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ABSTRACT 
Most of the existing work on modeling variable bit rate (VBR) 
video sources does not either explicitly take into account group-
of-pictures (GOP) or assumes a fixed GOP structure. Real video 
data inherently possesses a variable GOP structure. We propose 
a number of doubly Markov models for such real data. These 
models outperform presently proposed models and have 
reasonable complexity in terms of the number of parameters. 

1. INTRODUCTION 

Variable bit rate video coding allows for great flexibility in terms 
of video coding, efficient compression ratios and can maintain 
desired video quality . Bitstreams from various VBR video 
sources can also be efficiently multiplexed over the network 
using statistical multiplexing techniques. All the above factors 
have led to VBR video encoders being the preferred mode of 
coding video streams and the focus of this paper is on modeling 
such video sources. Modeling video sources is important as it 
allows for network designers to estimate the parameters of 
networks like packet loss probabilities and end-to-end delays so 
that they can guarantee a desired quality of service (QoS). 
Modeling VBR video traffic poses difficulties as the bit rate for a 
given video sequence is determined by a large number of factors. 
Different compression schemes can lead to different bit rates for 
the same video sequence. Models for VBR traffic are dependent 
on the choice of the compression scheme. The popular standards 
defining compression schemes today are ISO MPEG series and 
ITU H.26x series with MPEG-4 and H.263 being some of the 
latest versions. More information about these standards can be 
obtained from [1,2]. These standards allow for three different 
kinds of coding schemes for a video frame in order to improve 
coding efficiency. A frame may be Intra (I), Predictive (P) or 
Bidirectionally-predictive (B). An I frame is coded in isolation 
from other frames using transform coding, quantization and 
entropy coding. A P frame is predictively coded, which means 
that a prediction is formed using a previously coded frame and 
only the difference between the prediction and the actual frame is 
coded. A B frame is predicted bidirectionally, which means that 
the prediction is formed using both its previous frame as well as 
the successive frame. An I frame is often used to efficiently code 
frames corresponding to scene changes, i.e. frames that are 
different from preceding frames and cannot be easily predicted. 
Frames within a scene are similar to preceding frames and hence 
may be coded predictively as P or B for increased efficiency. 
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Frames between two successive I frames, including the leading I 
frame, are collectively called a group of pictures (GOP). The 
work in this paper focuses on modeling explicitly video traffic 
consisting of I and P frames, and can be easily extended to B 
frames. 
Several models for VBR video traffic have been proposed in 
literature. Maglaris et al [3] have proposed a model for the 
coding bit rate of a single video source using interframe 
predictive coding. Sen et al [4] propose models for different 
activity levels using correlated Markov models and use queuing 
analysis to estimate the packet loss and delay. Yegenoglu et al 
[5] propose a model for VBR video using a time dependent 
Autoregressive (AR) model to represent data from different 
activity levels. Izquierdo and Reeves [6] have performed a survey 
of different statistical models proposed to model VBR video 
traffic. 
Most of the work does not explicitly take into account 
differences between I and P frames. Some work done by 
Doulamis et al [7] models I, P and B frames explicitly with an 
additional layer corresponding to the activity level of the video 
scene. This is a good model for video traffic. However, they 
impose a constraint of a fixed GOP structure. They assume that 
every GOP consists of an I frame followed by a fixed number of 
P and B frames in a fixed pattern. This model may not be 
appropriate for all video sequences, as video content does not 
necessarily follow any regular pattern. Chandra and Reibman [8] 
model I and P frames explicitly and allow for a variable GOP 
structure. However, their model requires a large number of 
parameters and they do not allow for any temporal correlation or 
different activity levels for I frames. 
In this paper we describe a simple two state model that can 
model I and P frame data and allow for flexibility in GOP 
structure. We then extend the model to account for different 
activity levels in the video bit rate. We try four different 
approaches and these are described and evaluated. 
This paper is organized as follows. Section 2 describes the 
simple two-state model. Section 3 describes the extensions to this 
model to allow for different activity levels in bit rate. Section 4 
includes analysis of experimental results from using these models 
to model real video traffic. Section 5 consists of the conclusion 
and future work. 

