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0.1 Introduction 

 

Standards define a common language that different parties can use, so that they can 

communicate with one another. Standards are thus, a prerequisite to effective 

communication. Video coding standards define the bitstream syntax, the language that 

the encoder and the decoder use to communicate. Besides defining the bitstream syntax, 

video coding standards are also required to be efficient, in that they should support good 

compression algorithms as well as allow the efficient implementation of the encoder and 

decoder. 

 

In this chapter we are introducing the ITU-T video coding standards with the focus being 

on the latest version, H.263. This version is also known as H.263 Version 2, or H.263+, 

as opposed to an earlier version of H.263. Whenever we say H.263 in this chapter, we 

mean the latest version. 

 

This chapter is organized as follows. Section 0.2 defines what a standard is and the need 

for standards. It also lists some of the prevalent standards and organizations involved in 



developing them. Section 0.3 talks of the fundamental components of video coding 

standards in general and also some specifics regarding the H.263 standard. The basic 

concepts of motion compensation, transform coding and entropy coding are introduced. 

The section concludes with a overall block diagram of the video encoder and decoder. 

Section 0.4 is specific to H.263 and describes the optional modes that are available with 

it. These options are further grouped into options for better picture quality, options for 

added error resilience and options for scalabilities. There are some other miscellaneous 

options that are also described. There is also some discussion on the levels of preferred 

support and other supplemental information. Section 0.5 is the conclusion and includes 

some general remarks and further sources of information. 

 

0.2 Fundamentals of Standards 

 

Multimedia communication is greatly dependent on good standards. The presence of 

standards allows for a larger volume of information exchange, thereby benefiting the 

equipment manufacturers and service providers. It also benefits customers, as now they 

have a greater freedom to choose between manufacturers. All in all, standards are a 

prerequisite to multimedia communication. Standards for video coding are also required 

to be efficient for the compression of video content.  This is because a large number of 

bits are required for the transmission of uncompressed video data. 

 

The H.263 version 2 standard [1] belongs to a category of standards called voluntary 

standards. These standards are defined by volunteers in open committees and are agreed 



upon based on the consensus of all the committee members. They are driven by market 

needs and try to stay ahead of the development of technologies. H.263 is the latest in the 

series of low bit rate video coding standards developed by ITU-T and was adopted in 

1996 [3]. It combined the features of MPEG and H.261[2] (an earlier standard developed 

in 1990) for very low bit rate coding. H.263 version 2 or H.263+ was adopted in early 

1998 and is the current prevailing standard from ITU-T. This standard is the focus of this 

chapter and whenever we say H.263 we are referring to H.263 version 2.  

 

Another major organization involved in the development of standards is the International 

Organization for Standardization (ISO). Both these organizations have defined different 

standards for video coding. These different standards are summarized in Table 1. The 

major differences between these standards lie in the operating bit-rates and the 

applications they are targeted for. Each standard allows for operating at a wide range of 

bit-rates, hence each can be used for a range of applications. All the standards follow a 

similar framework in terms of the coding algorithms, however there are differences in the 

ranges of parameters and some specific coding modes. 



 

Table 1 

Video Coding Standards Developed by different Organizations 

Standards 

Organization 

Video Coding 

Standard 

Typical Range of 

Bit Rates 

Typical 

Applications 

ITU-T H.261 p×64 kbits/s, 

p=1…30 

ISDN Video Phone 

ISO IS 11172-2 

MPEG-1 Video 

1.2 Mbits/s CD-ROM 

ISO IS 13818-2 

MPEG-2 Video1 

4-80 Mbits/s SDTV, HDTV 

ITU-T H.263 ?? PSTN Video Phone 

ISO  CD 14496-2 

MPEG-4 Video 

24-1024 kbits/s A wide range of 

applications 

ITU-T H.26L < 64 kbits/s A wide range of 

applications 

 

                                                           
1 ITU-T also actively participated in the development of MPEG-2 Video.  In fact, ITU-T H.262 refers to the same 
standard and uses the same text as IS 13818-2. 



 

For a manufacturer to build a standard compliant codec, it is very important to look at the 

bitstream syntax and to understand what each layer corresponds to and what each bit 

represents. This approach is, however, not necessary to understand the process of video 

coding. In order to have an overview of the standard, it suffices to look at the coding 

algorithms that generate the standard compliant bitstream. This approach emphasizes an 

understanding of the various components of the codec and the functions they perform. 

Such an approach helps in understanding the video coding process as a whole. This 

chapter focuses on the second approach.  

 

0.3 Basics of Video Coding 

 

Video coding involves not only translation to a common language, but also tries to 

achieve compression. This compression is achieved by trying to eliminate redundancy in 

the video data. There are two kinds of redundancies present in video data. The first kind 

of redundancies is spatial, while the second kind is temporal. Spatial redundancy refers to 

the correlation present between different parts of a frame. Removal of spatial redundancy, 

thereby involves looking within a frame and is hence referred to as Intra Coding. 

Temporal redundancies, on the other hand are the redundancies present between frames. 

At a sufficiently high frame rate it is quite likely that successive frames in the video 

sequence, are very similar. Hence, removal of such temporal redundancy involves 

looking between frames and is called Inter Coding. Spatial redundancy is removed 



through the use of Transform Coding techniques. Temporal redundancy is removed 

through the use of Motion Estimation and Compensation techniques.  

 

 

0.3.1 Source Picture Formats and Positions of Samples 

 

In order to implement the standard, it is very important to know the picture formats that 

the standard supports and positions of the samples in the pictures. The samples are also 

referred to as pixels (picture elements) or pels. Source picture formats are defined in 

terms of the number of pixels per line, the number of lines per picture and the pixel 

aspect ratio. H.263 allows for the use of five standardized picture formats. These are the 

CIF (Common Intermediate Format), QCIF (Quarter-CIF), sub-QCIF, 4CIF and 16CIF. 

Besides these standardized formats it also allows support for custom picture formats that 

can be negotiated. Details about the 5 standardized picture formats are summarized in 

Table 2.  



