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Abstract 

We introduce model-based schemes for error concealment of networked video. We build 

appearance models for specific objects in the scene and use these models to replenish any lost 

information. Due to the models being designed specific to the object, they are able to capture the 

statistical variations in the object appearance more effectively, thereby leading to better error 

concealment performance. We examine statistical modeling techniques from literature and 

introduce a new efficient and accurate linear model for data representation called the Mixture of 

Principal Components (MPC), and use these models for error concealment. We simulate lossy 

network conditions and show that these model-based concealment schemes outperform the 

traditional concealment schemes across a variety of loss probabilities and bit rates for the coded 

video. 

1. Introduction 

Loss of data during transmission of compressed video leads to objectionable visual 

distortion in the decoded video. In order to minimize distortion at the decoder end, many schemes 

for error resilience and error concealment have been developed. Error resilience includes schemes 

at the encoder end where some redundancy is introduced in the bitstream that makes it possible to 

recover lost information. Examples of these include error correcting codes, data partitioning 

techniques etc. Error concealment involves post-processing of the video at the decoder end to 

hide the effect of the transmission errors. Both error resilience and error concealment techniques 

may be used in conjunction to improve the quality of the decoded video. The focus of this paper 

is on error concealment techniques, which do not require modification of the coded video.  

There is a lot of existing work on error concealment. Most papers on error concealment 

view it as a post-processing of video, thereby enabling the concealment scheme to be compliant 

with many different video coding standards, such as H.263, MPEG-1, 2 and 4. Work in this 

domain includes work by Kwok and Sun [1] and by Aign and Fazel [2], who use spatial domain 

interpolation. Sun and Kwok [3] also use projections onto convex sets (POCS) for error 
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concealment. Chen, Chen and Weng [5] use temporal domain interpolation and overlapped block 

motion compensation. Lam and Reibman [4] examine error detection and use spatial and 

temporal interpolation for error concealment.  Park, Kim and Lee [6] introduce a concealment 

scheme that attempts to recover the transform domain coded video coefficients using some 

constraints on the smoothness of the video pixels. Atzori and De Natale [7] introduce a sketch-

based approach to error concealment. Each received frame is decomposed into a set of sketches, 

and error concealment involves recovering these sketches using some constraints on the sketch 

continuity, derivatives, etc. Tsekeridou and Pitas [8] introduce concealment schemes for MPEG-2 

that use spatial and temporal block matching and interpolation schemes for error concealment. 

Shirani, Erol and Kossentini [9] use Maximum A Posteriori (MAP) estimates to recover missing 

binary shape information from MPEG-4 coded sequences. 

Some other work on error concealment involves non-standard-compliant coding 

techniques for the video. Examples of this kind of work include the work by Chou and Chen [10] 

and by Man, Kossentini and Smith [11]. These papers use wavelet/subband video coders and 

examine error detection, resynchronization and concealment of errors. There are other papers that 

focus on error concealment for video over wireless channels. The work by Lu, Letaief and Liou 

[12] and the work by Zhang, Arnold and Frater [13] are such examples. The work in [12] 

considers models for the fading process and try to correct for bit errors while the work in [13] 

considers loss of packets or cells while transmission over wireless networks and examines the 

concealment of such errors. 

The work in this paper also considers concealment of errors caused by packet losses in 

video. We propose a model-based scheme for error concealment. There has been some work in 

the past on model based video coding schemes. These include 3-D model based approaches 

where a 3-D model of the object appearance is built before coding and 2-D model based 

approaches that use deformable segmentation of the image and affine motion models. A fine 

overview may be obtained from the papers by Aizawa and Huang [14] and by Pearson [15].  

In our proposed error concealment schemes, we build a model for the region of interest, 

and use this model to replenish any missing information. The region of interest may include the 

foreground or the background or the different objects in the scene. The model is trained specific 

to the object of interest and may be trained online, or using some prior information about the 

object appearance. Such an approach has advantages over generic spatial, temporal and frequency 

domain interpolation techniques, as the model is created specifically for an object and hence can 

capture the statistical variations in the object appearance more effectively. The model may also be 



adapted to changing object appearance thereby utilizing history information. We believe such 

model-based error concealment schemes form part of second-generation error concealment 

techniques. 

One requirement of a model-based concealment scheme is the ability to track the object 

of interest. Hence, such a model based concealment approach is very useful especially for the 

MPEG-4 standard, which uses object based coding. Since the video bitstream contains 

information about objects of interest it is easy to build models for them and perform model-based 

error concealment.  

We first examine the principal component analysis (PCA) [16] as a model for our region 

of interest and find that it is inefficient at capturing data with large amounts of variation. We then 

examine many non-linear and linear extensions to the PCA for improved efficiency. Among the 

non-linear extensions is the work by Hastie and Stuetzle [17], who proposed principal surfaces as 

an alternative to PCA. This involves modeling the data clusters using parameterized surfaces 

instead of the hyperplanes that PCA uses. Many neural network approximators for these principal 

surfaces of the high-dimensional data have also been proposed. Among these are the work by Oja 

[18] and by Kung and Diamantaras [19]. Other non-linear techniques such as Multi-Dimensional 

Scaling (MDS) [20] have also been introduced. MDS attempts to preserve pair wise distances 

between data points during the dimensionality reduction so that local relationships are preserved. 

