
Picture Coding Symposium
Portland, OR, April 21-23 1999

Correlation Based Search Algorithms for Motion Estimation†

Mohamed Alkanhal, Deepak Turaga and Tsuhan Chen
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email: {alkanhal, dturaga, tsuhan}@ece.cmu.edu

† Work supported in part by Institute for Information Industry.

Abstract
The measure of the ‘goodness’ of a

motion estimation algorithm is governed by it’s
speed, the quality of motion compensation it
provides, and the size of the resulting bitstream.
Hence, algorithms should be evaluated based on
this ‘speed-quality-bitrate’ tradeoff. Previously
introduced fast motion estimation algorithms
focus mainly on the speed vs. quality of motion
compensation. In this paper, we introduce several
new algorithms and evaluate them based on all
three parameters. All these new algorithms
exploit spatial correlation of motion vectors.
These algorithms include a MAD (Mean Absolute
Distortion) based spiral search, an Adaptive
Window Size algorithm and two Majority Voting
schemes. The algorithms are evaluated on several
test sequences in the H.263 framework and the
results obtained are very encouraging.

1. Introduction
Block-based motion estimation forms the

base of all video coding schemes. It involves
finding a candidate block in a specified search
area, in the previous frame that is most similar to
the current block in the current frame. The
exhaustive or full search (ES) block matching
algorithm does a search over the entire search
space to come up with the optimal solution in
terms of quality of motion compensation. This is,
measured in terms of the MAD (sum of absolute
difference between corresponding pixels of the
current block and the test block). The ES is
computationally very intensive and several sub-
optimal search algorithms have been developed.
These reduce computational complexity while
trying to approximate the optimal solution. The
choice of an algorithm for motion estimation is
governed by the ‘speed-quality-bitrate’ tradeoff. A
good algorithm is one that has a low
computational complexity, provides a high quality
of motion compensation and also ensures that the
bitstream is as small as possible. The focus of this

paper is on this tradeoff and several new
algorithms are introduced to exploit such tradeoff.
Previous results in literature do not always
consider all the three factors.
1.1 Existing Techniques

There are a large number of different
sub-optimal search algorithms for block based
motion estimation. These include: Three Step
Search (TSS)[1], Four Step Search (FSS)[2],
Spiral Search [3], Two-D Logarithmic Search [4],
Orthogonal Search [5], Cross Search [6], One-at-
Time Search [7] etc. Among these algorithms, the
TSS and the FSS perform best in terms of coding
speed and resulting quality of motion
compensation.

These algorithms do not directly exploit
spatial correlation between neighboring motion
vectors. The algorithms introduced in this paper
use such spatial correlation to obtain better
performance. The use of such spatial correlation
helps in reducing the search space. It also helps in
reducing the bit rate for motion vectors because
standards like H.263 use differentially coded
motion vectors. The algorithms introduced in this
paper try to achieve better performance in terms of
all three parameters in the speed-quality-bitrate
tradeoff.

The first group of algorithms introduced use
spatial correlation for both selecting the starting
point for the search and restricting the search
space around the starting point. Two different
ways of altering the search space dynamically are
introduced. These are the MAD-based spiral
search and the Adaptive Window size search. The
second group includes two majority voting
schemes. These algorithms use spatial correlation
information to decide between FSS and TSS for
each block in the frame.

The spatial correlation information for all of
the above algorithms is picked from the same
configuration of neighbors that the H.263
standard uses for differentially coding the motion
vectors. This is shown in the following figure.

C: Current Block U: Upper Block
L: Left Block UR: Upper Right Block
Fig.1 Motion Vector Prediction in H.263

These neighboring blocks are called the
predictor blocks. The median of these three
motion vectors is used to predict the motion vector
of C.

2 The Techniques
In this section, new techniques are proposed

and discussed. These techniques are MAD-based
spiral search, Adaptive Window Size, majority
voting and extended majority voting.

2.1 MAD-Based Spiral Search (M-BSS)
Most image sequences have smooth motion

and high spatial correlation. It is quite likely that
the motion vector of a block is close to the motion
vectors of its neighbors. Hence, the search window
center can be predicted using the motion vectors
of the predictor blocks. If the spatial correlation
information is right, the best match should be
around this predicted center.

The M-BSS uses the motion vectors of the
predictor blocks to get a predicted search window
center. It then uses the MAD values of these
predictor blocks to achieve a variable window
size. The MAD is computed starting at the center
of the search window, and moving outward
spirally (Fig. 2). This process is stopped once the
MAD falls under a threshold value. This threshold
is clearly the parameter that controls the size of
the window and it is obtained from the MAD
values of the predictor blocks. We choose the
threshold to be the same as the median of the
MAD values of the predictor blocks. A median
operation helps suppress the effect of the MAD
value of any uncorrelated block in the
neighborhood.
 Fig. 2 MAD-based spiral search.