 

Table 2 

Standard picture Formats Supported by H.263 

 Sub-QCIF QCIF CIF 4CIF 16CIF 

No. of Pixels per Line 128 176 352 704 1408 

No. of Lines 96 144 288 576 1152 

Uncompressed Bit Rate 

(at 30 Hz) 

4.4 Mb/s 9.1 Mb/s 37 Mb/s 146 Mb/s 584 Mb/s 

 



 

The pixel aspect ratio is defined in the recommendations for H.261 as 12:11. Using this, 

it can be seen that all the standard picture formats defined in the table above cover an 

area that has an aspect ratio of 4:3.  

 

Each sample or pixel consists of three components, a luminance or Y component and two 

chrominance or CB and CR components. The values of these components are as defined in 

[4]. As an example, “black” is represented by Y = 16, while “white” is represented by Y 

= 235, while the values of CB and CR lie in the range 16 to 240. CB and CR values of 128 

represent zero color difference or a gray region. The picture formats shown in Table 2 

define the resolution of the Y component. As it is known that the human eyes are less 

sensitive to the chrominance components, these components typically have only half the 

resolution, both horizontally and vertically, of the Y component. This is referred to as the 

4:2:0 format. Each CB or CR pel lies at the center of four neighboring Y pels. This is 

shown in Figure 1. The block edges can lie in between rows or columns of Y pels. 

Luminance sample

Chrominance sample

Block edge

 

Figure 1. Positions of luminance and chrominance samples 



As was mentioned before H.263 allows support for negotiable custom picture formats. 

Custom picture formats can have any number of pixels per line and any number of lines 

in the picture. The only constraint applied is that the number of pixels per line should be a 

multiple of 4 in the range [4,..2048] and the number of lines per picture should also be a 

multiple of 4 in the range [4,..1152]. Custom picture formats are also allowed to have 

custom pixel aspect ratios and this is shown in Table 3.  



 

Table 3 

Different Pixel Aspect Ratios Supported by H.263 

Pixel Aspect Ratio Pixel Width : Pixel Height 

Square 1:1 

CIF 12:11 

525-type for 4:3 

picture 

10:11 

CIF for 16:9 picture 16:11 

525-type for 16:9 

picture 

40:33 

Extended PAR m:n, m and n are relatively 

prime 

  



 

These pictures or frames occur at a certain rate to make the video sequence. The standard 

specifies that all decoders and encoders should be able to use the standard CIF picture 

clock frequency (PCF). The PCF is 30000/1001 frames per second for CIF. It is also 

allowed for decoders and encoders to have custom PCF, even higher than 30 frames per 

second. 

 

 

0.3.2 Blocks, Macroblocks and Groups of Blocks 

 

H.263 uses block based coding schemes. In these schemes, the pictures are sub-divided 

into smaller units called blocks that are processed one by one, both by the decoder and 

the encoder. These blocks are processed in the scan order as shown in the following 

figure 
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Figure 2. Scan order of blocks 

 



 

A block is defined as a set of 8x8 pixels. As the chrominance components are 

downsampled, each chrominance block corresponds to four Y blocks. The collection of 

these 6 blocks is called a macroblock (MB). A MB is treated as a unit during the coding 

process.  

 

1 2  5   6  

3 4       

Y   CB   CR  

Figure 3. Blocks in a Macroblock 

A number of MBs are grouped together into a unit called a Group of Blocks (GOB). The 

H.263 allows for a GOB to contain one or more rows of MBs. This shown in Figure 4 

 

GOB 1

GOB 2

GOB 3

GOB 4

GOB 5
 

Figure 4. Example GOB Structure for a QCIF picture 



The optional slice structured mode allows for the grouping of MBs into slices, which may 

have arbitrary number of MBs grouped together. More about the slice structured mode is 

in Section 0.4.2.1. 

 

0.3.3 Compression Algorithms 

 

Compression involves removal of spatial and temporal redundancy. The H.263 standard 

uses the Discrete Cosine Transform to remove spatial redundancy and motion estimation 

and compensation to remove temporal redundancy. These techniques are discussed in the 

following sections. 

 

 

0.3.3.1 Transform Coding  

 

Transform coding has been widely used to remove redundancy between data samples.  In 

transform coding, a set of data samples is first linearly transformed into a set of transform 

coefficients.  These coefficients are then quantized and entropy coded.  A proper linear 

transform can de-correlate the input samples, and hence remove the redundancy.  Another 

way to look at this is that a properly chosen transform can concentrate the energy of input 

samples into a small number of transform coefficients, so that resulting coefficients are 

easier to encode than the original samples. 

The most commonly used transform for video coding is the discrete cosine transform 

(DCT)[5] [6].  Both in terms of objective coding gain and subjective quality, DCT 



performs very well for typical image data.  The DCT operation can be expressed in terms 

of matrix multiplication: 

XCCY T=  

where X  represents the original image block, and Y  represents the resulting DCT 

coefficients.  The elements of C , for an 8×8 image block, are defined as 
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After the transform, the DCT coefficients in Y are quantized.  Quantization involves loss 

of information, and is the operation most responsible for the compression.  The 

quantization step size can be adjusted based on the available bit rate and the coding 

modes chosen.  Except for the intra DC coefficients that are uniformly quantized with a 

step size of 8, a “dead zone” is used while quantizing all other coefficients. This is done 

in order to remove noise around zero.  The input-output relations for the two cases are 

shown in Figure 5. 

 



original

quantized

original

quantized

Quantization
without dead zone

Quantization
with dead zone

 

Figure 5. Quantization with and without “dead zone” 

The quantized 8×8 DCT coefficients are then converted into a one-dimensional (1D) 

array for entropy coding. Figure 5 shows the scan order used in H.261 for this 

conversion.  Most of the energy concentrates on the low frequency coefficients, and the 

high frequency coefficients are usually very small and are quantized to zero before the 

scanning process.  Therefore, the scan order in Figure 6 can create long runs of zero 

coefficients, which is important for efficient entropy coding, as we will discuss in the 

next paragraph. 