Recently, other similar approaches to dimensionality reduction such as Locally Linear 

Embedding (LLE) [21] have also been proposed. LLE also attempts to preserve local 

relationships between data points during dimensionality reduction. However all these non-linear 

techniques are computationally intensive and also lack an easy forward-backward transformation, 

making them unsuitable for our task. 

We then examine other linear extensions to the PCA. Among these extensions is the 

Vector Quantization PCA (VQPCA) [22].  This technique modifies the traditional VQ algorithm 

by changing the optimization criterion to include reconstruction error. Data samples are 

partitioned into clusters based on which cluster reconstructs them with smallest error. The 

parameters of each cluster are then updated using local PCAs and this process is iterated till 

convergence of parameters. This hard partitioning of data into clusters before dimensionality 

reduction leads to loss of the global information present in the data. We would like to both exploit 

the local as well as global information present in the data and so prefer a soft partitioning of the 

data. The idea of soft partitioning the data while training local PCAs has been examined by 

Tipping and Bishop [23].  They first introduce an extension to the PCA called the Probabilistic 

PCA (PPCA) and use a mixture of such PPCAs to represent the data. The problem with their 



approach is the fact that the error due to dimensionality reduction is not explicitly minimized, 

instead the likelihood of observing the data given the model is maximized. This may lead to poor 

reconstruction performance of the model.  

We propose a linear extension to the PCA called Mixture of Principal Components 

(MPC). Similar to the way that a Gaussian mixture models the data distribution, the MPC 

automatically models the data using a mixture of eigenspaces. However, instead of optimizing the 

likelihood of observing the data given the model, the MPC parameters are chosen to minimize the 

overall reconstruction error. It is efficient, accurate and the reconstruction is easy to compute. We 

hence use the MPC to model the objects of interest in video sequences and show the improved 

error concealment performance of such a model-based scheme over using the conventional 

schemes.  

This paper is organized as follows. Section 2 introduces the model-based error 

concealment scheme. Section 3 includes a discussion of the models to be used for such a model-

based error concealment scheme. We introduce the MPC and compare the modeling performance 

with other linear modeling techniques.  The actual derivation for the MPC is included in the 

Appendix. Section 4 contains results for error concealment using such a model-based 

concealment scheme. We finally conclude in Section 5 with a summary and directions for future 

research.  

2. Model-Based Error Concealment 

In order to conceal any errors in a region of interest, we first build a model for that region 

of interest. Then the model may be used to replenish any missing data. We highlight this 

proposed error concealment scheme in Figure 1. 
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Figure 1. Model-based error concealment scheme 

 As can be seen from Figure 1, using previously received frames we can build a model for 

the region of interest, shown as a car in the figure. This model may be trained online, during the 

transmission of video, or offline, using some prior information about the region of interest. Once 

we have this model we may use it to correct any errors in the object appearance. For instance, we 

may project the object with errors onto the model and create a reconstruction, which may then be 

used to replenish the missing information. 

 We believe that this error concealment scheme is part of second-generation error 

concealment techniques, due to this object-based notion. Such an object oriented error 

concealment scheme has some advantages over previously proposed concealment schemes. 

Firstly, by tuning the model to a specific object we can capture the statistical variations in the 

object appearance more effectively, as opposed to using a generic interpolation scheme. 

Secondly, the model may also be updated online in order to use all the relevant history 

information. Both of these advantages lead to better error concealment. 

As may be seen from Figure 1, this process of error concealment consists of two stages, first 

the projection onto the model to obtain the reconstruction for the object, and secondly replacing 

the missing data using this reconstruction. Both these stages may be viewed as projections onto 

convex sets. The models that we use in this paper involve linear combinations of a set of basis 

vectors to reconstruct the object, and hence the set of all such reconstructions is convex. Also, the 

set of all objects or regions of interest with all values same, except for some specific errors, is 

also convex. Given that both our operations are thus projections onto convex sets, we may iterate 

the process to obtain better results. This technique of iterative projections onto convex sets 



(POCS) was proposed for image restoration by Sezan and Tekalp [24]. Our error concealment 

scheme may be summarized as follows. 

1. Project region of interest onto the model to obtain reconstruction. 

2. Replace missing data in region of interest using reconstruction. 

3. Iterate 1 and 2 until convergence 

This approach is very useful especially for the MPEG-4 standard, which uses object 

based coding, thereby making it easy to determine regions of interest and build appropriate 

models for them. In the absence of such object-based information, a tracker for the object of 

interest may be used to determine the object location. For instance, if the object of interest is the 

face of a person, a face tracker may be used to locate it. 

