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ABSTRACT 

We introduce an efficient statistical modeling technique 
called Mixture of Principal Components (MPC). This 
model is a linear extension to the traditional Principal 
Component Analysis (PCA) and uses a mixture of 
eigenspaces to capture data variations. We use the model 
to capture face appearance variations due to pose and 
lighting changes. We show that this more efficient 
modeling leads to improved face recognition performance. 

1. INTRODUCTION 

Face recognition has generated much interest in the 
research community primarily because of the multitude of 
applications it enables. Automatic face recognition is very 
useful as a non-intrusive authentication, verification and 
identification tool. Among face recognition techniques 
template matching techniques are very popular. Template 
matching involves building a template or model for an 
object in the database and then using that to classify the 
test face. A sample template matching recognition system 
is shown in Figure 1. 
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Figure 1. Sample face recognition system 

In Figure 1 the test face is matched with the 
models in the database, each of which returns a score that 
may be in terms of probabilities, likelihoods, distances 
etc. These scores are then passed to a comparator to make 
the final decision. The focus of this paper is on improving 

face recognition performance using better models for the 
faces. 
The eigenface approach for recognition was proposed by 
Turk and Pentland [1] who used principal component 
analysis (PCA) [2] to create an eigenspace for all the 
subjects in the database. The test face is projected onto 
this eigenspace and the resulting coefficients are used to 
classify it among one of the many subjects.  

We first examine the PCA as a model for face 
recognition and find that it is inefficient at capturing data 
with large amounts of variation. For instance, when the 
data consists of multiple clusters, a mixture of eigenspaces 
is more efficient at capturing the data variations. We thus 
examine many non-linear and linear extensions to the 
PCA for improved modeling efficiency. Among the non-
linear extensions is the work by Hastie and Stuetzle [3], 
who proposed principal surfaces as an alternative to PCA. 
This involves modeling the data clusters using 
parameterized surfaces instead of the hyperplanes that 
PCA uses. Many neural network approximators for these 
principal surfaces of the high-dimensional data have also 
been proposed. Among these are the work by Oja [4] and 
by Kung and Diamantaras [5]. Other non-linear 
techniques such as Multi-Dimensional Scaling (MDS) [6] 
have also been introduced. Recently, other similar 
approaches to dimensionality reduction such as Locally 
Linear Embedding (LLE) [7] have also been proposed. 
LLE attempts to preserve local relationships between data 
points during dimensionality reduction. However all these 
non-linear techniques are computationally intensive and 
also lack an easy forward-backward transformation. 

We then examine other linear extensions to the 
PCA. Among these extensions is the Vector Quantization 
PCA (VQPCA) [8].  This technique modifies the 
traditional VQ algorithm by changing the optimization 
criterion to include reconstruction error. Data samples are 
partitioned into clusters based on which cluster 
reconstructs them with smallest error. The parameters of 
each cluster are then updated using local PCAs and this 
process is iterated till convergence of parameters. This 
hard partitioning of data into clusters before 
dimensionality reduction leads to loss of the global 



information present in the data. We would like to both 
exploit the local as well as global information present in 
the data and so prefer a soft partitioning of the data. The 
idea of soft partitioning the data while training local PCAs 
has been examined by Tipping and Bishop [9].  They first 
introduce an extension to the PCA called the Probabilistic 
PCA (PPCA) and use a mixture of such PPCAs to 
represent the data. However, during this dimensionality 
reduction, the squared error is not explicitly minimized; 
instead the likelihood of observing the data given the 
model is maximized. This may lead to poor reconstruction 
performance of the model.  

We propose a linear extension to the PCA called 
Mixture of Principal Components (MPC). Similar to the 
way that a Gaussian mixture models the data distribution, 
the MPC automatically models the data using a mixture of 
eigenspaces. However, instead of optimizing the 
likelihood of observing the data given the model, the 
MPC parameters are chosen to minimize the overall 
reconstruction error. It is efficient, accurate and the 
reconstruction is easy to compute. We hence use the MPC 
to model the faces and improve recognition performance. 
This paper is organized as follows. Section 2 describes the 
new statistical modeling technique, mixtures of principal 
components (MPC). Section 3 describes the test database 
and includes face recognition results. We conclude in 
Section 4 and indicate directions for future research. 

2. MIXTURES OF PRINCIPAL COMPONENTS   

The MPC model for any data set is characterized by two 
sets of parameters, the means and the eigenvectors of the 
component eigenspaces. In order to describe our model 
more efficiently, we use the following notation. 
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2.1. Reconstruction from Model 

Our approach to reconstruction consists of linearly 
combining individual reconstructions from a mixture of 
component eigenspaces. Given a data test vector iy , we 
first project it onto each of the component eigenspaces to 
obtain individual reconstructions ijŷ  and then linearly 
combine these individual reconstructions to obtain the 
representation that is closest to the original data vector 

iy .  The individual reconstruction ijŷ  for test vector i  
from mixture component j  is obtained as shown in (1). 
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These individual reconstructions are then linearly 
combined using a set of weights. We show an illustration 
of our approach in Figure 2. 
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Figure 2. Illustration of mixture of eigenspaces 

In Figure 2 we show data reconstruction using a 
mixture of two component eigenspaces, each with one 
eigenvector. The component eigenspaces have means 1m  
and 2m , and eigenvectors 11u  and 21u  respectively. In 
the figure, the means are shown as black diamonds and 
the direction of the eigenvectors is shown as a line passing 
through the corresponding means. Given a data sample 

1y , shown as a dark circle, we first project it onto each of 
the component eigenspaces to obtain 11ŷ  and 12ŷ . We 
then linearly combine these two projections to obtain the 
best reconstruction for the data, shown as the dark triangle 
in the figure. Due to the nature of the linear weighting, the 
best combination lies along the line joining the two 
individual reconstructions. The weights are chosen so that 
the resulting combination is as close to the data sample as 
possible, i.e., it lies on the perpendicular from the data 
sample to the line joining the two individual 
reconstructions. 