DC

 

Figure 6. Scan order of the DCT coefficients 

 



The resulting 1D array is then decomposed into segments, with each segment containing 

some (this number may be zero) zeros followed by a nonzero coefficient. Let an event 

represent the three values (run, level, last). “Run” represents the number of zeros; “level” 

represents the magnitude of the nonzero coefficient following the zeros and “last” is an 

indication of whether the current non-zero coefficient is the last non-zero coefficient in 

the block. A Huffman coding table is built to represent each event by a specific 

codeword, i.e., a sequence of bits.  Events that occur more often are represented by 

shorter codewords, and less frequent events are represented by longer codewords.  So, the 

table is often called a variable length coding (VLC) table. This coding process is 

sometimes called “run-length coding.” An example of the VLC table is shown in the 

Table 4. The transform coefficients in this table correspond to input samples chosen as 

the residues after motion compensation, which will be discussed in the following section. 



 

Table 4 

Partial VLC Table for DCT coefficients 

LAST RUN |LEVEL| VLC CODE 

0 0 1 10s
0 0 2 1111 s
0 0 3 0101 01s
0 0 4 0010 111s
0 0 5 0001 1111 s
0 0 6 0001 0010 1s
0 0 7 0001 0010 0s
0 0 8 0000 1000 01s
0 0 9 0000 1000 00s
0 0 10 0000 0000 111s
0 0 11 0000 0000 110s

 



In the above table the third column represents the magnitude of the level. The sign bit added at 

the end of the VLC code, represented as s takes care of the sign of the level. It can be seen from 

the table that more frequently occurring symbols (for instance symbols with smaller magnitudes) 

are assigned fewer bits than the less frequently occurring symbols. It is reasonable to assume that 

smaller magnitude symbols occur more frequently than the large magnitude symbols, because 

most of the time we code the residue found after motion compensation (discussed in the next 

section) and this residue does tend to have small magnitudes. 

  

0.3.3.2 Motion Compensation 

 

Motion compensation involves removing the temporal redundancy present in video 

sequences. When the frame rate is sufficiently high, there is a great amount of similarity 

between neighboring frames. It is more efficient to code the difference between frames, 

rather than the frames themselves. An estimate for the frame being coded is obtained 

from the previous frame and the difference between the prediction and the current frame 

is sent. This concept is similar to Predictive Coding and Differential Coding techniques. 

 

Most video sequences have moving objects in them and this motion is one of the reasons 

for the difference between successive frames. If there were no motion of objects between 

frames, these frames would be very similar. The basic idea behind motion compensation 

is to estimate this motion of objects and to use this information to build a prediction for 

successive frames. H.263 supports block based motion estimation and compensation. 

Motion compensation is done at the MB level, except in the advanced modes, when it is 

done at the block level. The process involves looking at every MB in the current frame 



and trying to find a match for it in the previous frame. Each MB in the current frame is 

compared to 16x16 areas in a specified search space in the previous frame, and the best 

matching area is selected. This area is then offset by the displacement between its 

position and the position of the current MB. This forms a prediction of the current MB. In 

most cases, it is not possible to find an exact match for the current MB. The prediction 

area is usually similar to the MB and the difference or residue between the two is small. 

Similarly, predictions for all the MBs in the current frame are obtained and the prediction 

frame is constructed. The residue frame is computed and is expected to have a much 

smaller energy than the original frame. This residue frame is then coded using the 

transform coding procedure. More information about motion compensation can be found 

in [7] and [8]. The process of motion compensation is highlighted in Figure 7. 

 

M V

 

Figure 7. Motion Compensation 

In the above figure, the gray block on the right corresponds to the current block being coded and 

the gray area on the left represents the best match found for the current block, in the previous 

frame. A major part of the encoding process involves finding these best matches or equivalently 

the offsets between the position of the best match and the position of the current block. This 

process of searching for the best matches is called Motion Estimation. 

Previous Frame Current Frame 



These offsets between the position of the best match and the position of the current MB 

are called motion vectors. H.263 allows these motion vectors to have non-integral values. 

For instance the motion vector for a MB may have the value (1.5, -4.5), which means that 

the best match for the current block has pixels that lie at non-integral positions. All pixels 

in the previous frame are at integer pixel positions. Hence pixels at non-integral positions 

have values that are computed from the original pixel values using bilinear interpolation. 

The pixel positions and their interpolated values are shown in Figure 8. 

 

(x+1,y)(x,y)

(x,y+1) (x+1,y+1)
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(x+1,y+0.5)

(x+0.5,y+0.5)

(x+0.5,y+1)

(x,y+0.5)
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Half pixel position  

Figure 8. Half pixel positions 

 

It is possible that for a particular MB, we cannot find a good match, in which case the 

residue error between the best match and the MB itself may have as much energy as the 

original MB. For such cases, it is better to not do motion compensation. The encoder has 

the flexibility to decide for each MB, whether it wants to do motion compensation or 

transform coding. However, in most cases, a saving is accomplished in the bits to code 

the residue. Besides the residue we also need to send the information regarding 



construction of the prediction frame to the decoder. This information is basically the 

motion vectors. The decoder can then use these to reconstruct the prediction frame and 

add to it the residue (this is transform coded) to obtain the current frame. In order to 

avoid a large increase in the bitstream because of these motion vectors, these are also 

differentially coded. The motion vectors of three neighboring MBs (one to the left, one 

above and one above right) are used as predictors for the motion vector of the current 

MB. The prediction is formed by taking the median of these three motion vectors. The 

prediction error between the actual motion vector and the predicted value in the 

horizontal direction and the vertical direction is coded. This is shown in Figure 9. 

MV2

MVMV1

MV3
MV: Current motion vector
MV1, MV2, MV3: predictors
prediction = median(MV1,MV2,MV3)

 

Figure 9. Prediction of motion Vectors 

 

 

Special cases are needed to take care of MBs for which the predictors lie outside the 

picture or GOB boundary. These special cases are shown in Figure 10. 

 



MV1

MVMV1

MV1MV2

MV(0,0)

MV3 MV2

MV

(0,0)

MV1

Picture boundary or GOB boundary  

Figure 10. Special Case Motion Vector prediction 

Whenever one of the prediction MBs lies outside the picture or GOB boundary, it is 

replaced by (0,0), however, when two MBs lie outside, they are replaced by the motion 

vector of the third MB. This is done to avoid having two of these motion vectors replaced 

by zeros, in which case the final value got after the median operation will be (0,0). The 

prediction error in motion vectors is also coded using a VLC table. Part of the table is 

shown in Table 5. 