In order to perform model-based error concealment, the modeling technique has to satisfy 

some requirements. The model should be able to capture the statistical variations in the object 

appearance accurately and efficiently. Simultaneously it should not require computationally 

expensive operations. Efficiency and low complexity are as critical as accuracy as such error 

concealment schemes are applied at the decoding end, where there are severe constraints on 

available memory and computation power. Hence we introduce a model that involves linear 

operations for efficient dimensionality reduction, while attempting to capture the object properties 

as accurately as possible. The specifics of the modeling technique, for this task of error 

concealment, are described in Section 3. 

3. Model Description 

As mentioned in Section 2, we require an accurate and efficient model with low 

computation complexity for error concealment. We thus examine dimensionality reduction 

techniques, as they attempt to model a data set as efficiently as possible. There are many linear 

and non-linear techniques that have been proposed in literature to solve this dimensionality 

reduction problem. 

Among the linear dimensionality reduction techniques is the Principal Components 

Analysis (PCA). Given a set of objects or data vectors, PCA identifies the principal directions of 

variation in the data space. These principal directions of variation correspond to the eigenvectors 

of the covariance matrix of the data and may be used to represent the data. These eigenvectors 

may be ranked in the order of importance based on the magnitude of their corresponding 

eigenvalues, with the eigenvector corresponding to the largest eigenvalue being the most 

significant one and so on. These eigenvectors are used as a basis set to reconstruct the original 

data vectors. Since we know the principal directions, we may discard some eigenvectors, 



corresponding to small eigenvalues without incurring a great increase in reconstruction error. 

This allows us to model the data using a small set of eigenvectors. As mentioned before, the PCA 

is inefficient at capturing large variations in the data set, e.g., if the data comes from multiple 

clusters. Non-linear modeling techniques provide greater efficiency and accuracy for such data 

sets. However non-linear modeling techniques have problems such as high computation 

complexity and the absence of a simple forward backward transformation between the low-

dimensional representation and the actual data set.  

We would like to have the advantages of using a linear modeling technique, however we 

would like to extend the PCA to improve the modeling performance for data with large 

variations. Hence we propose a new model called mixture of principal components (MPC) to 

represent the data instead of using a single PCA. This is analogous to capturing the probability 

density of data using a mixture of Gaussians instead of using a single Gaussian. The MPC is 

designed to optimize the reconstruction error, however we avoid hard partitioning of the data in 

order to exploit both the local as well as the global information.  

As an illustration of data belonging to multiple clusters we collect a face sequence with the 

person moving his head from left to right, thereby showing broadly three poses, left, center and 

right. We cropped the faces in a 32×32 window using a face tracker developed by Huang and 

Chen [25] to provide the location of the faces. We determine the first three eigenvectors of the 

data using PCA and plot the corresponding coefficients in 3-D space. These are as shown in 

Figure 2. 
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Figure 2. First three eigen-coefficients of real face data 



From the plot we can see that the data may be approximated using three clusters, one 

each corresponding to the left, the right and the center poses. It is clear that to model such data a 

mixture of Gaussians, or a mixture of eigenspaces is more efficient than using a single Gaussian 

or a single eigenspace. 

As mentioned in Section 1, there are other linear extensions to the PCA such as the 

Mixture of PPCA and the VQPCA. All of these extensions, including the MPC, can be classified 

into those that use hard or soft clustering techniques and those that are optimized in terms of the 

squared error or the likelihood of observing the data. We group these appropriately in Table 1. 

Table 1. Linear Extensions to the PCA 

 Optimize Likelihood of 
Observing Data 

Optimize Reconstruction 
Error 

Hard Clustering  VQPCA 
Soft Clustering Mixture of PPCA MPC 
As may be seen from Table 1, Mixture of PPCA uses soft clustering of data while 

optimizing the likelihood of observing data, while VQPCA uses hard clustering and optimizes the 

reconstruction error. The MPC uses soft clustering of the data while trying to optimize the 

reconstruction error. It is known from literature [23] that the reconstruction error performance of 

the VQPCA is better than the reconstruction error performance of the Mixture of PPCA. This is 

to be expected, as the Mixture of PPCA is not designed to optimize the reconstruction error. The 

focus of this paper is on optimizing the reconstruction error and the MPC is designed to minimize 

the reconstruction error for a set of training data. Hence we also include a brief comparison of the 

MPC, in terms of reconstruction error performance, with the VQPCA. 

This section is organized as follows. We first describe the notation used in this paper to 

describe the MPC parameters. We then describe the reconstruction task to identify the 

optimization criterion. We then describe how the parameters for the MPC may be trained using a 

set of training data, while optimizing the criterion identified. 