The weights are solved for individually for each 
of the test vectors. The only constraint that we impose on 
the weights is that they are required to sum to one.  



2.2. Training of Model Parameters 
This section focuses on determining the mixture means 
and eigenvectors given a set of training data. We would 
like to automatically train the MPC to minimize the 
reconstruction error. We formulate this training problem 
as a minimum error optimization problem and provide a 
solution using an iterative Expectation Maximization 
(EM) kind of algorithm.  

Given a set of N  training data vectors, we model 
them using an MPC containing M  eigenspaces, each with 
P  eigenvectors. This problem of minimizing the squared 
error through the choice of the means and the sets of 
eigenvectors may be mathematically written as in (2). 
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The weights are recomputed for each of the training data 
vectors, and are used to update the means and the 
eigenvectors, but are not part of the model. 

We first initialize the means and the eigenvectors 
for the different components randomly. We compute the 
weights for each data vector, following which we update 
the means, while keeping the eigenvectors fixed and then 
use the new means to update the set of eigenvectors. After 
this we recompute the weights and repeat the update 
procedure till convergence.  

We include the update equations for the means 
and eigenvectors; the derivation is presented in [10]. 
The mean of mixture component q  is updated as in (3). 
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The eigenvectors for the r -th mixture component are 
obtained as eigenvectors of the matrix rC  defined in (4). 
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The first P  eigenvectors of this matrix are the desired 
eigenvectors of the mixture component.  

3. FACE RECOGNITION RESULTS 

In order to test modeling performance, we use faces from 
the PIE database [11]. The database contains faces with 
multiple poses, under different illuminations and with 

different expressions. We use faces with extreme pose and 
illumination variations as our test set. As an illustration of 
the variations in the database, we show images from one 
of the subjects in Figure 3. 

 
Figure 3. Sample pose and illuminations in database 

As can be seen from Figure 3, the pose variations 
include views from left to right as well from the top and 
the bottom. Besides these pose variations, the lighting also 
varies from bright to extremely dark.  

We use five persons from the database with 286 
images per person. We use half of these to train the 
models and test recognition performance on the other half. 
We train mixtures with four components and two 
eigenvectors each. One set of parameters for a person in 
the database is shown in Figure 4. 
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Figure 4. Sample means and eigenvectors 
As can be seen from Figure 4, the means 

automatically converge to varying poses while the 
eigenvectors capture lighting variations among these 
poses. It is very interesting that this converged result 
agrees with semantic labeling of data into poses and 
illuminations.  

We plug these models into the face recognition 
system shown in Figure 1 and evaluate the recognition 
results. We compare the performance of these models 
with the PCA with eight eigenvectors, making the same 
number of total eigenvectors for either model. These 
results are shown in Figure 5. 
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Figure 5. Face recognition performance 

The overall recognition performance over the 
five subjects in the test set is 95.8% for the MPC while it 
is 83.8% for the PCA. The significant improvement in 
recognition performance is due to the better modeling 
performance of the MPC as opposed to the PCA. On 
average for this set of faces, the MPC has around 34% 
smaller representation error than the PCA, even with the 
same number of total eigenvectors. The confusion matrix 
for the test data is shown in Table 1. Each subject in the 
test has 143 images. 

Table 1. Confusion matrix for face data 

Subject 1 2 3 4 5 
1 134 1 4 0 4 
2 0 139 2 1 1 
3 0 1 136 0 6 
4 1 0 2 137 3 
5 0 0 3 1 139 

In Table 1, a row represents the number of times 
a subject is recognized as one of the other subjects. As 
may be seen, the diagonal entries are the largest values 
with some confusion due to the extreme lighting and pose 
variations.  

4. CONCLUSION 

We introduce a new statistical modeling technique, MPC 
that uses a mixture of eigenspaces to capture data 
variations efficiently. This model is a linear extension to 
the PCA and shows smaller representation error than the 
PCA for data with large variations in appearance. We 
illustrate the performance of this model on face data and 
show that the MPC has around 34% smaller 
reconstruction error for faces with varying poses and 
under different illumination conditions, even with the 
same number of total eigenvectors for both the models. 
The converged model parameters after training agree with 
semantic labeling of the data into poses and lighting 
variations. As shown in the paper, the means of the 
component eigenspaces converge to different poses in the 
data, while the eigenvectors for each eigenspace capture 

the lighting variations. We then plug this improved model 
into a face recognition system and test the performance on 
some faces from the PIE database. We show that the MPC 
has a recognition performance of 95.8%, as opposed to 
the PCA with only 83.8%. 

MPC is a general statistical modeling tool and 
may be used to capture data variations in any generic data 
set. It is not restricted to faces or images. Some future 
directions of research include progressive training of the 
model and use of model for data compression. 
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