 

 

Table 5  

Part of the VLC Table for Motion Vector Differences 

Vector differenc Codes
5 27 0000 0100 11

-4.5 27.5 0000 0101 01
-4 28 0000 0101 11
-3.5 28.5 0000 0111
-3 29 0000 1001
-2.5 29.5 0000 1011
-2 30 0000 111
-1.5 30.5 0001 1
-1 31 0011
-0.5 31.5 011
0 1
0.5 -31.5 010
1 -31 0010
1.5 -30.5 0001 0
2 -30 0000 110
2.5 -29.5 0000 1010
3 -29 0000 1000
3.5 -28.5 0000 0110
4 -28 0000 0101 10
4.5 -27.5 0000 0101 00
5 -27 0000 0100 10

 



 

It can be seen from Table 5 that there are two motion vector difference values that 

correspond to the same codeword. These can be separated by the knowledge that the final 

decoded motion vector should lie in the range [-16,15.5]. The exploitation of this fact 

leads to additional savings in terms of bit rate. 

 

 

0.3.3.3 Summary 

 

All these basic techniques form part of the baseline options that are specified by H.263. 

There are other advanced negotiable options, which we will discuss in the next section. 

These basic coding algorithms may be put together to form a block diagram 

representation of the video encoder and decoder. This is shown in the Figure 11. 
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Figure 11. Block Diagram of Encoder and Decoder 

 

Based on some experiments conducted by us, using baseline H.263 provides us with 

perceptually good quality for simple talking head sequences at ~ 400 bytes per frame and 

sequences with moderate motion at ~ 1000 bytes per frame. In terms of compression 

ratios this translates to 100 for low motion sequences and 40 for moderate motion 

sequences.  

 

0.4 Negotiable Options 

 

H.263 allows for several advanced negotiable options. At the start of a communication 

session, the decoder signals the encoder regarding what all options it can support. If the 



encoder also supports those options these may be turned on. These advanced options are 

provided for better coding efficiency, error resilience and include some enhancements for 

scalabilities. These are described in the following section. 

 

0.4.1 Coding Modes for Efficiency or  Improved Picture Quality 

 

The modes described in this section try to improve the coding efficiency by using better 

coding algorithms or try to improve the quality of the decoded pictures.  

 

0.4.1.1 Unrestricted Motion Vector (UMV) Mode 

 

In the baseline prediction mode of H.263 all motion vectors are restricted to the picture 

boundaries. This restriction is removed in this mode and pixels outside of the picture 

boundaries are referred to. Clearly these are not originally defined. These are obtained 

through the process of extrapolation. When a pixel referenced by a motion vector lies 

outside the coded picture area, an edge pixel is used instead. Another feature of this mode 

is the fact that it allows for an extension to the motion vector range. In the baseline mode, 

motion vectors are restricted to [-16, 15.5]. In the UMV mode, this range is extended to [-

31.5, 31.5]. A larger motion vector range is very useful when the scene being encoded is 

high motion (especially when there is great camera motion) or the frame rate is low. In 

both cases large amounts of motion can occur between successive frames and hence the 

best match is likely to be further displaced from the current block, necessitating a large 

search range.  



0.4.1.2 Syntax Based Arithmetic Coding (SAC) 

 

This option deals with the process of entropy coding and decoding i.e. converting 

symbols to bits and back. Instead of using the Huffman-like Entropy Coding VLC tables, 

the encoder and decoder use arithmetic coding to generate the bitstream. Arithmetic 

coding is more efficient than the VLC and results in savings in the size of the bitstream. 

Based on some experiments that we conducted, we have found that SAC results in 

savings of around 10-20% for intra frames and around 1-3% for inter frames. The use of 

arithmetic coding generates a bitstream different from the VLC generated bitstream, 

however, the quality of the reconstructed pictures is the same. Some more information 

about Arithmetic coding can be obtained from [9].  

 

0.4.1.3 Advanced Prediction Mode 

 

This mode contains two basic features. The first feature supported by this mode is the use 

of four motion vectors per MB. The second feature supported is Overlapped Block 

Motion Compensation (OBMC). OBMC involves using motion vectors of neighboring 

blocks to reconstruct a block, thereby leading to an overall smoothing of the image and 

removal of blocking artifacts. Both these modes are discussed in more detail in the 

subsections. Like in the UMV mode, this mode also allows motion vectors to cross 

picture boundaries. Pixels outside the coded area are obtained by extrapolating, as in the 

UMV case. The extension of motion vector range, however, is not automatically turned 

on.  



 

0.4.1.3.1  Four Motion Vectors per Macroblock 

 

Each luminance block in the MB is allowed to have it’s own motion vector. This allows 

greater flexibility in obtaining a best match for the MB. It is now possible to find really 

good matches for each of the four parts of the MB and hence, when these parts are put 

together, a much better prediction for the MB is obtained. Having four motion vectors 

also means more motion vector data has to be sent to the decoder. If the savings in the 

residue for the MB are offset by the extra bits needed to send the four motion vectors, 

then there is no point in sending four motion vectors. Hence, the encoder needs to be able 

to intelligently decide whether it wants to send one motion vector or four motion vectors 

for every MB. With four motion vectors per MB it is no longer possible to code the 

motion vector difference using the same scheme as in the baseline case. A new set of 

predictors is defined in the standard. These are shown in Figure 12. 
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Figure 12. Redefinition of Motion Vector Prediction 

 



 

The predictors are chosen such that none of them are redundant. For instance if MV* was 

chosen as a predictor for the upper left block of the MB, it would probably make the 

choice of MV1 redundant. This is because it is quite likely that MV2 and MV* are close 

to one another, as they come from the same MB. Hence, the information obtained from 

MV1 is suppressed by the median operation. Such redundancy is avoided by picking a 

motion vector form another MB. 