3.1. Notation 
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3.2. Reconstruction Task 

Our approach to reconstruction consists of linearly combining individual reconstructions 

from a mixture of component eigenspaces. Given a data test vector , we first project it onto 

each of the component eigenspaces to obtain individual reconstructions  and then linearly 

combine these individual reconstructions to obtain the representation that is closest to the original 

data vector .  The individual reconstruction  for test vector  from mixture component 

iy

ijŷ

iy ijŷ i j  is 

obtained as shown in the following equation. 
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These individual reconstructions are then linearly combined using a set of weights. We 

show an illustration of our approach in Figure 3. 
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Figure 3. Illustration of mixture of eigenspaces 



In Figure 3 we show data reconstruction using a mixture of two component eigenspaces, 

each with one eigenvector. The component eigenspaces have means  and m , and 

eigenvectors u  and  respectively. In the figure, the means are shown as black diamonds and 

the direction of the eigenvectors is shown as a line passing through the corresponding means. 

Given a data sample , shown as a dark circle, we first project it onto each of the component 

eigenspaces to obtain  and . We then linearly combine these two projections to obtain the 

best reconstruction for the data, shown as the dark triangle in the figure. Due to the nature of the 

linear weighting, the best combination lies along the line joining the two individual 

reconstructions. The weights are chosen so that the resulting combination is as close to the data 

sample, i.e., it lies on the perpendicular from the data sample to the line joining the two individual 

reconstructions.The weights are solved for individually for each of the test vectors. The only 

constraint that we impose on the weights is that they are required to sum to one. The weights are 

chosen by optimizing the criterion shown in equation (1). 
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The matrix  has the individual reconstructions  as columns and the weight vector  has 

the individual weights  as entries. During this optimization, we need to add in the constraint 

on the weights using the Lagrange multiplier. Hence equation (1) may be rewritten as below. 
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Taking derivatives with respect to  and iw λ  and setting the result to zero we get the 

following equations for the weights. 
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The two equations in (3) may be grouped together as follows 
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We can thus solve for the weights using equation (4). 



3.3. Training of the Mixture Parameters 

The previous section describes the reconstruction of data given the mixture parameters, 

i.e., the means and eigenvectors for each component eigenspace. This section focuses on 

determining these mixture parameters given a set of training data. Given a set of data vectors with 

variations, we would like to automatically train a mixture of eigenspaces so that the 

reconstruction error is as small is possible. We would like to train these parameters of the 

component eigenspaces automatically. We formulate this problem of training as a minimum error 

optimization problem and provide a solution using an iterative Expectation Maximization (EM) 

kind of algorithm. We iteratively update the means and the eigenvectors, one by one until a 

converged result is obtained.  

Given a set of  training data vectors, we model them using an MPC containing N M  

eigenspaces, each of which has P  eigenvectors. We need to find the means and the eigenvectors 

for each of these mixture components so that the training data is reconstructed with as small an 

error as possible. This problem of minimizing the squared error through the choice of the means 

and the sets of eigenvectors may be mathematically written as in equation (5). 
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It may be seen from equation (5) that we use the same scheme to reconstruct the training 

data as described in Section 3.2. The weights are recomputed for each of the training data vectors, 

and are used to update the means and the eigenvectors, but are not part of the model. The method 

for the weight computation is as described in Section 3.2. 

The approach we adopt to solving this optimization problem is an iterative one, similar to 

the EM algorithm for Gaussian mixture training. We first initialize the means and the 

eigenvectors for the different components randomly. We compute the weights for each data 

vector following which we update the means, while keeping the eigenvectors fixed. We then use 

the new means to update the set of eigenvectors. After this we recompute the weights and repeat 

the update procedure till convergence.  



3.3.1. Solutions for the means 

The solution for the means is obtained by taking derivatives of the optimization criterion 

and setting the result to zero. During this process the eigenvectors are kept fixed. The resulting 

solution for the mean of mixture component q  is as shown in equation (6). 
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 The derivation for this solution is included in the Appendix. From the equation we can 

see that the mean for a component is basically the weighted sampled mean of the data, with 

reconstructions from other component eigenspaces removed first. 

3.3.2. Solution for eigenvectors 

We may now fix means and use these new values to update the eigenvectors. The 

solution for the eigenvectors for a mixture component eigenspace may be expressed as an 

eigenvalue-eigenvector problem. The eigenvectors for the r -th mixture component may be 

obtained as eigenvectors of the matrix C  that is defined in equation (7). r
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The first P  eigenvectors of this matrix are the desired eigenvectors of the mixture 

component. After updating the eigenvectors, we now recomputed the weights for each of the 

training data vectors and repeat the update process for the means and eigenvectors till 

convergence. 

3.3.3. Special Case for M=1 

As an illustration we consider the case when the number of mixture components is one, 

when our solution should collapse to the PCA. The mean may be obtained as in equation (6). 

With only one component, we can make a lot of simplifications. 
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All the weights are set to one, since there is only one component, and the reconstructions from 

other mixture components may be removed. The solution may be rewritten as in equation (8). 
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This is clearly the sampled mean, which is identical to the PCA. After examining the mean, we 

now examine the matrix C  defined as in equation (7). r
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Since there is only one mixture component, the third term vanishes, all the weights are set to one 

and the summation over the number of mixtures may be replaced with the single term with 

. Using this simplification, the matrix C  may be rewritten as below. 1== rj r
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Clearly, this is identical to the sample covariance matrix for the PCA. 

