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Abstract

We propose models for variable bit rate (VBR) video traffic that allow for different frame
types present in the video, different activity levels of different frames and a variable group of
pictures (GOP) structure. We use doubly Markov processes to capture these properties. The
performance of these models is evaluated in terms of the stochastic properties of the generated
trace as well as using network simulation with five such statistically multiplexed traces. We then
illustrate the need to model VBR traces not just at the frame level, but also at lower levels, e.g., at
the group of blocks (GOB) level and propose a scheme to partition the frame data generated by
our models into these finer hierarchical levels using statistics from training data.

1. Introduction

Variable bit rate (VBR) video coding allows for great flexibility in terms of selection of
video coding parameters, efficient compression ratios and can maintain desired video quality.
Bitstreams from various VBR video sources can also be efficiently multiplexed over the network
using statistical multiplexing techniques. All the above factors have led to VBR video encoders
being the preferred mode of coding video streams and the focus of this paper is on modeling such
video sources. Modeling video sources is important as it allows for network designers to estimate
the parameters of networks like packet loss probabilities and end-to-end delays so that they can
guarantee a desired quality of service (QoS).

Modeling VBR video traffic poses difficulties as the bit rate for a given video sequence is
determined by a large number of factors. Different compression schemes can lead to different bit
rates for the same video sequence. Models for VBR traffic are dependent on the choice of the
compression scheme with H.263 [1] and MPEG-4 [2] being some of the latest video coding
standards. These standards allow for three different kinds of coding schemes for a video frame in
order to improve coding efficiency. A frame may be Intra (I), Predictive (P) or Bidirectionally-
predictive (B). An I frame is coded in isolation from other frames using transform coding,
quantization and entropy coding. A P frame is predictively coded, which means that a prediction
is formed using a previously coded frame and only the difference between the prediction and the
actual frame is coded. A B frame is predicted bidirectionally, which means that the prediction is
formed using both its previous frame as well as the successive frame. An I frame is often used to
efficiently code frames corresponding to scene changes, i.e. frames that are different from
preceding frames and therefore cannot be easily predicted. Frames within a scene are similar to
preceding frames and hence may be coded predictively as P or B for increased efficiency. Frames
between two successive I frames, including the leading I frame, are collectively called a group of
pictures (GOP). We illustrate a GOP in Figure 1.
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Figure 1. Group of Pictures

In Figure 1 the group of pictures illustrated has one I frame, two P frames and six B
frames. Typically, multiple B frames are inserted between two consecutive P or between I and P
frames and we show this in the figure. The work in this paper focuses on modeling explicitly
video traffic consisting of I and P frames, and can be easily extended to B frames.

Several models for VBR video traffic have been proposed in literature. Maglaris et al [3]
have proposed a model for the coding bit rate of a single video source using interframe predictive
coding. Sen et al [4] propose models for different activity levels using correlated Markov models
and use queuing analysis to estimate the packet loss and delay. Yegenoglu et al [5] propose a
model for VBR video using a time dependent autoregressive (AR) model to represent data from
different activity levels. Izquierdo and Reeves [6] have performed a survey of different statistical
models proposed to model VBR video traffic.

Most of the work done in literature does not explicitly take into account differences
between I and P frames. Some work done by Doulamis et al [7] models I, P and B frames
explicitly with an additional layer corresponding to the activity level of the video scene. This is a
good model for video traffic. However, they impose a constraint of a fixed GOP structure. They
assume that every GOP consists of an I frame followed by a fixed number of P and B frames in a
fixed pattern and this pattern repeats itself throughout the video sequence and hence we call this
model the Fixed GOP Model. Each GOP is viewed as belonging to one of three activity levels,
high-activity, medium-activity and low-activity, where activity corresponds to the average bit rate
during the GOP. Chandra and Reibman [8] model I and P frames explicitly and allow for a
variable GOP structure. However, their model requires a large number of parameters and they do
not allow for any temporal correlation or different activity levels for I frames.

