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Abstract

Video coding has attracted much attention in the recent past, especially due to the large

amount of digital video content available today. Video transmission and storage requirements

result in efficient compression techniques with many different evolving compression standards,

such as H.263 and MPEG-4. Besides efficient compression, video coding techniques have to

ensure good video quality while involving real-time processing. Complexity, quality and bit rate

are factors that measure success of a video coding scheme. The focus of this thesis is on

optimizing the video coding process to improve performance in terms of one or more of these

three factors. We use statistical modeling techniques to achieve this optimization goal.

Specifically we examine two parts of the video coding process, mode decisions and error

concealment. Mode decisions involve selecting the optimal modes of operation under certain

constraints. We build a classification based framework for making mode decisions to minimize

the coding cost that may be defined in terms of the three parameters, complexity, quality, and bit

rate. We propose a scheme for model based error concealment, i.e., using a statistical model for

the region of interest to replenish any data lost due to errors in network transmission. We

introduce a new and efficient statistical model called Mixture of Principal Components (MPC) to

capture the properties of the region of interest. We show that this model is more efficient than the

traditional Principal Component Analysis (PCA) in capturing data variations, especially when the

data consists of samples distributed in multiple clusters. We also use this model for an example

face recognition task in order to highlight some other applications for this general statistical

framework. We realize that both the mode decisions as well as the error concealment

optimizations require feedback from the network regarding the available bandwidth, loss

probability, and delay. Hence, in the last part of this thesis we focus on modeling the variable bit

rate video traffic so that we may use this traffic to probe the network to determine the network

condition and optimize our coding algorithms appropriately.
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1. Introduction

Video coding includes both the encoding from video data to a bitstream as well as the

decoding from the bitstream to video data. The goal of video coding is to achieve efficient

compression while maintaining as high a quality of the reconstructed video as possible. Besides

the compression ratio and the quality, real time video encoding and decoding is a primary

requirement of video coding systems. Hence, overall video coders have to perform as well as

possible in terms of the “complexity-quality-bit rate” tradeoff. Complexity may be measured in

terms of the time needed for processing the data. Quality consists of two parts, the spatial quality

and the temporal quality and many spatio-temporal quality metrics have been defined that obtain

an objective assessment of the overall quality of a video stream. The bit rate is measured in terms

of the number of bits needed to code the sequence.

Video coding standards specify the bitstream syntax completely, but allow for

optimizations in the encoding process, in terms of algorithms and mode decisions used, and any

post-processing in the decoding process. These optimizations are allowed as coders designed for

different applications have different requirements. For instance when the application requires

real-time coding, the complexity of the coding becomes critical, while in applications with off-

line coding, the quality and the coding efficiency are more critical than the complexity.

The focus of this thesis is on optimizing the video coding process to improve performance

in terms of one or more parameters of the complexity-quality-bit rate tradeoff. Specifically in

order to improve the performance, we target two different parts of the coding process, various

mode decisions part of the encoding process, and error concealment, part of the decoding

process. In addition, we also examine modeling of video traffic that is produced by the encoding

process. This is because work on optimizing mode decisions and error concealment requires

information such as transfer delay, transfer rate and loss probability, from the network. Using

accurate models for network traffic enables us to estimate these parameters from networks. The

recurrent theme underlying all of our work is the use of statistical modeling techniques to

optimize the video coding process. Hence we build a classification based framework for making

optimal mode decisions, a statistical modeling framework for capturing data variations for error

concealment, and doubly stochastic models for capturing the properties of video traffic.
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All these three parts of our thesis are closely related to one another and the interaction

between them is shown in Figure 1.1.

Encoder DecoderNetwork

Models for
video traffic

Mode
Decisions

Error
Concealment

Probe

Network State
Information

Post-process
Video

Modes or
Parameters

Figure 1.1. Interactions between different optimizations

In Figure 1.1, we show both the optimizations and modeling work in the context of the

encoder, decoder and the network. The models for the traffic may be used to probe the network to

obtain desired network state information, such as available bandwidth, loss probability, network

delays, congestion etc. This information is very useful to network designers as it enables them to

provide certain estimates and guarantees on the network performance. This information may also

be used in the encoding and decoding. This information may be passed on to the mode decision

optimizer, which selects the appropriate coding modes and parameters in order to modify the

encoder output to meet these network constraints. This information may be also passed on to the

error concealment module, which then adjusts the decoder post-processing to reduce the effects of

the losses due to transmission over the network.

As an illustration we propose the following scenario. Using the models as a probe we

determine the loss probability and delay associated with transmitting data at a certain rate over

the network. This information can be fed into the mode decision optimizer that then changes the

quantization step size, or decides to skip coding some frames in order to maximize the decoded

video quality while meeting the constrained target rate. This information is also made available to

the decoder, where the error concealment scheme can adjust the parameters to perform a more

effective concealment. To demonstrate the performance of these optimizations and post-

processing, we have implemented them in the H.263 framework, using the codec developed at
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CMU [1]. These techniques are, however, not limited to one video coding standard, but may be

applied to other standards as well.