 

0.4.1.3.2  Overlapped Block Motion Compensation (OBMC) 

 

Every pixel in the final prediction region for a block is obtained as a weighted sum of 

three values [10]. These values are obtained using the motion vector of the current block 

and two out of four remote motion vectors. The remote motion vectors are the motion 

vectors of the block above, the block below, the block to the left and the block to the right 

of the current block. The three values that are linearly combined to get the final pixel 

value are: 

a) The pixel in the previous frame at a displacement given by the motion vector of the 

current block. 

b) Two pixels in the previous frame at displacements given by the two remote motion 

vectors.  

The weights are predefined in the standard. The choice of two out of four remote motion 

vectors is made by the location of the pixel in the current block. Each pixel picks the 

remote vectors of the two neighboring blocks closest to it. For instance, a pixel in the top 



left part of the block picks the remote motion vectors as the motion vectors of the blocks 

above and to the left of the current block. 

MV1

MV2

MV3

MV2

MV3

MV1: Motion Vector of current block MV2: Motion Vector of block to the left

MV3: Motion Vector of block above  

Figure 13. OBMC for upper left half of block 

 

The overall effect of using the neighboring motion vectors to make a prediction is to 

smooth the prediction. This reduces blockiness and leads to better predictions, thereby 

finally resulting in a smaller bitstream. 

0.4.1.4 PB Frame Mode 

 

A PB frame is a unit that is made of two frames, one of which is called the P picture and 

the other is called the B picture. Both these pictures are decoded together and are treated 

as a single entity. This mode supports three different pictures: the I picture, the P picture 

and the B picture. An I picture is Intra coded and hence is not predicted from any other 

picture. A P picture is predicted from the previous P picture or from an I picture, like 

Inter coded frames in the baseline mode. A B picture is called so, because parts of it may 

be bidirectionally predicted. The B picture is obtained by looking at forward motion 



vectors, backward motion vectors and delta motion vectors. The forward and backward 

motion vectors for the B picture are derived from the motion vectors of the P picture. 

Forward and backward motion vectors are calculated such that the motion of a block 

across the sequence of P-B-P pictures appears smooth. As an example consider a block in 

the P picture that is displaced by 4 in the horizontal direction from the previous P picture. 

This corresponding B picture block should be displaced by 2 as compared to the previous 

P picture and –2 as compared to the following P picture, in the horizontal direction. 

These values correspond to the forward and backward motion vectors. This assumes that 

the B picture lies exactly between two successive P pictures in time reference, e.g. if no 

frames are skipped and the original frames are coded as a sequence of P-B-P pictures. 

Another assumption made in the discussion above is that half the motion occurs between 

the first P picture and the B picture and the remaining half of motion occurs between the 

B picture and the second P picture. This may not necessarily be true. There may be 

accelerated motion across these frames. The delta motion vectors are introduced to take 

care of such acceleration effects.  
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Figure 14. Example of use of Delta Motion Vectors for 1-D case 

The prediction scheme for a B block is shown in Figure 15.  
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Figure 15. B block prediction 

This kind of prediction scheme results in less bit rate overhead for the B picture.  For 

relatively simple sequences at low bit rates, the picture rate can be doubled with this 

mode with minimal increase in the bit rate. However, for sequences with heavy motion, 



PB-frames do not work as well as the B picture scheme as used in MPEG 2. Also, as 

compared to the baseline, the use of PB-frame mode increases the end-to-end delay. So it 

may not be suitable for two-way interactive communication. 

 

 

0.4.1.5 Advanced Intra Coding Mode 

 

This mode attempts to improve the efficiency while coding Intra MBs in a given frame 

using: 

a) Intra block prediction using neighboring Intra blocks. 

b) A separate VLC for the Intra coefficients. 

c) Modified Inverse Quantization for Intra coefficients. 

An Intra coded block (the 8×8 DCT block) is predicted from an intra coded block above 

or an intra coded block to the left of it. There are special cases made when the 

neighboring blocks are either absent or not intra coded. First the DC coefficient is 

predicted from both the block above and the block to the left. Following this either the 

first row of the block may be predicted from the first row of the block above or the first 

column of the block may be predicted from the first column of the block to the left. It is 

also possible that only the DC coefficient is predicted. The AC coefficients not in the first 

row or first column are never predicted. This way of predicting tries to exploit the 

knowledge of whether the block has stronger horizontal frequency or vertical frequency 

components. If the block has strong horizontal frequency components, then the first row 

of AC coefficients is predicted from the block above and all other AC coefficients are 



predicted as zero. A similar thing is done with the first column of AC coefficients, when 

the block has stronger vertical frequency components. This is shown in Figure 16. 
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Figure 16. Neighboring blocks for prediction of DCT coefficients 

The residue between the predicted coefficients and the actual coefficients is then scanned 

in different orders. These different scanning orders, besides the original zigzag scanning 

are defined to further exploit this prediction scheme. A horizontal scan is used if the 

block has stronger horizontal frequency components, otherwise a vertical scan is used. 

These scan orders are shown in Figure 17. 

 



Horizontal Scan Vertical Scan  

Figure 17. DCT Scanning patterns for Advanced Intra Coding 

 

After the scanning, the array of coefficients is sent to the entropy encoder. If the 

prediction is good, there is a saving in the number of bits for the block. 

 

Besides the prediction introduced above, there are additional improvements available to 

utilize this prediction. Firstly, an alternate intra VLC table is defined. This table has 

similar entries as the baseline VLC for intra coefficients, with the difference being that 

the run and level are interpreted differently. For instance, in this mode intra DC 

coefficients are not handled separately from the other coefficients any longer. As an 

example, a value of zero is allowed for the intra DC coefficient and this only leads to the 

increase in the run before the next non-zero coefficient. Secondly, this mode allows for 

an alternate inverse quantization procedure. This is also defined to take advantage of the 

fact that we are now coding a residue instead of coding actual intra coefficients. 