In this paper we introduce several models that are flexible enough to allow for the
variable GOP structure and also model the characteristics of the video traffic well. We describe
models for I, P and B frames that are doubly Markov in nature, to account for trace having
different activity levels as well as different types of frames. These models are extensions of
models for I and P frames that we introduced in [9] and generate the trace in terms of bits per
frame. We examine both the stochastic properties of the trace, e.g., the autocorrelation function,
as well as the delay and loss probability encountered by the trace using network simulations. We
show that the trace generated by our model can predict the delay and packet loss probability
encountered by real data accurately. We generate trace using a frame as a unit, however this may
not be the same unit used while packetizing the trace. For instance the bits for one row of blocks
in a frame, also called a group of blocks (GOB), may be viewed as one unit. We propose to
partition the frame data into GOB data using statistics of GOBs in frames and compare the
performance of these traces with actual GOB traces.

This paper is organized as follows. Section 2 describes the models and Section 3 includes
a discussion of results in terms of stochastic parameters as well as in terms of network
simulations. Section 4 has a brief discussion of the modeling of data at different hierarchical
levels. We then conclude with the summary of the models and their performance and identify
future research directions.



2. Activity Adaptive Models

Video sequences have large variations in action levels between scenes. This leads to large
variations in the bits per frame within I, P or B frames, corresponding to different activity levels.
An accurate model needs to capture the effect of having different frame types, as well as this
variation in activity level within frames of one type. We thus propose a number of doubly
stochastic processes to model both the activity level changes and I, P and B frames corresponding
to a certain activity level. As before, the temporal correlation between I, P or B frames
corresponding to an activity level is captured using AR(1) processes with Gaussian distributions.
Our models are flexible and allow for a variable GOP structure.

2.1. Trace Characteristics

Typical traces with I, P and B frames and variable GOP structure are created as follows.
The video encoder first identifies which frames of the sequence need to be coded as I frames.
These are frames that lie across scene changes and so cannot be coded efficiently using
prediction. This may be determined by creating a prediction for every frame and counting the
number of blocks in the frame that need to be intra coded, i.e., cannot be predicted well. Frames
that have a large number of intra coded blocks are classified as I frames. After identifying the I
frames the sequence is encoded with a repeating the pattern of two B frames followed by a P
frame, until the next I frame is reached. Clearly, when the interval between two I frames is not a
multiple of three this pattern cannot always be inserted. In that case the last pattern is terminated
when the I frame is reached. An example sequence of coded frames is as shown in Figure 2.
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Figure 2. Variable Length GOPs with B frames

From the sequence we see that the interval between the first two I frames is a multiple of
three and so the BBP pattern can be repeated once, but after this none of the successive I frames
have an interval that is a multiple of three, so in all the other cases the BBP pattern is terminated
when the next I frame is reached. Traces generated in such a way have a variable length GOP
structure as well as all three kinds of frames. We propose a number of doubly stochastic
processes to model both the activity level changes and I, P and B frames corresponding to a
certain activity level. The temporal correlation between I, P or B frames corresponding to an
activity level is captured using AR(1) processes with Gaussian distributions.

2.2. Type I Models

We divide the video sequence frames into three different activity levels, high-activity,
medium-activity and low-activity, based on the number of bits needed to code the frame. The
Type I models, as for the I and P models, choose between generating an I frame, a P frame or a B
frame before deciding the activity level of the video frame. The traces that we wish to model have
some specific characteristics. For instance there are a lot of repeated pairs of B frames, but no



instance of three or more consecutive B frames. Similarly, P frames never occur consecutively
due to the way in which we create the traces that we wish to model. So we may modify the
structure of the Markov chain corresponding to I, P and B frames in order to account for these
specifics in our traces. Hence, instead of having only three states corresponding to I, P and B
frames, we introduce an artificial fourth state that we call the BB state. For each transition into
this state two B frames are produced. As against this transitions into any of the other three states,
I, P or B, result in only one frame being generated. This BB state simulates the repeated B frame
structure in our real traces. The other constraints on having no more than two repeated B frames
and having no repeated P frames are automatically satisfied when we estimate the transition
probabilities of the model from our training data.