1.1. Mode Decision Framework

Inherent in the coding process are many mode decisions that improve one or more of the

parameters of the complexity-quality-bit rate tradeoff. These mode decisions may be at different

levels of the coding process and may have different goals. Two examples of mode decisions are

the Intra-Inter mode decision and the mode decision to skip or code a frame to solve the problem

of rate control.

Inter coding a block is typically more efficient for scenes with simple backgrounds and

moderate to low motion as a good prediction for the block may be found from the previous frame.

Intra coding is more efficient for sequences with complex backgrounds and large, irregular

motion, when a good prediction cannot be found for the current block. This Intra-Inter decision

needs to be made for every block in the frame.

Rate control involves adjusting the coding parameters in order to meet a target bit rate

provided by the network. The problem of rate control has been extensively studied in literature.

Chen and Wong [2] and Choi and Park [3] try to solve the rate control problem using buffer

control strategies. As against this, Hsu, Ortega and Reibman [4] propose algorithms for rate

control using both source rate control as well as channel rate control over asynchronous transfer

mode (ATM) networks. A majority of the work in these papers involves controlling the output

rate of the encoder by changing the spatial quality. Spatial quality is controlled by the

quantization step size, with a larger quantization step size leading to worse quality with

correspondingly smaller bit rate. These strategies consider changing the frame rate for rate control

as the last option, only when the target rate cannot be achieved by changing the quantization step

size. Song, Kim and Kuo [5] propose rate control algorithms for low bit rate unconstrained VBR

that allow for a variable target rate provided by the network. The algorithms they propose try to

control the spatial and temporal quality simultaneously to improve the perceived quality. They

use frame skipping or frame rate changes in order to improve the perceived quality and the

primary algorithm to control the bit rate is through the use of the quantization step size. Work by

Martins, Ding and Feig [6] tries to achieve rate control by combining the effect of coding and

skipping a frame into a composite cost function. They, however lack granularity in their work, as

the decision they make is not on a frame by frame basis. They make a decision for the future

using information from coding the current frame. As an example, if after coding a frame they feel

that they need to skip 10 frames, they do so without examining any of the following 10 frames.
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Most of the work above uses models to estimate the relationship between bits needed to code

frames and the quantization step size. This is useful to estimate the quantization step size needed

to code the frame given a target rate. Some of these models were proposed by Chiang and Zhang

[7] and by Ding and Liu [8]. A majority of existing rate control algorithms modify the

quantization step size to control the rate of VBR encoders. Frame skipping to control the bit rate

is used only as a last resort, i.e., when a buffer overflow occurs or when the buffer approaches

overflow. Such algorithms do not consider the loss of quality that occurs by this arbitrary

skipping of frames. This problem is more severe at low bit rates when it is difficult to achieve the

target rate by changing the quantization step size alone and more frames need to be skipped.

We show that many of these mode decisions can be considered as binary hypothesis

testing problems that are well understood in traditional classification theory. We develop a

classification based framework for making mode decisions that are optimized in terms of

minimizing the cost of coding, as measured in terms of one or more parameters of the coding

process. We identify features that can be easily computed from the video data, and are good

indicators of which mode would be optimal. We estimate probability density functions for these

features under different hypotheses, corresponding to the different options in the mode decision.

We then transform this minimization of cost to a more traditional error probability minimization

problem and use standard classification techniques like the likelihood ratio test to solve it. We

evaluate the performance of this classification approach using Intra-Inter mode decision and the

frame coding versus skipping for rate control and compare the results with currently proposed

mode decisions. We propose a classification based scheme for rate control that decides

intelligently between changing the quantization step size and skipping the frame to achieve the

desired target rate. We look at the suitability of skipping or coding a certain frame in terms of the

impact it has on the rate as well as the impact it has on the quality before making a decision. We

try to maximize perceived quality while achieving a fixed target rate.

1.2. Error Concealment

Loss of compressed video information during transmission leads to objectionable visual

distortion in the reconstructed video. In order to minimize distortion at the decoder end many

schemes for error resilience and error concealment have been developed. Error resilience includes

schemes at the encoder end where some redundancy is introduced in the bitstream that makes it

possible to recover lost information. Examples of these include error correcting codes, data

partitioning techniques etc. Error concealment involves post-processing of the video at the

decoder end to hide the effect of the transmission errors. Both error resilience and error
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concealment techniques may be used in conjunction to improve the quality of the decoded video.