3.4. Simulation Results 

In order to evaluate the performance of the MPC we create some sample test data. One 

issue that needs to be addressed before modeling the data is the choice of the number of mixture 

components M and the number of eigenvectors P per component. Currently we do not have an 

analytical solution to determine these parameters, and they are determined empirically. The 

number of mixture components M is incremented while measuring the performance of the model 

in terms of the data representation error, until we realize that the improvement in performance is 



marginal. For any given M, the number of eigenvectors P is chosen so that we capture 90% of the 

energy of the original data. 

We create a set of 3-D data, distributed in two clusters and model the data using two 

mixture components with one eigenvector each. We create 3-D data clusters as they are easy to 

visualize and may be shown on a plot. The resulting parameters for the MPC after training are 

shown in Figure 4. 

 

Figure 4.  3-D data with mixture means and eigenvectors 

In the plot, the data vectors are plotted as stars and on the data we superimpose lines 

parallel to the two mixture component eigenvectors, and passing through their respective means. 

As can be seen, the two means of the mixture components converge to the center of the clusters, 

with the eigenvectors capturing the principal direction of the cluster.  

The training procedure converges rapidly, in fact, convergence is obtained by the end of 

the third iteration. The squared error using the MPC is around 7~8 times smaller than with using 

the PCA, even with the same number of total parameters. 

For this same random data we also train multiple eigenspaces using the VQPCA 

algorithm. In order to make a fair comparison we train two clusters with one eigenvector each, as 

for the MPC. The converged means and eigenvectors for the VQPCA are identical to those for the 

MPC, however the squared error using this representation is around twice as large as the MPC 

error. This improved error performance of the MPC is to be expected, as for the same set of 

means and eigenvectors, the VQPCA is a special case of the MPC, with the weights chosen so 

that one of the weights is one and the rest are all zero.  

As mentioned before, we collected a face sequence with the person exhibiting three 

poses, looking left, looking straight ahead and looking left. We have shown the first three eigen-



coefficients of the face data from this sequence in Figure 2 to illustrate that the data belongs to 

multiple clusters. We now try to model this face data using a MPC with three components, each 

having two eigenvectors and compare this with using the PCA with six eigenvectors. When we 

examine the converged means and eigenvectors for the resulting mixture components we see that 

they do indeed correspond to the left pose, the center pose and the right pose. These parameters at 

convergence are shown in Figure 5. 
Mean for mixture 1 Mixture 1 Evec 1 Mixture 1 Evec 2

Mean for mixture 2 Mixture 2 Evec 1 Mixture 2 Evec 2

Mean for mixture 3 Mixture 3 Evec 1 Mixture 3 Evec 2

 
Figure 5. Means and eigenvectors for the MPC 

We can see from Figure 5, that the means converge to the three poses, left, right and 

center. The eigenvectors highlight the dominant motion associated with each cluster. The 

parameters for the mixtures converge after around 5 iterations. The squared error for MPC with 3 

component eigenspaces with two eigenvectors each is around 25% smaller than the error for the 

PCA with size eigenvectors. Hence the MPC has smaller error, even with the same number of 

total eigenvectors as the PCA.  

4. Error Concealment using Mixtures of Principal Components 

We have introduced an accurate and efficient linear model to capture object appearance 

variations. In order to examine the performance of the MPC for error concealment, we first need 

to simulate the errors created typically in wireless networks. We thus examine models to create 

bursty packet errors. The first model we consider simulates bursty packet loss using a two-state 

Markov chain, and was proposed by Yajnik et al [26]. This model is shown in Figure 6. 
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Figure 6. Two state Markov chain to simulate bursty packet loss 

When the Markov chain is in the Bad state the received packet is dropped otherwise the 

packet is successfully decoded. The parameters p and  of the Markov chain are selected as 

described in [26], and affect the overall loss probability and the maximum burst size (MBS) of 

consecutive errors.  

q

We also examine another model for bursty losses in wireless networks as proposed by 

Nguyen et al [27]. They propose a model for wireless transmission over the WaveLAN interface. 

Their model is also a two-state Markov chain, one corresponding to error-free conditions and the 

other corresponding to error. However in each state they generate a random number 

corresponding to the number of packets belonging to that state and at each clock tick they 

transition between states. For instance if they generate a number 20 in the good state, this means 

that the network sees 20 error free packets and if they generate 15 in the bad state, then the 

network sees 15 packets with error. We show the model in Figure 7. 
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Generate random number 
specifying number of bad packets 

Generate random number 
specifying number of good packets 

Bad
 

Figure 7. Model to simulate bursty packet losses over wireless networks 

The focus of the work by Nguyen et al is on modeling the distribution of these random 

variables in each of the states accurately. We also use this loss model with the parameters derived 

by them while simulating down-link performance over a WaveLAN network.  