 



0.4.1.6 Alternate Inter VLC Mode 

 

During the process of inter coding it is assumed that the residues have significantly less 

energy than the original blocks. To take advantage of this fact, the VLC tables used to 

convert these residue blocks or inter blocks are different from the tables for the intra 

blocks. For instance, inter VLC tables use fewer bits for large runs and low levels, as 

these symbols occur more frequently. On the other hand intra VLC tables assign fewer 

bits to large levels and small runs, as these are the more frequently encountered cases. It 

is, however, possible that there are significant changes that occur in the scene, causing 

inter blocks to have energy comparable to the intra blocks. As said before, for this range 

of values, the intra VLC tables are more efficient. This mode allows the encoder to use 

the intra VLC for inter blocks so that such cases can be taken care of efficiently. The 

encoder is allowed to use this mode only when the decoder can deduce that these inter 

block coefficients were coded using the intra VLC table.  The decoder can deduce this 

information in the following way. While using the inter VLC table to decode an inter 

block the decoder may encounter illegal values, such as more than 64 coefficients for the 

block. When this occurs, the decoder can deduce that the intra VLC table was used for 

the inter block and proceed to decode the block accordingly. The use of different VLC 

tables in different modes is highlighted in Figure 18. 
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Figure 18. Use of different VLC tables for different modes 

In the above figure Table 1 refers to the Inter VLC tables, while Table 2 refers to the 

Intra VLC tables. We can see that in the baseline mode, the AC coefficients for both the 

Inter and Intra coded blocks use the Table 1. The AIV mode allows the encoder to use the 

Intra table for the Inter AC symbols for better efficiency in cases of high motion or scene 

changes, while the AIC mode allows the encoder to use Inter VLC for Intra AC 

coefficients as these are predicted from the neighboring blocks.  

 

0.4.1.7 Modified Quantization Mode 

 

The quantizer operation is modified by this mode. This mode has four key features. The 

first feature allows the encoder a greater flexibility in controlling the quantization step 

size. This allows the encoder greater bit-rate controlling ability. The second feature 



allows the encoder to use a different quantization parameter for chrominance components 

and luminance components. Thus, the encoder can use a much finer step size for the 

chrominance components, thereby reducing any chrominance artifacts. The third feature 

extends the DCT coefficient range, so that any possible true coefficient can be 

represented. The fourth feature tries to eliminate coefficient levels that are very unlikely, 

thereby improving the ability to detect any errors and also to reduce the coding 

complexity.  

 

 

 

0.4.1.8 Deblocking Filter Mode 

 

The deblocking filter is an optional block edge filter that is applied to I and P frames in 

the coding loop. This filter is applied to 8x8 block edges to reduce blocking artifacts and 

improve perceptible picture quality. The selection of this mode requires the use of four 

motion vectors per MB and an extension of the motion vector range as in the UMV case. 

The effect that this filtering operation has is similar to the effect produced by the OBMC 

mode described in advanced prediction. Unlike the OBMC, that is done while making the 

prediction frame, this filtering operation is performed on the reconstructed image data. 

The filter operates on sets of four pixel values on a horizontal or vertical line. This is 

shown in the following figure, where A, B, C and D are the four pixel values with A and 

B belonging to one block (called block 1) and C and D belonging to block 2. 
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Figure 19. Examples of positions of filtered pixels 

 

These four boundary pixels are replaced by four other values A1, B1, C1 and D1 such 

that the boundary between block 1 and 2 is smoothed. Simplistically, this is done by 

trying to move the pixel values closer together. All the horizontal filtering for a block is 

done before any vertical filtering. This filtering operation is limited to the picture or 

segment boundaries.  Some special cases arise because of some MBs not being coded. On 

the whole, this filtering operation tries to get rid of blockiness in the frame and hence 

provides a better quality of decoded pictures. 

 

0.4.1.9 Improved PB Frame Mode 

 

The PB frames constrain the motion vectors of the B picture to be estimated from the 

motion vectors of the P picture part of the same frame. This kind of a scheme performs 

poorly for large or complex motion scenarios when the corresponding prediction, 

obtained for the B pictures, is not good. This improved mode allows for distinct forward 



and backward motion vectors. This is different from the PB frame case when the forward 

and backward motion vectors were both derived from the motion vector of the P picture 

and hence were closely related to one another. This allows a better prediction for the B 

pictures as in the case with the B frames in MPEG. There are three different ways of 

coding a MB of the B picture in the improved PB frame mode. The bi-directional 

prediction scheme is very similar to what occurs in the regular PB frame mode, with the 

delta motion vectors set to zero. The forward prediction scheme involves predicting the 

MB using only the previous frame as reference. The backward prediction option involves 

using bi-directional prediction whenever the backward motion vector points inside the 

already reconstructed P MB, otherwise only forward prediction is used. The improved PB 

frame option tries to allow a greater independence to the prediction of a B picture MB 

and hence allows for improved performance when there is high or complex motion in the 

scene. 

 

0.4.2 Enhancements for Error Robustness 

 

The following modes help in increasing the error resilience and are of great use if the 

encoder and decoder communicate across an unreliable or lossy channel. 

 

0.4.2.1 Slice Structured Mode 

 

This is one of the enhancements in the standard to help in improving error resilience. 

When this mode is turned on, the frames are subdivided into many slices, instead of the 



regular GOBs. A slice is a group of consecutive MBs in scanning order, with the only 

constraint being that the slice starts at a MB boundary and that a MB can belong to 

exactly one slice. There are two sub-modes in this mode. The first is the rectangular slice 

sub-mode in which the slice is constrained to have a rectangular shape and all slices are 

transmitted strictly in order. This means that if a slice has MBs that occur before (in 

terms of the scanning order) the MBs in another slice, then it is transmitted before the 

other slice. The second sub-mode is called the arbitrary slice ordering sub-mode. In this 

sub-mode slices can be transmitted in any order. This grouping of MBs into slices instead 

of GOBs allows the encoder a lot of flexibility and advantages as enumerated below. 

a) It is more convenient to partition the frame into slices rather than into rows of MBs. 