The focus of this thesis is on error concealment techniques. There is a lot of existing work on

concealing errors due to losses incurred while transmitting data over networks or during data

storage. Work in this domain includes work by Aign and Fazel [17], who use spatial domain

interpolation, Sun and Kwok [18], who use projections onto convex sets (POCS) and Chen et al

[19], who use temporal domain interpolation and overlapped block motion compensation. Atzori

and De Natale [20] introduce a sketch-based approach to error concealment, where each frame is

decomposed into a set of sketches, and error concealment involves recovering these sketches

using some constraints on the sketch continuity, derivatives etc.

We propose a model based scheme for error concealment. We create a model for the

region of interest, where we wish to conceal errors and use this model to replenish any missing

data. We examine the principal component analysis (PCA) [9] as a model for our region of

interest and find that it is not efficient in capturing data with large amounts of variation. Such a

model based concealment approach is very useful especially for the MPEG-4 standard, which

uses object based coding, thereby making it easy to determine regions of interest and build

appropriate models for them.

PCA tries to model the data as a hyperplane embedded in the data space. Hence to

represent large variations in the data set, PCA requires larger dimensional representation than

would be required by a non-linear modeling technique. So many non-linear approaches to

dimensionality reduction have been proposed. Hastie and Stuetzle [10] proposed principal

surfaces as an alternative to PCA. This involves constructing parameterized surfaces through the

data cluster to minimize the overall distance between the data points and the surfaces. Many

neural network approximators for these principal surfaces of the high-dimensional data have also

been proposed. Among these are the work by Oja [11] and by Kung and Diamantaras [12]. Other

techniques such as Multi-Dimensional Scaling [13] that attempt to preserve the pair wise

distances between data points during the dimensionality reduction have been proposed. Recently,

other approaches such as Locally Linear Embedding (LLE) [14] have also been proposed. LLE

computes low-dimensional, neighborhood preserving embeddings of the data by exploiting the

local symmetries of linear reconstructions. Each data vector is first approximated as a weighted

linear combination of its neighbors, and the optimal set of weights for least squared

reconstruction error are determined. Then the data is transformed to lower dimension while

keeping the same set of weights for each data vector. This way the local neighborhood

relationships are preserved.
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However, there are many disadvantages to these non-linear approaches as opposed to a

linear approach such as PCA. The most significant disadvantages are in the lack of ease of

computation and the absence of a simple forward backward transformation between the low-

dimensional representation and the actual data set. In order to use these advantages of linear

techniques, extensions to the PCA have been proposed. Among these extensions is the Vector

Quantization PCA (VQPCA) [15]. This technique first partitions the data space into disjoint

regions by vector quantization and then performs local PCA about each cluster center. The

criterion for partitioning the data is in terms of reconstruction error, i.e., a data point is assigned

to the cluster that provides a smaller reconstruction error after PCA. This process is iteratively

repeated till a convergence in terms of the squared error is obtained. This hard partitioning of data

into clusters before dimensionality reduction leads to loss of the global information present in the

data. We would like to both exploit the local as well as global information present in the data and

so prefer a soft partitioning of the data. The idea of soft partitioning the data while training local

PCAs has been examined by Tipping and Bishop [16]. They use an extension of the PCA called

the Probabilistic PCA (PPCA). They first approximate the data probability density using a

mixture of Gaussians and then for each one of these Gaussian components a PPCA is computed

and is used to represent the data. The problem with their approach is the fact that the error due to

dimensionality reduction is not explicitly minimized, instead the likelihood of observing the data

given the model is maximized. This may lead to poor reconstruction performance of the model.

We propose a linear modeling scheme that is an extension to the PCA called Mixture of

Principal Components (MPC). Similar to the way that a Gaussian mixture models the data

distribution, the MPC automatically model the data using a mixture of eigenspaces, thereby

capturing the variations in the data more efficiently. We compare the performance of the MPC

with the PCA as well as with the previously proposed extension to the PCA, the VQPCA. We use

the MPC to model regions of interest in video sequences, using faces as regions of interest as

illustration and show the improvement in performance of using such a model based scheme over

using the conventional error concealment scheme.

In order to illustrate other applications for the MPC, we use the task of face recognition

and the task of face tracking as examples. We use the MPC to model face data with lighting and

pose variations and use these trained models in a face recognition system. We highlight the

improvement of recognition performance using the MPC over the PCA. We also describe a

scheme for foreground background segmentation using the MPC to model the background and

how this segmentation result may be used to obtain robust tracking performance.
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We realize that the MPC may be used to model any kind of data with large amounts of

variation thereby making it suitable for any task requiring statistical modeling tools. The use of

MPC is also not limited to a particular domain. For instance in this thesis we use the MPC to

model pixel data representing objects of interest. However, this modeling scheme may be used

without modification to model any other different kinds of data, for instance frequency domain

coefficients, wavelet coefficients, etc, thereby making it a very general modeling framework.