2. TWO STATE I AND P MODEL 
We propose a model for video sequences that consist of only I 
and P frames that is extremely simple, but still flexible enough to 
allow for variable GOP structure. Our model consists of a 
Markov chain having two states, one corresponding to I frames 
and the other corresponding to P frames. The model transitions 
between these states with probabilities based on the training data, 



with no constraint imposed on a fixed GOP structure. So we can, 
in effect model data from a variable GOP structure. Inside each 
state, to model the long-term temporal correlation between 
frames, AR(1) processes with Gaussian distributions are used to 
generate I and the P frames. The I frame AR(1) process is never 
restarted, while the P frame AR(1) process is restarted every time 
the model transitions from an I state to a P state. Therefore the 
AR(1) process for I frames captures long term correlations while 
that for P frames captures short term correlations. The parameters 
for the AR processes are estimated from the training data. Our 
model may be pictorially represented as in Figure 1.  
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Figure 1. Two-state I and P model 

The figure shows the proposed simple two-state model, with one 
state corresponding to I frames and the other state corresponding 
to the P frames. No constraints are imposed on the GOP structure 
and inside each state the frames are generated using an AR(1) 
process. Clearly, the parameters needed to specify the model are 
the four transition probabilities and three parameters for each 
AR(1) process (mean, variance and parameter ρ). The starting 
probabilities can be ignored as we always start with the I state. 
Hence this model needs a total of ten parameters.  

3. ACTIVITY MODELS 
The model proposed in the previous section is very simple and it 
performs well in modeling bitstreams that have a reasonably 
fixed activity level. If the video sequence has large differences in 
action levels between scenes, this leads to large variations of the 
bit rate within I or P frames, corresponding to different activity 
levels. It is difficult to capture this variation with a simplistic 
model and hence another level of complexity needs to be 
introduced in the model. We propose a number of doubly 
stochastic processes to model both the activity level changes and 
I and P frames corresponding to a certain activity level. As 
before, the temporal correlation between I frames or P frames 
corresponding to an activity level is captured using AR(1) 
processes with Gaussian distributions. The AR(1) processes are 
restarted as described for the Two-State I and P model. Again, 
we impose no constraint on the GOP structure or on the activity 
levels. The models we propose are described in the following 
subsections.  

3.1 Type I Models 

We describe two models in this sub-section. In each of these 
models we first decide whether to generate an I or a P frame 
(based on a Markov chain) and after that decide which activity 
level the frame should belong to. 

3.1.1 Doubly Markov Model 
This model has two Markov chains, one corresponding to the I 
and P selection and the other corresponding to the activity level 
selection. The outer Markov chain corresponds to the I and P 
frame selection. Within each state of this Markov chain we 

decide whether the frame corresponds to low (L), medium (M) or 
high (H) activity level. As we need to be flexible to allow a 
random GOP structure, we need to allow for transitions between 
the two states of the I and P Markov chain at every frame. Every 
time we enter an I or P state we reinitialize the activity Markov 
chain to obtain a frame corresponding to an activity level. 
However, if we re-enter an I or P state i.e. if the previous state 
was the same as the current state, we do not re-initialize the 
activity Markov chain and remember the state it was in 
previously. Once we decide on an I or P frame and the activity 
level, this frame is generated using an AR(1) process to obtain 
the temporal correlation between frames. This model is shown in 
Figure 2. 
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Figure 2. Type I Doubly Markov model 