For ease of implementation, in our experiments we use one packet to contain data for one 

16×16 block. Even though the error is applied to such packets, it is possible to have consecutive 

blocks lost, so such a scheme can simulate the multiple blocks per packet case. It is important to 

realize that the scheme is not limited to such packet sizes, but may be applied across a variety of 

packet sizes. 

In our error concealment experiments we first use the face sequence that we have 

collected. This is because the sequence consists of an object, the face, exhibiting multiple 

appearance variations due to pose changes. Also this object may be easily tracked, thereby 



making it easy to build a model for it. Accurate tracking across frames with errors is required for 

such an error concealment scheme, as we need to segment out the object. However, performing 

some simple spatial interpolation before using the tracking algorithm can significantly improve 

tracking results. This is because most trackers use color and intensity based segmentation, so we 

do not need to recover the details in the missing blocks. We later also perform some experiments 

on the standard Foreman sequence, as it also contains an object, face again, showing appearance 

variations and use MPEG-4 segmentation information to track the face. Of course when such 

segmentation information is already available, we do not need to rely anymore on the tracking 

performance. 

The first experiment we perform is on Intra coded frames. We perform model-based error 

concealment on the face sequence with 180 frames. We use both the MPC and the PCA as models 

for the face. We train the MPC and the PCA using 20 clean frames from the sequence and we use 

these trained eigenspaces to conceal errors in the remaining 160 frames. Such a learning based 

scheme requires representative training data to model the test data accurately. In practice, it is not 

always guaranteed that we will have access to clean and representative training data prior to 

transmission. Hence in such cases we need to train the model online, use received clean frames to 

update the model parameters. The decoder being aware of the presence or absence of errors 

makes it easy to identify clean frames. Another advantage of online training is the fact that the 

model can be adapted to the changing appearance of the object, for instance due to lighting or 

other changes. Some work on online training and updating of eigenspaces was done by Murakami 

and Kumar [28], and this is a future direction to improve such a model based scheme.  

We perform two iterations of POCS to obtain better convergence results. As a measure of 

our error concealment performance we evaluate the PSNR between the frame with error 

concealment and the frame with no errors. In order to compare against currently used error 

concealment schemes we also perform error concealment by copying a missing block from the 

same location in the previous frame. We call this scheme Zero Motion error concealment.  

We repeat the experiment across different loss probabilities and different quantization 

step sizes. We vary the loss probabilities in the range 0.05~0.3 and change the quantization step 

sizes in the range 1~16. We use varying quantization step sizes to illustrate the performance 

across different bit rates. Although a fixed quantization step size does not correspond to a fixed 

bit rate, we can use the quantization step size as indicative of the bit rate, with a large 

quantization step size corresponding to a low bit rate. In each case the PSNR is computed with 

respect to the quantized sequence, however with no errors. These results are shown in Figure 8. 
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Figure 8. Error concealment across different loss probabilities and quantization step sizes (Intra) 

We can see from Figure 8 that model based error concealment schemes consistently 

outperform the Zero Motion error concealment across all the different loss probabilities and 

quantization step sizes. In fact the improvement ranges between 4~9 dB with a larger 

improvement occurring at higher loss probabilities. Also, among the model-based concealment 

schemes, the MPC performs consistently better than the PCA by around 1~2 dB. This illustrates 

that the MPC is better able to capture the variations in the face appearance than the PCA. In terms 

of computational complexity, the concealment scheme takes increases the H.263 decoding time 

by around 9~12%, with more computations needed with larger error probabilities. This increase is 

only for frames with errors, for frames without errors, there is no computational overhead. Since 

H.263 decoders can typically operate at higher than the frame rate, this increase still allows for 

real-time decoding. We show sample frames with error concealment from this face sequence in 

Figure 9. 



Without Errors No Concealment Zero Motion Concealed MPC Concealed

 

Figure 9. Error concealment using MPC for Intra case 

 In Figure 9 we show three sample frames with and without error concealment. The 

frames on the right have the errors concealed using the MPC as model. The no concealment case 

shows the missing blocks set to black, with the bursty nature of the errors indicated by the 

consecutive error blocks that occur on the faces. The Zero Motion concealed frames are also 

shown to illustrate the poor performance of such schemes. Some frames with Zero Motion 

concealment also contain dark blocks due to error propagation near the beginning of the 

sequence, as the first frame does not use any error concealment. 