1.3. Modeling VBR Video Traffic

Modeling variable bit rate (VBR) video traffic is important as it allows video coders and

network designers to estimate the parameters of networks like packet loss probabilities and end-

to-end delays. This information may be incorporated as part of the coding process to improve

video coding performance. Video traffic has many characteristics that an accurate model needs to

capture. Video traffic consists of data from different types of frames, Inter or Intra coded, and

from different kinds of scenes with varying activity levels and lengths.

There are different kinds of VBR video traffic as defined by Lakshman et al in [21].

These include unconstrained (U)-VBR traffic, shaped (S)-VBR traffic, constrained (C)-VBR and

feedback (F)-VBR depending on whether these are generated using a video encoder that is aware

of the network or buffer state and uses this information during video coding. Most of the

modeling work has been focused on modeling U-VBR traffic. In all of the following discussion

whenever we say VBR traffic, we are referring to U-VBR traffic.

Several models for VBR video traffic have been proposed in literature. Maglaris et al

[22] have proposed a model for the coding bit rate of a single video source using interframe

predictive coding. Sen et al [23] propose models for different activity levels using correlated

Markov models and use queuing analysis to estimate the packet loss and delay. Yegenoglu et al

[24] propose a model for VBR video using a time dependent autoregressive (AR) model to

represent data from different activity levels. Izquierdo and Reeves [25] have performed a survey

of different statistical models proposed to model VBR video traffic.

Most of the work described in the literature does not explicitly take into account the

presence of different types of frames. Some work by Doulamis et al [26] models I, P and B

frames explicitly with an additional layer corresponding to the activity level of the video scene.

This is a good model for video traffic. However, they impose a constraint of a fixed Group of

Pictures (GOP) structure, which is very restrictive. Chandra and Reibman [27] model I and P

frames explicitly and allow for a variable GOP structure. However, their model requires a large
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number of parameters and they do not allow for any temporal correlation or different activity

levels for I frames. They also do not include B frames in their model.

In this thesis we introduce several models that are flexible enough to capture the

characteristics of the video traffic. We describe models with I, P and B frames that are doubly

Markov in nature, to account for trace having different activity levels as well as different types of

frames. We also use autoregressive (AR) processes to capture the temporal correlations between

successive frames. These models are extensions of models for I and P frames that we introduced

in [28], [29] and [30]. We examine both the stochastic properties of the trace, e.g., the

autocorrelation function, as well as the delay and loss probability encountered by the trace using

network simulations. We show that the trace generated by our model can predict the delay and

packet loss probability encountered by real data accurately.

We realize that the performance of any model may be significantly improved using more

accurate prediction for the probability density function (pdf) of the data. Hence we examine ways

of creating AR processes with pdfs corresponding to the actual data pdfs. We relate this problem

of creating AR processes with a specified pdf with solving a two-scale dilation equation. A lot of

work has been done in two-scale dilation equation theory by Daubechies and Lagarias [31] and

by Strang [32], who provide some sufficient conditions for the solution to exist and the ways to

find this solution. We highlight how we can use those results to create some simple pdfs. We also

show that we can directly use the relationship between the noise pdf and the AR process pdf to

create the desired pdf. We then create traces with accurately modeled pdfs and highlight the

improvements in modeling performance in terms of the better prediction of network parameters

such as delay and loss probability.

1.4. Organization of Thesis

This thesis is organized as follows. Chapter 2 describes the fundamentals of video coding

algorithms. These algorithms are used across many of the prevalent video coding standards. We

then build a block diagram of the encoding and decoding process.

Chapter 3 describes the optimization of the mode decisions part of the encoding process.

We build a classification based framework for making mode decisions that are optimal in terms

of minimizing a cost defined in terms of one or more parameters of the complexity-quality-bit

rate tradeoff.
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Chapter 4 introduces the MPC, a general statistical framework for capturing variations in

data efficiently. We use the MPC as a model and show improvements over current concealment

schemes.

Chapter 5 includes the description of the modeling of video traffic. We try to capture the

stochastic variations in the real traces using doubly Markov models and autoregressive processes.

We also highlight the need to capture accurately the probability density of the real data and

examine the problem of creating an autoregressive process with a desired probability density.

We finally conclude with a summary of the contributions of the thesis and some future

directions for research.
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2. Fundamentals of Video Coding

This chapter introduces the framework into which all the work in this thesis may be

included. We start by describing the fundamentals of video coding and use these building blocks

to build the complete video encoder and decoder. We also briefly introduce the prevalent video

coding standards. We then describe the problems we are trying to solve and show specifically

which parts of the coding problem we are attempting to solve.