As can be seen from the figure, first we decide whether a frame is 
I or P, after which the I or P frame is classified into an activity 
state and then the output is generated using an AR(1) process. To 
specify this model we need four transition probabilities for the I 
and P Markov chain, nine transition probabilities for each 
activity Markov chain, three parameters per AR(1) process and 
three starting probabilities per inner Markov chain (the outer 
chain is always started in the I state), totaling to 46 parameters. 
3.1.2 Simplified Model 
The model described in the previous section has a large number 
of parameters. On evaluation of the probabilities within an I or a 
P state we found that the transition probabilities between the 
activity states were very close to the unconditional probabilities 
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of the activity Markov chain and )(nS is the state of the model at 
time instant n. This means that the inner Markov chain can be 
replaced with a set of probabilities for selecting L, M or H 
activity state. So we can modify that model to obtain the one 
shown in Figure 3.  
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Figure 3. Type I Simplified model 

As can be seen from the above model, we first decide on whether 
a frame is I or P and after that we decide the activity model based 
on the probability of a state being in a certain activity model, 
given that it is an I or P frame. Once we decide this then the 
output is generated using an AR(1) process. The total number of 
parameters for this model is 28. 

3.2 Type II Models 

The models described in the previous section pick an I or P frame 
first and then choose an activity level. As against this the models 



described in this section pick the activity level first and then 
choose between I and P frames. 

3.2.1 Doubly Markov Model 
In this model the outer Markov chain corresponds to the activity 
level selection, while the inner one corresponds to the I and P 
frame selection. The outer chain has three states, for low, 
medium and high activity and the inner chain has two states, 
corresponding to I and P frames. Each time we transition into an 
activity state, we initialize the inner Markov chain to start with 
an I frame and then let the Markov chain generate data. This is 
allowed till this inner Markov chain transitions back to the I 
state, which indicates the completion of a GOP. Once this 
happens we test the outer Markov chain to decide which activity 
state the next GOP belongs to. The assumption underlying this 
model is that all frames within a GOP belong to one activity 
level. As mentioned before, within each activity and I or P state, 
data is generated using an AR(1) process to model the long-term 
temporal correlations. This model is shown in the following 
figure. 
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Figure 4. Type II Doubly Markov model 

As can be seen from the figure, the outer Markov chain 
corresponds to the activity level while the inner one corresponds 
to the I and P frames. We need nine transition probabilities for 
the activity Markov chain, four transition probabilities per I and 
P Markov chain, three parameters for each AR(1) process and 
three starting probabilities for the outer Markov chain, making a 
total of 42 parameters. It can be noticed that this model is similar 
to the Doulamis model, but our model is free from the constraint 
of a fixed GOP structure. 
3.2.2 Simplified Model 
We can relax some constraints from the previous model to reduce 
complexity. One of the constraints that we can relax is the 
assumption that all frames in a GOP belong to the same activity 
level. By relaxing this constraint, we can make our model more 
flexible and also reduce its complexity. The simplified model is 
shown in Figure 5. 
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Figure 5. Type II Simplified model 

The Markov chain helps in selecting the activity level of the 
frame, after which we decide to generate either an I or a P frame 

with a certain probability. Once we pick the type of the frame, it 
is generated using an AR(1) process, as before. Hence, the 
decision regarding the activity levels has to be taken for every 
frame, unlike in the previous case, when the decision regarding 
the activity level is taken once for a GOP. The total number of 
parameters for this model is 36.  

4. RESULTS AND DISCUSSION 

All the models were trained on the same data and characteristics 
of the generated bit rate were compared with those of the real 
data. The training data was from two different sequences. The 
first was a high motion video sequence made up of 
advertisements. We call this sequence Ads. This sequence had 
frequent scene changes, camera zooms and pans and a lot of 
motion. The second sequence was a news clip and we call it 
News. This sequence contained news reports from different 
locations and hence it contained a moderate amount of motion 
and some scene changes. Sample frames from both the sequences 
are shown in Figure 6. 