We then focus on error concealment for Inter coded sequences. For these sequences we 

assume that the motion vectors are available and packet loss corresponds to loss of the residue 

block. There are many advanced error resilient modes in both H.263 and MPEG-4 that allow for 

such availability of motion vectors under lossy conditions. Hence this means that we have the 

motion compensated prediction for the current frame. Using the motion compensated prediction 

is one of the error concealment schemes in practice currently. Although propagation of errors 

becomes a concern, still the visual artifacts are not as bad as when we lose data in the Intra case, 

especially when the sequence does not have too much arbitrary motion. Also, we allow for intra-

refresh of blocks as recommended by the H.263 standard, and this helps to reduce the effect of 

error propagation. As opposed to this, the MPC and PCA based concealment schemes project the 

face into the respective eigenspaces and replace blocks in the face for which the residue block 

was lost. We perform two iterations of the POCS to obtain these results. In order to highlight the 

improvements of using a model based concealment scheme as opposed to using the motion 



compensated prediction, we sub-sampled the sequence in time by a factor of three, thereby 

making the motion compensated prediction not as good as for the full frame-rate sequence. 

As for the Intra case, we repeat the experiment across different loss rates and quantization 

step sizes. Since the original face sequence has smooth motion, the residues are typically small. 

Hence discarding the residue under lossy conditions does not degrade the video quality as much 

as in the Intra case. Hence a larger loss probability can be tolerated in this case, so we vary the 

loss probability in the 0.05~0.5. We vary the quantization step size again in the range 1~16. The 

results for error concealment are shown in Figure 10. 

0
0.1

0.2
0.3

0.4
0.5

0
5

10
15

20
20

25

30

35

40

Loss Probability

PSNR comparison for error concealment

Quantization Step Size

M
ea

n 
P

S
N

R
 (I

nt
ra

)

MPC               
PCA               
Motion compensated

 

Figure 10. Error concealment across different loss probabilities and quantization step sizes (Inter) 

We can see from Figure 10 that model-based error concealment outperforms the motion 

compensated error concealment by around 2~7 dB. Also, the improvements with the model-based 

schemes are more significant at higher loss probabilities thereby making these schemes more 

robust to large loss probabilities. Again, the MPC based error concealment outperforms the PCA 

based error concealment by around 1~2 dB. As for the Intra case, the concealment scheme 

increases the H.263 decoding time by around 11~13%, for frames with errors. We also perform 

intra-frame concealment using a simple version of the scheme proposed by Kwok and Sun [1]. 

We show this in Figure 11. 

1. Use neighboring pixels to identify dominant edge directions (in 45° 
steps). Choose two dominant directions 

2. Filter along those directions using weights inversely proportional to 
distance from missing pixel. 

3. Combine filtered images 
Missing block pixels 
Neighboring pixels 

 

Figure 11. Intra frame concealment scheme 



Clearly such an intra-frame scheme would work well when the missing block is spatially 

similar to the neighbors. However sometimes missing blocks contain detail information and 

features unavailable from the neighbors. Also, when we have bursty errors, the lack of good 

neighbors leads to poor performance of such schemes. We show an example of the error 

concealment performance using three consecutive frames in Figure 12. We choose these frames 

as we can see the effect of error propagation and intra refresh. 

 Motion 
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concealment 
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Frame 16 
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Figure 12. Sample frames with error concealment using MPC 

 We can see from Figure 12 that frames 16 and 17 not only have poor PSNR but the errors 

propagate between frame 16 and 17 due to the use of the motion compensated prediction, 

however due the presence of intra coded blocks and few errors in frame 18, the PSNR for the 

motion compensated concealment scheme improves. As against this, the frames with errors 

concealed using the MPC have a steadily high PSNR. As expected, this simple intra-frame 

concealment cannot recover the missing features. Also due to the dominant horizontal edge near 

the lips, the concealed blocks are of poor quality. On average this intra-frame concealment 

scheme performs 0.5~2 dB worse than the motion compensated concealment for our sequences. 

We repeat all of the above experiments using the model proposed by Nguyen et al [27] 

and find that the results for error concealment are consistent with the two-state Markov chain 

proposed by Yajnik et al. We obtain an improvement of 4~8 dB using model based error 

concealment over the Zero Motion concealment for the Intra coded face sequence. Similarly, we 



obtain an improvement over motion compensated error concealment by around 2~7 dB by using 

model based error concealment. Also, the MPC as a model consistently outperforms the PCA by 

around 1~2 dB across all these test scenarios.  

We also performed some experiments with the Foreman sequence. We examine the first 

160 frames of the sequence as these contain the person in the foreground. We use the MPEG-4 

segmentation information to track the foreground. We crop out the head in an 80×80 box and use 

data from 20 frames to train our models, and use the rest for our error concealment experiments. 

We simulate bursty packet loss using the models described before. We find that over a loss 

probability range of 0.05~0.3 our model based error concealment schemes outperform motion 

compensation based schemes by around 2~5 dB. We show some sample frames from the 

sequence corresponding to a loss probability of 0.1, in Figure 13. 
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Figure 13. Sample frames from Foreman Sequence 

 Again, the simple intra-frame concealment does not perform well, as the missing blocks 

are not very similar to their neighbors, and performs 1~2 dB worse than motion compensated 

concealment. Due to a larger size of the region of interest for this sequence, the H.263 decoding 

time is increased by around 14~19% by this error concealment scheme. 