Video coding translates video sequences into an efficient bitstream. This translation involves

the removal of redundant information from the video sequence. Video sequences contain two

kinds of redundancies, spatial and temporal. Spatial redundancy refers to the correlation present

between different parts of a frame. Removal of spatial redundancy thereby involves looking

within a frame and is hence referred to as Intra Frame Coding. Temporal redundancies, on the

other hand are the redundancies present between frames. At a sufficiently high frame rate it is

quite likely that successive frames in the video sequence, are very similar. A lot of information

present in a frame is also present in the frame that preceded it. Hence, removal of such temporal

redundancy involves looking between frames and is called Inter Frame Coding.

A video frame may be Intra (I), Predictive (P) or Bidirectionally-predictive (B). An I

frame is coded in isolation from other frames using transform coding, quantization and entropy

coding. A P frame is predictively coded, which means that it is coded using motion compensation

followed by transform coding and entropy coding. A B frame is predicted bidirectionally, which

means that the prediction is formed using both its previous frame as well as the successive frame.

An I frame is often used to efficiently code frames corresponding to scene changes, i.e. frames

that are different from preceding frames and therefore cannot be easily predicted. Frames within a

scene are similar to preceding frames and hence may be coded predictively as P or B for

increased efficiency. Frames between two successive I frames, including the leading I frame, are

collectively called a group of pictures (GOP). We illustrate a GOP in Figure 2.1.
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I B PB B B B B IP

GOP

Figure 2.1. Group of Pictures

In Figure 2.1 the group of pictures illustrated has one I frame, two P frames and six B

frames. Typically, multiple B frames are inserted between two consecutive P or between I and P

frames and we show this in Figure 2.1.

Block based coding is a very popular approach to video encoding. In such approaches the

pictures are sub-divided into smaller units or blocks that are processed one by one, both by the

decoder and the encoder. These blocks are processed in the scan order as shown in Figure 2.2.

Figure 2.2. Scan order of blocks in a frame

As shown in Figure 2.2, the blocks are processed left to right and top to bottom. Spatial

redundancy is removed through the use of Transform Coding techniques. Temporal redundancy is

removed through the use of Motion Estimation and Compensation techniques. Specifics of some

of the methods to remove spatial and temporal redundancies, with special emphasis on block

based coding schemes, are described in the following sections.

2.1. Removal of Spatial Redundancy: Transform Coding

Transform coding has been widely used to remove redundancy between data samples. In

transform coding, a set of data samples is first linearly transformed into a set of transform

coefficients. These coefficients are then quantized and entropy coded. A proper linear transform

can de-correlate the input samples, and hence remove the redundancy. Another way to look at
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this is that a properly chosen transform can concentrate the energy of input samples into a small

number of transform coefficients, so that resulting coefficients are easier to encode than the

original samples.

The most commonly used transform for video coding is the discrete cosine transform

(DCT) [33] and [34]. Both in terms of objective coding gain and subjective quality, DCT

performs very well for typical image data. The DCT operation can be expressed in terms of

matrix multiplication as Y C XC= T where X represents the original image block, and Y

represents the resulting DCT coefficients. The elements of C , for an 8×8 image block, are

defined as

( )
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After the transform, the DCT coefficients in Y are quantized. Quantization involves loss

of information, and is the operation most responsible for the compression. The quantization step

size can be adjusted based on the available bit rate and the coding modes chosen. Except for the

DC (zero frequency) coefficients that are uniformly quantized with a fixed step size, a “dead

zone” is used while quantizing all other coefficients. The dead zone corresponds to increasing the

interval between the two steps around zero and is used to remove noise around zero. The input-

output relations for the two cases are shown in Figure 2.3.

original

quantized

original

quantized

Quantization
without dead zone

Quantization
with dead zone

Figure 2.3. Quantization with and without "dead zone"

We can see from Figure 2.3, that quantization is a lossy process with all information

between within two steps being represented using one value. This loss of information contributes

significantly in the compression process. The dead zone around zero is shown in the I/O

relationship on the right. The quantized 8×8 DCT coefficients are then converted into a one-
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dimensional (1D) array for entropy coding. Figure 2.4 shows the scan order used in many video

coding standards for this conversion.

DC

Figure 2.4. Scan order of DCT coefficients

The scan order shown in Figure 2.4 involves scanning the coefficients in increasing order

of spatial frequency. This is because most of the energy is concentrated in the low frequency

coefficients for typical video sequences with the high frequency coefficients being very small and

usually quantized to zero. Therefore, such a scan order can create long runs of zero coefficients,

which is important for efficient entropy coding.

Entropy coding takes these quantized coefficients and converts them to bits efficiently.

There are different algorithms used for entropy coding. For instance the H.263 video coding

standard uses Huffman coding or Arithmetic coding. A brief description of Huffman coding as

used in the H.263 standard is described below.