 

Figure 6. Sample frames from Ads (left) and News  

Both sequences consisted of five minutes of data sampled at 15 
Hz, making a total of 4500 frames. Each sequence was converted 
to bits using a H.263 standard compliant video codec. A random 
GOP was achieved by inserting I frames whenever there was a 
great change in video content. Predictive coding in H.263 allows 
for individuals blocks (also called macroblocks) in a P frame to 
be intra coded. This happens when a good prediction for the 
block cannot be found. If the number of such blocks in a P frame 
is bigger than an empirical threshold (70% of blocks in a frame), 
it indicates a great change in video content and hence the frame 
is labeled as an I frame. This labeling is appropriate as a P frame 
with a large number of intra coded blocks will have a bit rate as 
high as an I frame. 

Each model is trained independently on each of the sequences 
and then used to generate data. The autocorrelation function 
( xxR ) of the generated data ( )(kX ) is used as a measure of the 

performance of a model. xxR is estimated from the data using 
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for the generated data is then compared to that for the real data 
and the squared error between the two is computed. Some 
examples of the bit rate trace of real data and data generated by 
the models are shown in Figure 7. 
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Figure 7. Trace for News: Real trace (top), Two-state I 
and P model (middle) and Type I Doubly Markov model 

As can be seen from the figure, the real data and data generated 
by the Type I Doubly Markov model have three distinct activity 
levels. As against this, data generated by the Two-state I and P 
model does not show such activity levels. Hence models with 
activity levels can approximate the real data better. 

The following table contains some experimental results for the 
autocorrelation function error for generated data. The number in 
each column represents the improvement (reduction) in error for 
a given model over the two state I and P model, which is taken as 
the base. 

Table 1. Improvement in error in autocorrelation 
function w.r.t. Two-state I and P model 

Type I Models Type II Models  

Video 
data 

 

Doulamis 
Model 

Doubly 
Markov 

Simplified Doubly 
Markov 

Simplified 

Ads −54% 75.43% 69.85% 27.8% 63.69% 

News −49.3% 87.45% 86.71% 34.32% 85.03% 

As can be seen from the above table, the Doulamis model 
performs much worse than all the other models, for both 
sequences. This is due to the fact that the Doulamis model 
assumes a fixed GOP structure, which is inconsistent with real 
data generated by a video encoder that selects I frames based on 
video content. Besides this, the Doulamis model also assumes 
that all frames in a given GOP belong to the same activity level. 
Both these assumptions place rigid constraints on the model and 
hence lead to poor performance. In terms of the complexity of the 
model, it requires 19 parameters.  

It can also be seen that the addition of activity levels does lead to 
an improvement in performance over the two-state I and P 
model. All models have a smaller error in modeling data from 
News than from Ads. This is because the News data has a 
smoother autocorrelation function than the Ads data, due to the 
relatively smaller amount of motion. Among the models with 
added activity level, it can be seen that the Type I models 
perform better than the Type II models. This is because activity 

level of a bitstream of real data is well predicted by the choice of 
I and P frames, while the choice of I and P frames in an activity 
level is not as well predicted. The Type II Doubly Markov model 
performs the worst among all these models as it assumes that all 
the data within a GOP belongs to one activity level, which is too 
rigid a constraint. The Type I Doubly Markov model shows the 
best performance for both sequences. It can also be seen that the 
Type I Simplified model has a comparable performance. This is 
because in the test data the conditional probabilities for 
transitions within the inner Markov chain for the Type I Doubly 
Markov model are within 5% of the unconditional probabilities. 

5. CONCLUSION 

In this paper we propose some models for VBR video that allow 
for a flexible GOP structure. We start by introducing a simple 
two-state I and P model and then extend it by adding a level 
corresponding to the bit rate activity. These models are used to 
model real data and the results are evaluated in terms of the error 
between the generated autocorrelation function and the 
autocorrelation function of the real data. All the models proposed 
perform better than the model proposed for a fixed GOP 
structure. Among the models proposed, the Type I Doubly 
Markov model performs best, and the Type I Simplified model 
also gives reasonable error performance with a much smaller 
number of parameters. Future work includes additional tests to 
show that the data generated by these models also provides a 
better estimate of the packet loss probabilities and the delays 
over networks.  
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