2.2.1. Type I Doubly Markov Model

This model has two Markov chains, the outer one having I, P, B and BB states, as
described earlier, and the inner one having states corresponding to the activity levels of the type
of frame generated. Each of the frames generated, may belong to one of the three activity levels.
Our proposed model looks as shown in Figure 3.
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Figure 3. Type I Double Markov Model for trace with B frames

As can be seen from the figure, the outer Markov chain has some constraints on its
structure due to the particular characteristics of the data we are trying to model. For instance,
there are no transitions in either direction between the BB state and the B state, or self transitions
for either of these states, to prevent the occurrence of three or more consecutive B frames.
Similarly there are no self-transitions in the P state, as we cannot have consecutive P frames.
Also, we realize that we generate a single B frame only when the BBP pattern needs to be
prematurely terminated, so the B state may transition only to the I state. All these conditions need
not be imposed on the model, training it using the real trace will ensure this transition, structure,
however we may use this apriori knowledge to reduce the number of parameters to be estimated
during training.

Within each of the four outer states, we have another Markov chain that determines the
activity level of the frame to be generated. These activity Markov chains are never restarted. The
process of generating data using this model is as follows. We first decide to generate an I frame, a
P frame, a B frame or two consecutive B frames. After this, we determine the activity level of the
frames using the inner Markov chain. The frames are generated from a Gaussian probability
density function (pdf), using an AR(1) processes to capture the temporal correlation between
them. The two frames in the BB state are generated from the same activity level.

The training procedure for this model is as follows. Using the sequence of I, P, B and
repeated B frames from the real trace we may estimate the initial and transition probabilities of



the outer Markov chain. We then need to estimate the inner Markov chain initial and transition
probabilities and the means, variances and AR process parameter ρ for each of the AR(1)
processes. We separately collect all I frames, all P frames, all single B frames and all repeated B
frames from the real trace. We then use two thresholds for each of these and divide them into
high-activity, medium-activity and low-activity. From these sets of data we can estimate the
means, variances and AR process parameter ρ of all the AR(1) processes. By looking at the
sequence of transitions between these activity levels for each of the four frame types, I, P, B or
BB, we can estimate the initial and transition probabilities for the inner Markov chain.

2.2.2. Type I Simplified Model

As before, we try to reduce the parameters for the model by removing Markov chains
when they are not necessary. For the I and B states we found experimentally that
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transition probabilities between the inner Markov chain states are the same as the unconditional
probabilities of being in any of them, so we can replace the Markov chain with a set of
unconditional probabilities with which we generate a frame belonging to a certain activity level.
This may be explained by the fact that the I and B states occur infrequently and always in
different GOPs, typically with a large interval between them. So the dependence of the current
activity level on the previous activity level is small. This is however not true for the BB or the P
states as they occur frequently and many times in the same GOP. Hence these Markov chains
cannot be replaced. The simplified model is as shown in Figure 4.
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Figure 4. Type I Simplified Model

As for the Doubly Markov model, the structure of the model is chosen keeping in mind
the particular characteristics of the data we are trying to model. For this model, we first decide
whether we want to generate an I frame, a P frame, an individual B frame or a pair of B frames
and following this we decide which activity level this frame/frames should belong to. For the I
and B states we decide with a fixed probability the activity level of the generated frame, while for
the BB and P states we use the Markov chain to determine the activity level of the frames. As
before, none of the inner activity Markov chains are restarted.

The training procedure for this model is very similar to that for the Doubly Markov
model. The only difference is that for the I and the B states the unconditional probability of
generating a frame belonging to a certain activity level is just the number of frames at that
activity level divided by the total number of frames of that type.



2.3. Type II Models

We also implement the Type II models where we first choose which activity state the
current frame belongs to before deciding to generate an I, P or a B frame. Here again, using
knowledge of the training data characteristics, we choose to use the four state I, P, B and BB
model to generate frames. This Markov chain, is now, however the inner Markov chain for this
model.

2.3.1. Type II Doubly Markov Model

We also implement the Type II model, where the outer Markov chain corresponds to the
activity level and within each activity state there is another Markov chain corresponding to the I,
P, B and BB states. This model may be shown as in the following figure.
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Figure 5. Type II Doubly Markov Model

This model makes the assumption that the entire GOP belongs to one activity level,
however, this assumption is not very valid and the performance of the model suffers due to this.
In order to generate data using this model, we first use the outer Markov chain to decide the
activity level of the current GOP, following which we generate the GOP using the inner Markov
chain. When the inner Markov chain transitions back to the I state, we have completed generating
one GOP, and so we use the outer Markov chain to determine the activity level of the next GOP.
We reinitialize all inner Markov chains after generating one GOP.

