But in fact, as shown in Fig. 9.6(e), the ovell@pveen the selected features of the
two methods is small; at 800 rounds of boosting, the shai@isabnly 0.14. The share ratio is the
intersection of the shared visual words and visual wordspairthe two methods divided by the

union. This means that the two methods have very differenpteal behaviors.

9.4.2 Importance of feature selection

Here we compare with the recent work of [114], where featatecsion is not performed, but first
and second-order features are quantized separately ictiordiries of codewords. A histogram
of these codewords is used as a feature vector. In Table ©three methods use the nearest
neighbor classifier as in [114] for fair comparisbnWe see that our method yields state-of-the-
art performance, compared to the quantized (Method 2) anehnantized (Method 1) versions.
In addition, since th&"¢ order features need not be exhaustively computed and als@cior
quantization or2"¢ order features is required, our method is also much fasser tthe method in

1We re-implemented the work of [114], because they used aypisal quantization scheme to generafé order

codewords, and results are not comparable; also, theiaspatogram is square-shaped.
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[114].
Proposed Method 1 | Method 2 [15]
Feature selection \ X X
Quantization X X \/
Accuracy 75.9% 71.3% 74.1%

Table 9.1: Importance of feature selection.

9.4.3 Linear SVM on weighted decision stumps

As explained in Sec. 9.2, we propose to concatenate the teeigiutput of all weak classifiers,
{a1y1(%x), ..., aprynr(x)}, from AdaBoost as a feature vector and then run a linear SV&4uURs

are shown in Table 9.2. The superior result over AdaBoosiesdinom a re-weighting of the terms

{a1y1(x), .., aprynm (%)}

PASCAL MSRC
(EER) (1-accuracy)

AdaBoost classifier (15t order feat) 13.4% 24.1%

AdaBoost classifier (15! & 29 order) 12.1% 21.2%

Linear SVM on weighted decision stumps | 10.9% 16.9%

Table 9.2: Performance on the PASCAL car-vs-rest and MSREldSs datasets.

The best results [126] reported on the PASCAL VOC2006 and XM datasets employ the
Spatial Pyramid [130] technique on top of the bag of wordsasgntation. The Spatial Pyramid
technique is orthogonal to the proposed method and congpithiem is expected to yield even

better results.

9.4.4 Increasing the order

In Fig. 9.7, we experiment on the MSRC dataset and see thatdhsification accuracy obtained
from using a feature pool of** and 2"¢ order features is higher than using order features

alone. Includingd™ order features does not improve accuracy. We geneBitenrder features by
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counting the number of times three codewofds, wy, w.) fall within a radius of 30 pixels, i.e.,
the spatial histogram has only one bin. Third order feataresgenerated every timel& order
feature is selected (which correspondsutg) and paired with each of the previously seleck&d
order features (recall that2&? order feature comes from a word pdiay,, w..)), or vice versa. The
reason for reducing the number of bins to one is to accourthéodata sparseness of higher-order

features, which we will discuss later.

1

o
o

2nd order

3rd order:

Accuracy
o]
o0

1st order

0'60 500 1000 1500 2000

Number of features

Figure 9.7: Accuracy and feature complexity.

9.4.5 Robustness of co-occurrence counts

Instead of assigning a local feature descriptor to a singtkeword, one can assign it to the top-
N closest codewords. In Table 9.3, we vary the paramgtérom one to four and ten, which
is the number of codewords each image patch is assigned tbrde out of four categories, the
performance of the bag of words representation (ugifigorder features only) degrades as
increases from one to four or ten, which manifests the pogukrtice of assigning a descriptor to
a single codeword.

Yet, the top technique can help avoid the data-sparseness probletfi’arder features.
We define the parametes as the number of visual words each image patch is assignetidn w
constructing2™® order features. Notice thai andc, can have different values. In Fig. 9.8 we

show the benefit of increasing from one to ten when constructing spatial features. In Fig(0,



134 9. INTEGRATED FEATURE SELECTION AND EXTRACTION

4%”.+
° @ @ || o 00

12345678 9101112 12345678 9101112
(2) (b)

Figure 9.8: Effect of parameteg on the spatial histogram bin counts. (a) Usiag= 1. (b) Using
Cy = 10.