This algorithm suffers from the drawback
that errors in the threshold value can propagate
through the sequence. It is possible that the MAD
threshold computed is much larger than the
achievable MAD. This leads to accumulation of
errors over time. Hence, the threshold must be
updated frequently, using a full search. We tried
doing an update every first block of the frame,
every first row of the frame and finally every n
blocks. The last update method outperformed the
other two in terms of quality without sacrificing
too much on speed

One parameter that also needs to be
defined is the largest size of the variable window.
A window with size (± 16, ± 16) and a window
with size (±3, ±3) were tried. The tradeoff
between quality of motion compensation and
speed is indicated in the results.

2.2 Adaptive Window Size Search (AWSS)
This algorithm also uses the motion

vectors of the predictor blocks to predict the center
of the search space. It, however, also derives the
search window size from the motion vectors of the
predictor blocks. Motion vectors are classified as
small, medium and large. The predictor blocks
with small motion vectors vote for a small window
size, while those with medium size motion vectors
vote for a medium search window and so on.
Small medium and large are defined as follows:

a) Small: 4, ≤mvymvx ;Window = 4

b) Large: 8>mvyormvx ;Window = 16

c) Medium: all other mvx, mvy; Window = 8
The window size with a majority of votes

is picked. In the absence of a clear winner, the
medium size window is selected. A full search is
done in the region of the intersection of this
window and the original search space.

 L C

 U UR

Fig. 3 Search area: Intersection of adaptive search
window around block center and small window
around predicted center.

This algorithm also suffers from the
accumulation of errors, and the window might get
trapped to have a small size. Hence, a dynamic
update for the window size is needed. For this
paper, a full search was implemented for the first
block of every frame. This update gave
satisfactory results both in terms of computation
and quality of motion compensation. Future work
might focus on the selection of the update
procedure. Better performance may also be
achieved by combining the M-BSS with this
algorithm.

2.4 Majority Voting Algorithm (MVA)
The TSS and the FSS perform really well

for different kinds of sequences. While the TSS is
better for large motion, the FSS is more efficient
for small motion. We need to exploit these good
features in order to get a good performance over
many different sequences. This algorithm decides
for every block whether it wants to do a TSS or a
FSS, depending on whether the current scene is
high motion or low motion. Each of the predictor
blocks votes for either the TSS or the FSS. The
vote is cast depending on the motion vector of the
voting block. If the voting block has a large
motion vector, then it will vote for the TSS,
otherwise it will vote for the FSS. A majority of
the three votes is accepted and the corresponding
winning algorithm is picked. A large motion
vector is one that is at least a certain threshold
distance away from the center. This threshold can
be varied. Also, other criteria for the voting
scheme are also being considered.

2.5 Extended Majority Voting (EMV)
An extension to the majority voting scheme

has also been implemented. In this modification to
the voting scheme, not only does the algorithm
pick between the FSS and the TSS, but also the
starting point of the search is moved based on
spatial correlation. This exploits spatial
correlation more effectively. Both the TSS and
FSS are center biased and hence perform more
efficiently if the predicted center is close to the
best match. The moving of the starting point can
also help avoid getting trapped in local minima.

3.0 Simulation Results and Discussions

Simulations have been performed on four
video sequences. Children and Weather are QCIF
streams at 10Hz that have 10 frames each.
Coastguard is QCIF with 300 frames at 30Hz,
while Stefan is a CIF sequence with 300 frames at
the 30Hz. All algorithms are compared in terms of
the Average MAD, the CPU time and the size of
the resulting bitstream. The bitstream includes
both the Motion Vector Difference (MVD) bits
and the error bits. The first frame is not included
in the total bits calculations.

The conversion of the error image and motion
vectors to bitstream has all been done in
conformance with the H.263 standard. While
deriving the motion vectors for a particular frame,
the best match is located in the original previous
frame and not a coded version of it. Also, the
error bits are based on coding of the difference
between the predicted frames using original
previous frame and the current frame.

All these algorithms are evaluated based on
the following criteria:
a) The CPU time taken by the algorithm, as

measured on a Pentium 200 MHz processor.
b) The average MAD for different sequences (as

a measure of the quality of motion
compensation).

c) The total number of bits to code the sequence
(the error bits and the motion vectors).

Table 1 shows the results for the MAD based
spiral search algorithm. The algorithm was
implemented with the largest window size set at ±
16. Results for an update done every n = 10 blocks
are included. It can be seen that this performs
better for sequences with correlated motion like
Coastguard.
 Table 1
Sequence MAD CPU

Time
Error
bits

MVD bits Total
bits

Children 7.88 16.24 828K 3,307 832K
Weather 2.57 20.08 533K 1,687 535K

Coastguard 3.63 449.05 11.9M 123K 12M
Stefan 9.13 1604.36 140M 894K 141M

Table 2 shows results of the MAD-based
spiral search with a small window size. In order
for the comparison to be valid, it is compared with
an exhaustive search over the small window. It
can be seen that the MAD based spiral search is
much better in terms of speed, while the quality of
motion compensation is worse (especially for
uncorrelated sequences like Children).