In order to train this model, we first obtain the mean bit rate for each GOP and then use
two empirical thresholds to partition this sequence of GOPs into activity levels. This sequence of
activity levels may be used to train the outer Markov chain. The means, variances and AR process
parameter ρ for each of the AR(1) processes may be estimated using the knowledge of the
activity level of each frame. We then collect sets of sequences of I, P, B and repeated B frames
for each activity level and each of these sets is used to train the initial and transition probabilities
for the inner Markov chains.

Our training data shows a great dependency in terms of deciding the current frame based
on the previous frame and so we cannot replace any of the inner Markov chains with
unconditional probabilities. So, this model cannot be simplified further.

3. Results and Discussion

In order to evaluate the performance of our models we look at both the stochastic
properties of the generated data as well as use network simulations to look at the loss probabilities
and delays encountered by the traces. All the models were trained on the same data and
characteristics of the generated bit rate were compared with those of the real data. The training
data was from two different sequences. The first was a high motion video sequence made up of



advertisements. We call this sequence Ads. This sequence had frequent scene changes, camera
zooms and pans and a lot of motion. The second sequence was a news clip and we call it News.
This sequence contained news reports from different locations and hence it contained a moderate
amount of motion and some scene changes. Sample frames from both the sequences are shown in
Figure 6.

Figure 6. Sample frames from Ads (left) and News

Both sequences consisted of five minutes of data sampled at 15 Hz, making a total of
4500 frames. Each sequence was converted to bits using a H.263 standard compliant video codec.
A random GOP was achieved as described in Section 2.1, and a frame is coded as an I frame if
more than 70% of its blocks need to be intra coded. In order to illustrate the need for the flexible
GOP structure, we compare our results with the Fixed GOP model.

3.1. Stochastic Properties of Modeled Traces

We compare the mean squared error in modeling the real autocorrelation function by our
models with the error using the trace generated by the Fixed GOP model. The mean squared error
in autocorrelation function using our proposed models, is smaller by an order of magnitude for
both the Ads as well as the News sequence. These results are included in the following table with
the entry in each column corresponding to the mean squared error in modeling real
autocorrelation function normalized by the error in modeling the real autocorrelation function
using the Fixed GOP model.

Table 1. Error in modeling real autocorrelation function normalised by Fixed GOP error

Sequence Fixed GOP
Model Error

Type I Doubly
Markov Error

Type I Simplified
Error

Type II Doubly
Markov Error

Ads 1 0.083 0.081 0.101
News 1 0.074 0.077 0.092

From the table we can see that our models produce traces that are statistically similar to
the real data as the error is around 10~13 times smaller than that for a fixed GOP model.

3.2. Network Simulations

In order to actually translate this statistical similarity into the ability to actually predict
the packet loss probabilities and delay, we perform the following simulation. We first look at a set
of real traces and packetize them with one frame being viewed as one packet. We view each trace
as being generated by a different video source and packets from these different sources are
statistically multiplexed into a common buffer. Since each packet corresponds to a frame, our
packets arrive at regular intervals, thereby leading to a certain periodicity in the system. In order
to reduce this periodicity we uniformly distribute the starting times of the different sources within
one frame interval of each other. So packets from the same source arrive at regular intervals of
one another, but the packets from different sources start arriving at different times, which are
uniformly distributed within one frame interval. We then drain the fixed size buffer at a fixed
drain rate and evaluate the loss probability and delay encountered by the packets in this set up and



repeat this experiment for different buffer sizes and drain rates. Using the same setup we then
replace each video source by our model and evaluate the loss probabilities and delay for our
models. For comparison, we also replace each source with the fixed GOP model and evaluate the
loss probability and delay for the packets generated by this model. The setup for this simulation is
as shown in Figure 7.
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Figure 7. Simulation setup to evaluate delay and loss probability for statistically multiplexed trace

In our simulation we use five source or model traces. The results of these simulations are
shown in the following figures. We present these simulation results for the trace generated by one
of our models, the Type I Simplified Model and the trace generated using the Fixed GOP model.
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Figure 8. Loss probability and delay for real and modeled traces (Ads) using multiplexed streams
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Figure 9. Loss probability and delay for real and modeled traces (News) using multiplexed streams

Figure 8 shows loss probability and delay results for statistically multiplexed streams for
the Ads sequence, while Figure 9 shows results for the News sequence. We can see from the
figures that the performance of our model is better than the performance of the fixed GOP model.
This is indicated by the fact that our predictions for the loss probability and delay are close to the
real data. In terms of squared error, our prediction of the loss probability for the real data is 18
times smaller for Ads and 6 times smaller for News than the error for the fixed GOP model.
Similarly the squared error in our prediction of the delay is around 20 times smaller for Ads and



3.5 times smaller for News than the error for the fixed GOP model. The gains for the Ads
sequence are larger as it is a high motion sequence with frequent scene changes and changes in
activity levels, so a fixed GOP model cannot accurately capture all these variations.