The resulting 1D array is then decomposed into segments, with each segment containing

some (this number may be zero) zeros followed by a nonzero coefficient. Let an event represent

the three values (run, level, last). “Run” represents the number of zeros; “level” represents the

magnitude of the nonzero coefficient following the zeros and “last” is an indication of whether

the current non-zero coefficient is the last non-zero coefficient in the block. A Huffman coding

table is built to represent each event by a specific codeword, i.e., a sequence of bits. Such a table

is often called a variable length coding (VLC) table. Events that occur more often are represented

by shorter codewords, and less frequent events are represented by longer codewords. The aprioiri

probabilities for the different events are determined using simulations and examining typical

video data transform coefficients. This coding process is sometimes called “run-length coding.”

An example of the VLC table is shown in Table 2-1.
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Table 2-1. Partial VLC Table for DCT coefficients

LAST RUN |LEVEL| VLC

CODE

0 0 1 10s

0 0 2 1111 s
0 0 3 0101 01s
0 0 4 0010 111s
0 0 5 0001 1111
0 0 6 0001 0010
0 0 7 0001 0010
0 0 8 0000 1000
0 0 9 0000 1000
0 0 10 0000 0000
0 0 11 0000 0000

From the table we can see that more frequently occurring symbols, i.e. those with a small

magnitude have fewer bits assigned to them, leading to efficient coding.

2.2. Motion Estimation and Compensation

Motion compensation is used to remove the temporal redundancy present in video

sequences. When the frame rate is sufficiently high, there is a great amount of similarity between

successive frames. Hence, it is more efficient to code the difference between frames, rather than

the frames themselves. An estimate for the frame being coded is obtained from the previous

frame and the difference between the prediction and the current frame is coded. This concept is

similar to Predictive and Differential Coding techniques.

Motion compensation is used to create a prediction for the current frame from the previous

frame. The first step is to estimate the motion of objects between frames and then to use this

information to build a prediction. The focus of this thesis is on block based coding schemes, so

the smallest coding unit for which motion compensation is performed is a block (16×16 region),

also sometimes referred to as a macroblock in standards.

The motion estimation process involves trying to find a good match for every block in the

current frame, in the previous frame. Each block in the current frame is compared to areas of its

size in a specified search space in the previous frame, and the best matching area is selected. The

process of motion estimation is highlighted in Figure 2.5.
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Current block

MV

Previous Frame Current Frame

Best Matching Region

Figure 2.5. Motion Compensation

In Figure 2.5 the dark region on the left is the best matching region for the current block,

shown on the right. The lightly shaded region on the left is the location of the current block in the

previous frame. The displacement between the position of the current block and the best matching

region is called the motion vector (MV) and is also shown in the figure using a bold arrow. This

`best matching area is then offset by the MV to obtain a prediction for the current block. In most

cases, it is not possible to find an exact match, but the prediction area is usually similar to the

block with the residue between the two being small. This residue is computed and coded using

the transform coding procedure. More information about motion compensation can be found in

[35]and [36]. There is a lot of work in literature on efficient motion estimation strategies since

motion estimation is a computationally intensive part of the video encoding. Some of our work on

motion estimation may be found in [37].

Sometimes, it is not possible to find a good match for a particular block; this happens

especially for blocks in frames that lie across scene changes, or in sequences with large motion.

For such blocks the residue itself may be very large and hence the transform coefficients of the

residue may be as large or larger than the transform coefficients of the block itself. In such cases

it is better to not do motion compensation. The encoder is thus allowed the flexibility to decide

for each block, whether it wants to do motion compensation and transform coding of the residue,

or just transform coding of the block itself. This decision is called the Intra-Inter mode decision.

However, in most cases, a saving is accomplished in the bits to code the residue.

Besides the residue we also need to send the information regarding construction of the

prediction frame to the decoder, i.e., the motion vectors. The decoder can then use these to

reconstruct the prediction frame and add to it the residue (this is transform coded) to obtain the
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current frame. In order to avoid a large increase in the bitstream size because of these motion

vectors, these are also differentially coded.

2.3. Video Codec Block Diagram

All these basic coding algorithms may be put together to form a block diagram

representation of the video encoder and decoder. This is shown in Figure 2.6.
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D: Delay IDCT: Inverse DCT IQ: Inverse Quantizer

Figure 2.6. Block Diagram of Encoder and Decoder

As may be seen from Figure 2.6, the decoder is contained as part of the encoder, shown

as the two L-shaped blocks. This done in order for the encoder to use as reference the same

frames as seen by the decoder i.e., instead of using the actual previous frame as reference while

coding the current frame, the encoder uses the decoded version of the previous frame in order to

be consistent with the decoder. More details on the fundamentals of video coding may be

obtained from our book chapter [38].