 Table 2
Sequence Algo. MAD CPU

Time
Error
bits

MVD
bits

Total
bits

Children ES 8.75 1.36 831K 2421 833K

M-BSS 9.58 1.01 863K 2828 866K
ES 2.67 1.41 533K 1629 535KWeather

M-BSS 2.73 1.25 535K 1560 536K
ES 3.52 44.3 11.7M 130K 11.8MCoastguard

M-BSS 3.66 26.2 11.9M 122K 12.1M
ES 12.47 237.6 178M 898K 179MStefan

M-BSS 13.57 106.1 176M 916K 177M

Table 3 includes the results for the
adaptive window size algorithm. The performance
of this algorithm is between the small window full
search and the small window MAD based spiral
search. It is however, much worse than the MAD
based spiral search in terms of computation for
the Coastguard sequence.
 Table 3

Sequence MAD CPU
Time

Error
bits

MVD
bits

Total
bits

Children 8.78 1.23 831K 2391 833K
Weather 2.70 1.32 534K 1536 536K

Coastguard 3.58 38.99 11.8M 129K 11.9M
Stefan 14.19 146.9 198M 636K 199M

Table 4 shows results of implementing
the majority voting and the extended majority
voting algorithms. It can be seen that both these
algorithms perform better in terms of MAD for
sequences with correlated motion such as Weather
and Coastguard. The EMV in fact does better in
term of speed also. Both of the algorithms do
better than the TSS in terms of the number of bits.
The EMV does better than the FSS in terms of the
number of bits for Weather and does around the
same number for Coastguard. In sequences with
large motion, such as Children, both these
algorithms perform better than the FSS in terms
of speed and MAD. They however, perform worse
than the TSS. For sequences with uncorrelated
motion, such as Stefan, these sequences do not
perform as well. They, however, do better than the
FSS, which seems to get trapped in local minima,
thereby giving a high speed, but poor MAD.
Overall, it can be seen that both these algorithms
try to exploit the nice features of the TSS and the
FSS to give a good performance for sequences
with correlated motion.

 Table 4
Sequence Algo. MAD CPU

Time
Error
bits

MVD
bits

Total
bits

FSS 8.64 1.04 825K 3424 828K
TSS 8.41 1.73 821K 3859 825K
MVA 8.47 1.11 825K 3423 828K

Children

EMV 8.44 0.84 824K 3422 828K
FSS 2.83 1.0 532K 2372 534K
TSS 2.78 1.8 534K 2429 536K
MVA 2.59 1.1 532K 2374 534K

Weather

EMV 2.56 1.0 532K 2334 534K
FSS 3.67 41.8 11.7M 78K 11.8M
TSS 3.76 62.5 11.9M 83K 12.0M
MVA 3.58 41.3 11.8M 80K 11.9M

Coastguard

EMV 3.56 41.1 11.8M 79K 11.9M

FSS 11.20 197.9 165M 839K 166M
TSS 10.42 258.7 159M 943K 160M
MVA 10.4 217.6 157M 891K 158M

Stefan

EMV 10.9 229.8 170M 1.0M 171M

4.0 Conclusion
In this paper, a number of new

algorithms were proposed and implemented. All
of these algorithms use spatial correlation
information. These algorithms were designed
taking into account the “speed-quality-bitrate”
tradeoff. The best algorithm is the Extended
Majority Voting. It is very attractive for most
sequences as it uses the TSS, the FSS and spatial
information most effectively to perform well in
terms of all three of the “speed-quality-bitrate”
tradeoff.

References
 [1] R. Li, B. Zeng, and M. L. Liou, “A new

three-step search algorithm for block motion
estimation”, IEEE Trans. on Circuits and
Systems for Video Technology, vol. 4, no. 4,
pp. 438-442, Aug. 1994.

 [2] L. Po and W. Ma, “ A Novel Four-Step
Search Algorithm for Fast Block Motion
Estimation”, IEEE Trans. on Circuits and
Systems for Video Technology, vol. 6, no. 3,
pp. 313-317, June 1996.

 [3] T. Zahariadis and D. Kalivas, “A Spiral
Search Algorithm for Fast Estimation of
Block Motion Vectors”, Signal Processing
VIII, theories and applications, proceedings
of the EUSIPCO 96, Eighth European Signal
Processing Conference p.3 vol. Lxiii + 2144,
pp.1079-1082, vol.2.

 [4] J. Jain and A. Jain, “Displacement
Measurement and its application in
interframe image coding”, IEEE Trans. on
Communications, vol. COM-29, pp. 1799-
1808, Dec. 1981.

 [5] A. Puri, H. Hang and D. Schilling, “An
efficient block-matching algorithm for motion
compensated coding”, Proceedings IEEE
ICASSP, pp. 25.4.1 - 24.4.4, 1987.

 [6] M. Ghanbari, “ The Cross-Search Algorithm
for Motion Estimation”, IEEE Trans. on
Communications, vol. COM-38, no. 7, pp.
950-953, July 1990.

 [7] R. Sinivasan, K. Rao, “Predictive coding
based on efficient motion estimation”,
International Conference on
Communications, Part 1, pp. 521-526, 1988,
Amsterdam.