4. Modeling at different hierarchical levels

The models we have proposed create data in terms of bits per frame that is accurately
representative of real video trace data. When video is transmitted over a network the data is
packetized and the packetization is not necessarily one packet corresponding to one frame.
Instead smaller units like bits for a group of blocks (GOB) are grouped together in one packet and
these packets are transmitted. In order to capture all the properties of a trace composed of GOB
packets we need to retrain models using these traces. This leads to a large number of models for
many different kinds of packetization schemes. Instead, we propose to capture the properties of
the frame trace using our models and then partition this data into a GOB trace or a trace with any
other unit, given the statistical properties of the desired unit in a frame. We illustrate this idea by
generating GOB traces from the frame traces and compare the performance of these traces in
predicting the delay and loss probability encountered by a real trace composed of GOB sized
packets. In order to partition our frame trace into a GOB trace we collect the pdfs of GOBs in
different types of frames at different activity levels. Knowing the activity level and the type of the
current frame, these pdfs are used to create the data appropriately. One constraint that we have to
satisfy is that the sum of bits for all GOBs in a frame should total to the bits needed for that
frame. We ensure this in the following way. If there are N GOBs in a frame (for instance there are
9 GOBs in a QCIF frame) we generate N−1 GOB sizes using the appropriate pdf and the last
GOB is given the difference between the number of bits for the frame and total of these N−1
GOBs. In order to verify the need for this partitioning using pdfs we also partition the frame data
into GOB data by assigning 1/N of the frame bits to each GOB. We call this scheme the Mean
partition scheme as we assign the mean value to each of the GOBs. We illustrate the performance
using the same network simulation as described before, only now we use the GOB traces. The
results in terms of loss probability and delay for the Ads sequence are shown in Figure 10.
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Figure 10. Loss probability and delay for GOB traces for Ads sequence

We can see from the figure that using the pdf of the GOB data provides accurate
predictions of the delay and loss probability of real GOB data as opposed to using the mean
partition scheme. In terms of squared error, using the pdf to partition data provides nearly 20
times smaller error in predicting loss probability than the mean partition scheme. In fact, the
prediction for the delay is identical to the real delay, while the prediction error using the mean
partition scheme is large. Hence, using the proposed method we can use our models for the frame
trace to create data and then partition it appropriately using statistics from training, so that we can
capture the effect of different packetization schemes.



5. Conclusion

We propose several models for VBR video sources that allow for a flexible GOP
structure, thereby modeling typical traces better. We propose two different kinds of models for
data with I, P and B frames. These are the Type I models that choose the type of the frame first
before deciding the activity level the frame belongs to and the Type II models that decide the
activity level of the frame before choosing the type of the frame. We show that the generated
traces are statistically similar to the real data using the error in the autocorrelation function as a
measure, which is smaller by a factor of 10~13 over using a fixed GOP model. We also evaluate
the performance of the models in terms of predicting the loss probability and delay when we run
these traces through a network simulation and show that the delay and loss probabilities predicted
by our models are accurate. Our predictions for loss probability are 6~18 times smaller in squared
error than predictions using a fixed GOP model and our predictions for delay are 3~20 times
smaller than the fixed GOP model predictions. We also include a discussion for the need to model
the data at different hierarchical levels to account for different packetization schemes and show
that using the statistical properties of actual traces, we can partition our frame data into GOB
data. We show that using the actual pdf to partition frame data can result in around 20 times
smaller error in predicting loss probability and very small error in predicting delay than just using
the mean partition scheme. Future work involves validating these models across a larger variety
of sequences, capturing the properties of rate controlled video traffic and partitioning frame into
other lower levels. We are also examining the need for the use of the actual pdf while generating
the frame data
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