As mentioned before, the goal of this thesis is to optimize the video coding process in

terms of the complexity-quality-bit rate tradeoff. We examine both encoder optimizations as well

as decoder post-processing to achieve this goal. We realize that all these optimizations are

dependent on feedback from the network regarding its availability and status. Therefore, we focus

on modeling the video traffic so that we may use these traffic models as probes to determine this

network information.
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We redraw the video coding block diagram shown in Figure 2.6, in order to highlight our

research areas and show this in Figure 2.7.
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Figure 2.7. Video codec optimization research

In Figure 2.7 we show the video codec block diagram with some additions, shown as the

highlighted blocks, Mode Decisions, Error concealment and Models for video traffic. These

highlighted blocks correspond to the focus of this thesis. Mode decisions involve selection of

coding parameters and modes to meet certain constraints. Error concealment involves post-

processing the received video sequence to reduce/remove visible artifacts in the video caused due

to errors during transmission over the network. Modeling the video traffic involves capturing the

statistical parameters of video traffic as accurately as possible.

2.4. Video Coding Standards

There are two broad sets of video coding standards, the H series standards developed by

the International Telecommunication Union (ITU-T) and the MPEG series standards developed

by the International Organization for Standardization (ISO).

The ITU-T standards are defined by volunteers in open committees and are agreed upon

based on the consensus of all the committee members. H.263 is the latest in the series of low bit

rate video coding standards developed by and was adopted in 1996. It combined the features of

MPEG and H.261 [39] (an earlier standard developed in 1990) for very low bit rate coding. H.263
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version 2 [40] or H.263+ was adopted in early 1998 and is the current prevailing standard from

ITU-T. In this thesis whenever we mention H.263, we use it to refer to the H.263 version 2.

The other major organization involved in the development of standards is the ISO. The

ISO standards are the MPEG-1, 2 and 4. The most recently released standard is the MPEG-4 [41]

that was adopted in 1998. The ISO is currently working on the next standard MPEG-7. Both these

organizations have defined different standards for video coding. These different standards are

summarized in Table 2-2. The major differences between these standards lie in the operating bit-

rates and the applications they are targeted for. Each standard allows for operating at a wide range

of bit-rates, hence each can be used for a range of applications. All the standards follow a similar

framework in terms of the coding algorithms, however there are differences in the ranges of

parameters and some specific coding modes.

Table 2-2. Video Coding Standards

Standards
Organization

Video Coding
Standard

Typical Range of Bit
Rates

Typical Applications

ITU-T H.261 p×64 kbits/s, p=1…30 ISDN Video Phone
ISO IS 11172-2

MPEG-1 Video
1.2 Mbits/s CD-ROM

ISO IS 13818-2
MPEG-2 Video1

4-80 Mbits/s SDTV, HDTV

ITU-T H.263 A wide range PSTN Video Phone
ISO CD 14496-2

MPEG-4 Video
24-1024 kbits/s A wide range of

applications
ITU-T H.26L < 64 kbits/s A wide range of

applications

Standards also include recommendations for the choice of some parameters and

algorithms during the video coding process. These are included in Test Models (H Series) or

Verification Models (MPEG) provided by the standards committees. Among some of the latest

such recommendations are the Test Model Near-Term (TMN-10) [42] of the H.263 standard and

the Verification Model (VM-14) [43] of MPEG-4.

1 ITU-T also actively participated in the development of MPEG-2 Video. In fact, ITU-T H.262 refers to the same
standard and uses the same text as IS 13818-2.
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3. Classification Based Framework for

Mode Decisions

This chapter focuses on optimizing the mode decisions part of the encoding process. We

introduce a classification based framework to make these mode decisions to optimize a cost. We

use the Intra-Inter mode decisions, and the decision to skip or code a frame to meet a specified

target rate, to highlight the improvements obtained by using such a classification based technique.

Inherent in the coding process are many mode decisions that improve one or more

parameters of the complexity-quality-bit rate tradeoff. Most mode decisions in the coding process

may be viewed as binary hypothesis testing problems where one of two optional modes is

selected using a decision criterion. The goal of a mode decision is to minimize a cost that may be

defined in terms of one or more of the parameters of the complexity-quality-bit rate tradeoff.

Mode decisions may be at any level of the coding process. For instance, some decisions need to

be made at the frame level, while some decisions need to be made at the block level. Some

examples of these decisions may be the decision to code a block predictively (Inter) or without

reference (Intra) or the decision to code or skip a frame given that we have a certain target bit rate

to meet.