5. Conclusion 

We have introduced schemes for model-based error concealment. Such model-based 

error concealment schemes outperform previously proposed schemes since the models are trained 

specific to the object of interest and can thereby capture the statistical variations in the object 

appearance more effectively. Such model-based concealment approaches are very useful 

especially in conjunction with the MPEG-4 standard, which uses object based coding, since the 

video stream contains the segmented object, eliminating the need for tracking the object.  

We focus on building accurate, efficient and computationally simple models for this task. 

We introduce a new statistical modeling technique called MPC that uses a mixture of eigenspaces 

to represent data. We show using simulated data that the MPC provides us better error 

performance than using the PCA, even when both use the same number of parameters. We then 

use these models for error concealment. 

We perform concealment for both Intra coded as well as Inter coded face sequences 

across a variety of quantization step sizes and packet loss probabilities. We also examine two 

different models for simulating bursty losses over wireless networks. We show that across all 

these different test conditions and simulations, a model-based approach to error concealment 

outperforms conventional concealment techniques. We show that model-based error concealment 

leads to an improvement of 4~8 dB in PSNR over Zero Motion error concealment, and 2~7 dB 

over motion compensated error concealment. We show that the MPC based error concealment 

outperforms the PCA based error concealment by around 1~2 dB in PSNR, even with the same 

number of total parameters, as it captures the data variations more efficiently than the PCA. In 

terms of computational complexity, such a model based error concealment scheme increases the 

H.263 decoding by around 9~19% depending upon the size of the region of interest and the loss 

probability. This increase is only for frames with errors, for frames without errors, there is no 

computational overhead. 

We realize that the MPC is a very general statistical framework for capturing data 

variations and so may be used for other tasks such as tracking, recognition, segmentation, etc. 

Some extension of the model needs to be done to allow for online update of the model 

parameters, which increases the flexibility, leading to better error concealment performance. 
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7. Appendix 
7.1. Solution for the means 

We first rewrite the optimization equation from (5) as follows 
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In the above equation B  is the matrix that projects data onto the sub-space spanned by the 

eigenvectors in , while  is the matrix that projects data onto the space orthogonal to this 

sub-space. We may use equation (11) to replace  in equation (10) and hence, the optimization 

criterion may be rewritten as follows. 
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We may now expand equation (12) into individual terms and rewrite it as follows. 
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We now drop the terms independent of m and expand the inner product terms. j
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Notice that , which are scalars and so may be moved to the front of each 

term. We now take derivatives with respect to and set the result to zero. 
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Now we may use the properties that  to simplify 

equation (15) as follows. 
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Equation (16) has multiple solutions due to the fact that  is singular. One solution for the 

means is as follows. 
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Clearly, any vector orthogonal to  may be added to m  as defined in equation (17) to still 

remain a valid solution to equation (16). Thus, the means are allowed to move within the sub-

space (hyper-plane) spanned by the eigenvectors in U . This non-uniqueness does not affect the 

reconstruction error, as it is measured as a distance from the projection onto the hyper-plane, 

which is independent of the location of the mean within this hyper-plane. As an illustration we 

show a simple example scenario in Figure 14.  
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Figure 14. Projection onto eigenspace as function of mean location 

In the example scenario we consider a single eigenspace with one principal direction u , 

shown in the figure as the principal axis of the ellipse. When we project data point x  onto this 

eigenspace, whether the mean is located at position m  or at position , the resulting 

projection is x . In fact this is always the resulting projection as long as the location of the 

mean changes along the line specified by u  passing through . As an illustration when the 

mean moves to location , the resulting projection also changes to , which is different from 

, thereby leading to a different reconstruction error. Hence we can tolerate this non-

uniqueness of the solution for the mean, as long as it is limited to within the hyper-plane spanned 

by the eigenvectors. 
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7.2. Solution for Eigenvectors 

We may now use the updated means while deriving the eigenvectors. The optimization 

criterion from equation (5) may be rewritten below in equation (18). 
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Let us define . Using this, the minimization criterion of (18) may be written 

as follows. 
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We now expand the terms in equation (19) and get the following. 
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Now we may drop all terms independent of u  and rewrite equation (20) using the knowledge 

that all eigenvectors of one mixture component are orthogonal to each other. Note, however that 

eigenvectors from different mixture components are not constrained to be orthogonal. 
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We also need to add the constraint that the eigenvectors need to have a norm of 1, and we may 

use the Lagrange multiplier method to add in the constraint to obtain equation (22).  
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We may now take derivative with respect to  and set the result to zero to obtain equation (23). 

Note that the term in the third line of equation (22) has two terms containing , one when 

 and the other when , which do not happen together due to the 

 condition. Both these terms are identical and their derivative may be grouped together as 

shown below in equation (23). 
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This is clearly an eigenvector, eigenvalue problem that may be written as C rsrsr uu λ=  where 

the matrix  is defined as follows. rC
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The first P  eigenvectors of this matrix are the desired eigenvectors of the mixture component. 
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