For instance, the background may be separated from the foreground by grouping MBs 

appropriately. In fact different objects in the scene can be partitioned out. When in 

arbitrary slice ordering sub-mode, these may be transmitted separately also. This is 

quite useful, especially in applications when we need lip synchronization. 

b) Slices also help with error resilience. When combined with the independent segment 

decoding mode, data dependencies are prevented from crossing slice boundaries. This 

can help confine errors to slices and prevent them from corrupting the entire frame. 

c) Slice boundaries can also be used as resynchronization points in case of bit errors or 

packet losses. With the GOBs we send a header every n rows of MBs. This however, 

does not translate to uniform spacing of the headers in the bitstream. A uniform 

spacing of headers in the bitstream may be achieved by grouping the MBs into 

arbitrary slices. This is illustrated in Figure 20. 
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Figure 20. Uniform Resynchronization points with arbitrary slices 

 

0.4.2.2 Reference Picture Selection Mode 

 

This option allows for selection of any of the previously decoded frames (within 255 

frames of the current frame, or when used with custom picture clock frequency, within 

1023 frames of the current frame) as a reference frame to generate the prediction for the 

current frame. This is very different from the baseline case, when only the frame decoded 

immediately before the current frame may be used as a reference. This capability of 

selecting different frames as reference is most useful when the decoder can send 

information back to the encoder. So, the decoder needs to be able to inform the encoder 

which frames it received correctly and which frames were corrupted during the transfer. 

The encoder can then use this information to use only those frames as reference that the 

decoder has acknowledged as being received correctly. This capability of selecting 

different frames as reference need not be restricted to the frame level. For instance, every 

GOB of the current frame may be predicted from regions of different reference frames. 

This is shown in Figure 21. 
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Figure 21. Different GOBs predicted from different reference frames 

Thus if a GOB of the previously decoded frame is corrupted, then while predicting GOBs 

of the current frame, that need to use data from that particular GOB, a different frame 

needs to be selected. This option requires the decoder to use some backward channels in 

order to send information to the encoder. (There is a special mode called the Video 

Redundancy Coding mode when the decoder does not need to provide this feedback. In 

this mode the encoder encodes multiple representations of the same frame and when the 

decoder receives adjacent pictures with the same temporal reference, something like a 

frame number, it should decode the first one and discard all the rest.) The decoder also 

needs to initially inform the encoder about the amount of memory it has available. Based 

on this information the encoder decides on the maximum number of previously decoded 

pictures that it needs to store and how far back in time a frame can be and still be selected 

as reference. The information regarding which frame is selected as reference is encoded 

in the bitstream. There is an increase in the size of the bitstream and there is an overhead 

involved in the forward and backward communication between the encoder and decoder. 

This overhead is tolerated because it leads to a better error resilience. The encoder and 



decoder can work together to ensure the quality of the recovered frames, even when they 

communicate over error-prone networks. 

 

 

0.4.2.3 Independent Segment Decoding Mode 

 

This mode is another enhancement for improved error resilience. It tries to remove data 

dependencies across the video picture segment boundaries. A video picture segment may 

be a slice (only the rectangular slice mode is allowed with ISD) or a number of 

consecutive GOBs. When this mode is turned on, then the segment boundaries are treated 

as the picture boundaries. So, if this option is selected with the baseline options, then 

each picture segment is decoded independently, as if it were the whole picture. This 

means that no operation can reference data outside the segment. This option may also be 

used with options like UMV or advanced prediction in which case data outside the 

segment boundaries is referred to. In such cases, data outside the segment boundaries is 

derived through extrapolation of the segment, as was done in the case of the entire frame.  

 

 

0.4.3 Scalability Related Enhancements 

 

If a bitstream is scalable, it allows for the decoding of the video sequence at different 

quality levels. This is done by partitioning the pictures into several layers. Pictures are 

partitioned into the base layer (the lowest layer) and enhancement layers. There are three 



different pictures used for scalability and these are called the B, EI and EP pictures. Each 

picture has two numbers associated with it. The first number refers to the layer to which 

the picture belongs (ELNUM).  The second number is called the reference layer number 

and this refers to the layer from which the picture was predicted (RLNUM). There are 

three basic methods of achieving scalability. These are temporal, signal to noise ratio 

(SNR) and spatial enhancements. 

 

Temporal scalability is achieved through the use of bidirectionally predicted B pictures. 

These B pictures are independent entities unlike in the PB frame mode or the Improved 

PB frame mode, where the B pictures are syntactically intermixed with a successive P or 

EP picture. B pictures are not used as reference for any other pictures; thereby some of 

these may be dropped without adversely affecting following pictures. Figure 22 illustrates 

the structure of P and B pictures. 
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Figure 22. B picture prediction dependencies 

During the process of compression, some information about the picture is lost and the 

encoded picture is not exactly the same as the original picture. The SNR scalability mode 

allows the codec to send this difference as an enhancement layer and the presence of this 



enhancement layer helps in increasing the SNR of the video picture. If the enhancement 

layer information is predicted only from the layer below, this picture is called an EI 

picture. The enhancement layer pictures that are predicted both from the base layer as 

well as the prediction from the previous enhancement layer frame are called EP pictures. 

This scheme is shown in Figure 23. 
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Figure 23. Illustration of EI and EP pictures 

Spatial scalability is closely related to SNR scalability, with an additional operation 

performed before prediction of the enhancement layer pictures. The base layer pictures 

are interpolated by a factor two (i.e. expanded) either in one direction (X or Y) or in both. 

This interpolated picture is then used as reference for prediction. If the interpolation is 

done in both directions, then the predicted picture is called the 2-D spatial enhancement 

layer picture; otherwise it is called the 1-D spatial enhancement layer picture. This option 

hence requires the use of custom picture formats and aspect ratios. This is illustrated by 

the fact that when a 1-D spatial enhancement picture (in the horizontal direction) is built 



from a QCIF frame, it has a size 352×144, which is not a standard size. All these three 

methods may be used together also, i.e. the standard allows for multi-layer scalability. 

Scalability is very useful for better error resilience support. 

 

 

0.4.4 Other Enhancement Modes 

There are two other modes that are listed in the standard. These are the reference picture 

resampling and reduced resolution update modes. 