Figure 9.9: Effect of increasing the number of visual worgsech is assigned to.

two normalized spatial histograms with twelve spatial kans collected from two different face
images. The size of the bubbles indicates normalized bimtsolRecall that spatial histograms
collect spatial co-occurrence of word pairs; in this case ghecific word pair corresponds to a
person’s nose and eye from real data. Ideally the two hiatogrwould be nearly identical, but
image variations and clustering artifacts prevent it froeng so. In Fig. 9.8(b), using the top-
N technique, the two histograms become more similar to eduér.offhe reason tha"? order
features benefit more from this technique thé&norder ones is due to the sparsity of co-occurrence
of a word pair. The chance afo-occurrencebetween a pair of visual words within a specific
spatial bin is at the order of approximately(.J? x 12), where.J is the size of the dictionary of
codewords. Compared to the orden gf/ for the histogram of visual words, slight image variations
and clustering artifacts can result in larger disturbaricdise spatial feature bin counts than in the
visual word bin counts. The top* technigue increases the bin counts (before normalizadod)

reduces the sensitivity to variations. In Fig. 9.9 we seepibygulation of a particular codeword
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getting denser as increases. In Fig. 9.9(i)(ii), this codeword rarely apggeeorrectly’ on the chin
of the face. Increasing, increases its occurrence on the chin, but also increasesdtsrence at
other locations, so increasing indefinitely would lead to performance degrading. Ovettils
suggests that using a small value-pbut a moderate value of should give the best result. Indeed,
using AdaBoost as classifier, we found that £ 1, co = 10) gives state-of-the-art performance,

as shown in Table 9.3.

(c4,5)
(1,1) (4,4) | (10,10)| (1,10)
Class
1st order feat 415 3.23 553 415
Face
1st and 2" order feat 1.84 1.84 0.92 0.92
1%t order feat 1.50 2.00 2.75 1.50
Motorbike
1st and 2" order feat 1.50 1.25 1.00 1.00
1st order feat 2.75 4.00 4.00 2.75
Airplane
1st and 2" order feat 2.25 2.50 2.00 1.75
1%t order feat 1.00 1.50 2.25 1.00
Car
1st and 2" order feat 0.50 0.75 1.00 0.50

Table 9.3: Equal error rates (%) for the Caltech-4 dataset.inBgrating feature selection and

extraction, state-of-the-art results are obtained.

9.5 Conclusion

We have presented an approach for integrating the procdeatofe selection and feature extrac-
tion. The integrated approach is three times faster thacahenical procedures of feature selection
followed by feature extraction. In addition, the integchégproach can achieve comparable or even
better accuracy than the exhaustive approach, in spite gféedy nature.

Our approach is generic and can be used with other featugetioel methods. It can also be
applied to all kinds of spatial histograms. In this work, vemsidered non-parametric histograms

(with spatial bins), but parametric ones could be used als wietre the parameters (e.g., the mean



136 9. INTEGRATED FEATURE SELECTION AND EXTRACTION

and covariance of point clouds) could be used as features.

Finally, we presented detailed experiments on three diffiepbject categorization datasets
which have been widely studied. These datasets cover a g of variations on object category
(20 in total), object scale (most noticeably in the PASCALadat) and pose. For each dataset, we
used different state-of-the-art local feature descriptorhese experiments demonstrate that our

approach applies to a wide range of conditions.



Part V

Conclusion

137






Chapter 10

Conclusions and Future Work

In this work, we introduced a probabilistic framework forj@it discovery in images and video.

The framework presents the following features:
1. Fusing appearance, location, geometry, global and fooébn
2. Handling multiple instances
3. Extensions to semi-supervised learning
4. Applications in retrieval, segmentation, categormati

In the future, there are several interesting directionsawtioue on. There are many other
visual cues that could be integrated into our framework. @ieresting direction is to utilize
the occlusion boundary cues. The likelihood function in pleticle filter could make use of the
occlusion boundary cue by assigning a lower likelihood tgpsts which contain an occlusion
boundary. This will effectively encourage the system taol®r objects that obey the occlusion
boundaries.

One motivation of doing unsupervised object discovery isabse state-of-the-art object de-
tectors are still very limited in the number of object catég®they can handle. However, some of
the object detectors are already running very reliablyhsagface detectors. As more and more
object detectors become reliable, we could use them toaxtisual words that are informative
and semantically meaningful. Our framework can then be oseeimixed representation of lower
and higher level visual words.

Currently the model is based on visual words, which are efustnters. However, clustering

introduces quantization artifacts. This contributes t® semantic ambiguity and consequently

139
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makes discovery more difficult, because the discovery isitbgponsible not only for discovery, but
also for disambiguating the meaning of visual words. Onet&nd to this problem is to combine the
clustering and discovery into one optimization problemisifidoable, because k-means clustering
is in fact a special case of mixture of Gaussians, which caejpesented as a graphical model. If
we combine the mixture of Gaussians graphical model intacthieent graphical model, then we

can do joint optimization.
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