0.4.4.1 Reference Picture Resampling 

 

This option allows the resampling of the previously decoded reference picture to create a 

warped picture that can be used for predicting the future frames. This is very useful if the 

current picture has a different source format from the previously decoded reference 

picture. Resampling defines the relation between the current frame and the previously 

decoded reference frame. In essence, resampling specifies the alteration in shape, size 

and location between the current frame and the previously decoded reference frame. This 

resampling is defined in terms of the displacement of the four corners of the current 

picture area to get to the warped picture area. Four motion vectors are introduced to 

represent these four displacements. These motion vectors basically describe how to move 

the corners of the current picture area to map it to the warped picture area. The pixels are 

assumed to have a unit height and width and the positions of the centers of the pixels are 

identified. Following the position determination, horizontal and vertical displacements 

are computed for every pixel in the current picture area. These displacements are 



computed using the position of the pixel and the four conceptual motion vectors and they 

specify the locations of pixels in the warped area. After the location has been determined, 

bilinear interpolation is used to actually predict the pixel value at that pixel location. This 

new warped picture area is extrapolated so that the final height and width are divisible by 

16. This new warped picture area is used as a reference frame for the current picture. A 

figure describing this is shown below. 
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Figure 24. Conceptual Motion Vectors used for warping 

 

This mode can be used to adaptively alter the resolution of the pictures being coded. 

 

0.4.4.2 Reduced-Resolution Update Mode 

 

This mode allows the encoder to send the residue or update information for a coded 

frame with reduced resolution, while keeping the finer detail information in the higher 

resolution reference image. The final frame can be reconstructed at the higher resolution 



from these two parts without significant loss of detail. Such an option is very useful when 

coding a very active or high motion scene. In this mode, MBs are assigned a size 32x32 

(correspondingly blocks are 16x16) and hence per picture there are quarter the number of 

MBs as before. All motion vectors are estimated corresponding to these new larger MBs 

or blocks, depending on whether we desire one or four motion vectors for the MB. As 

against this, the transform coded residues for each of these 16x16 blocks are thought of as 

representing an 8x8 area in a reduced resolution frame. The decoder does motion 

compensation using the motion vectors corresponding to these large MBs and blocks. 

Each of the residue blocks is upsampled to get residues for the higher resolution blocks. 

These are then added to produce the final high resolution block. This process is illustrated 

in Figure 25. 

Figure 25. Reduced Resolution Update Block decoding 
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As the residue frame is at a lower resolution, the encoder uses a smaller number of bits 

while encoding it. This means that the bitstream that is sent to the decoder is now smaller. 

Hence, this mode can be used to increase the coding picture rate while maintaining a 

sufficient subjective quality. 

 

 

0.4.5 Supplemental Enhancement Information Specification 

 

The encoder sends supplemental enhancement information in a special field of the picture 

layer. It is not necessary for the decoder to have the ability to support these enhanced 

capabilities. When a decoder does not support these enhanced capabilities, it can just 

discard this field without affecting the quality of the decoded sequence. This mode 

differentiates between the decoded image and the displayed image. The displayed image 

is the image that is currently displayed, while the decoded image is the current image 

being decoded. Some of the enhanced capabilities require this distinction. For instance 

one of the options is the freeze picture request, in which case the displayed image is not 

changed to the successive decoded images, unless the option is turned off or a time out 

occurs. This means that a particular frame can be held on the display for a specified time 

although the decoder continues to decode further pictures. Similarly there are other 

modes that request partial picture freeze request (a particular area is frozen while the rest 

is updated), or resizing of a frozen partial picture area or release of the partial picture 

freeze mode. Besides the options to freeze parts of the image, there are other options that 

allow the current picture to be treated as a snapshot of the video content for external use. 



There are other features among which is the Chroma Keying Information. This option 

allows the pixels in the decoded pictures to be transparent and semi transparent. If a pixel 

is defined to be transparent, it is not displayed and instead a background picture is 

displayed. This background picture is either a prior reference picture or an externally 

controlled picture. If a pixel is labeled semi-transparent, then it is displayed as a blend 

between the current value and the background pixel value. The last enhanced capability 

indicated by this mode is the extended function type. The use of this extended function is 

to provide a means for ITU to define a larger number of backward compatible functions 

later.  

 

 

0.4.6 Levels of Preferred Mode Support 

 

All the optional modes introduced in the section above are useful, however it is not 

necessary that all manufacturers would like to support all of them. A set of preferred 

mode combinations for operation is defined in the standard. Such a definition helps in 

identifying which combinations of modes are likely to be more widely accepted and also 

provides a guideline for the order in which modes should be supported in decoders. 

Manufacturers can thus make codecs that do not support all optional modes, but be 

assured of being able to communicate with several other codecs at some syntax better 

than baseline. These preferred mode combinations are grouped into levels based on the 

effect each mode has on the improvement in subjective video quality, overall delay and 

complexity of the codec. A decoder that supports a certain level should be able to support 



all modes not only in that level, but also in levels below it. Level 1, which is the lowest 

level, is composed of advanced intra coding mode, deblocking filter, full frame freeze 

and modified quantization. Level 2 includes, in addition, support for unrestricted motion 

vector mode, slice structured mode and reference picture resampling. Level 3, the highest 

level, includes supporting advanced prediction, improved PB frames mode, independent 

segment decoding and alternate inter VLC mode.  

 

0.5 Conclusion 

 

This chapter provides a basic overview of the process of video coding in general and the 

H.263 standard in particular. Through this chapter, we also hope we have conveyed the 

need for video coding standards. We also wish to state that although standards completely 

specify the bitstream between encoder and decoder, they allow flexibility in the way the 

bitstream is produced. For instance, the standard does not specify how motion estimation 

should be done. Encoders can be optimized in many ways, in terms of speed or quality of 

decoded video etc., without losing standard compliance. Similar to the standard, there are 

other documents drafted by ITU-T called Test Model Near-Term (TMN) [14]. These 

documents talk about specific encoder algorithms and how to efficiently produce 

standard compliant bitstreams. They are however, only guidelines, and need not be 

followed. There is further work being done to develop a third generation of H.263 syntax 

called H.263++ and H.263L.  More information about the H.263 standard and the 

ongoing efforts is available at the web site for ITU-T http://www.itu.int and the site for 

the Video Coding Experts Group at ftp://standard.pictel.com/video-site.  

http://www.itu.int/
ftp://standard.pictel.com/video-site
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