The optimal mode decision is typically data dependent. In theory, for each mode

decision, we can try all the possible modes, evaluate the cost corresponding to each mode, and

choose the one with the smallest cost. However, such an exhaustive search approach is

impractical due to its complexity. An alternative is to identify features that can be easily

computed from the video data, and are good indicators of which mode would be optimal. In order

to do so, we first collect video data and use exhaustive search to “label” the data with the optimal

mode decisions. We then estimate probability density functions for these features under different

hypotheses, corresponding to the different options in the mode decision. We then transform this

minimization of cost to a more traditional error probability minimization problem and use

standard classification techniques like the likelihood ratio test to solve it. We evaluate the

performance of this classification approach using two mode decisions that are part of the video

coding process. We first use the Intra-Inter mode decision as an example and then focus on the
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mode decision for skipping or coding a frame for rate control purposes. We extend our work on

rate control to scalable video coding in order to evaluate the performance of our scheme under

lossy network conditions. We create an enhancement layer corresponding to the base layer

generated using our rate control strategies and examine the reconstructed video quality over

different simulated packet loss scenarios. Effectively, this is equivalent to choosing between SNR

scalability and temporal scalability adaptively, depending on the video data.

The chapter is organized as follows. Section 3.1 includes the discussion of the general

classification based approach to making mode decisions using the Intra-Inter mode decision as an

example. Section 3.3 contains the use of this approach towards the rate control problem using an

instantaneous mode decision. Section 3.4 includes the description of the mode decision allowing

for looking ahead at one future frame to be coded. We then extend this work on rate control to

scalable video coding and this is described in Section 3.5. We then conclude with the analysis of

our scheme and describe some future work and possible extensions.

3.1. Classification Based Approach to Mode Decision

In this section we show how to convert a mode decision into a binary hypothesis-testing

problem. Let oc represent the cost for making a decision 0D and 1c represent the cost for

making decision 1D for a particular coding unit. These decisions 0D and 1D may include mode

decisions that may be at different levels of the coding process, i.e., at different coding units. For

instance these could be at the macroblock level, with one macroblock being the coding unit,

where 0D could be to decide to code the macroblock using intra coding while 1D could be to

code the macroblock using inter coding. These could also be at the frame level, with one frame

being the coding unit, where 0D and 1D represent whether to code or skip the frame. The costs

ic could include the number of bits needed to code a block or frame given that we have made a

particular decision. The cost could also include the distortion introduced in the decoded video as

well as the time needed to encode the video according to the decision. The goal of our strategy is

to make the decision that minimizes this cost. So every time we need to make a decision we want

to make one that results in the smaller cost. This strategy may be summarized as below.

�
�
�
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0corifChoose

0corifChoose

10011

10100
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cccD
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3.1.1. Transforming Mode Decision into Classification Problem

In principle, to make the optimal mode decision one can try all the modes and choose the

mode that has the lowest cost. However, computing the actual costs ic before making a decision

is very computationally intensive as this involves trying either decision to determine the cost. In

order to reduce computational burden for the decision scheme we would like to identify features

that provide a good estimate of the cost for a decision, but do not require as much computation to

evaluate. We would, thus like to identify features that let us estimate which of the two following

hypotheses 0H or 1H is true where

0:

0:

101

100

>−
<−

ccH

ccH

For each coding unit we identify K features that we group together in a feature vector

T
Kxxx ],,[ 110 −= �x . In the optimal scenario we could find features that perfectly represent the

cost needed for a decision. However, in most practical applications such features are difficult to

find. In most practical applications, the decision strategy thus becomes sub-optimal in terms of

minimizing the cost, however we are willing to settle for this sub-optimality as along with this

comes the benefit of small computational requirements.

We want to build a classifier that would take as input the feature vector x of each coding

unit and come up with the probability that 0H or 1H is true, which would then enable us to

make a decision appropriately. We can come up with such a classifier by training it with sample

data. Suppose we collect a set of M coding units with corresponding feature vectors

110 , −Mxxx � and associated with each of these feature vectors is a cost difference

iii ccd 10 −= with ic0 and ic1 being the true costs for decisions 0D and 1D respectively for the

i-th coding unit. Let P of these coding units have 0<id , i.e., corresponding to when 0H is

true and Q of these coding units have 0>id , corresponding to when 1H is true, with

MQP =+ . For purposes of illustration, we show these two sets of training vectors for a one-

dimensional feature vector in Figure 3.1.
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Feature Vector x Feature Vector x

iii ccd 01 −= iii ccd 10 −=

H0 true for these P vectors H1 true for these Q vectors

Figure 3.1. Illustration of feature vectors

In Figure 3.1, the x-axis for both the cases corresponds to the value of the feature vector

x (we are using a 1-D vector for illustration) for each coding unit while the y-axis corresponds to

the magnitude of the cost difference id between the two mode decisions for that coding unit.

Feature Vectors of coding units for which 0H is true are shown on the left and are represented

with triangles while feature vectors of coding units for which 1H is true are shown on the right

and represented with squares.

The magnitude difference id , for any coding unit, corresponds to the additional cost

that we need to pay if we make the wrong mode decision for that unit. For instance if we choose

to make a decision 1D , instead of the right decision 0D , for one of the coding units represented

by triangles, we incur a cost ic1 instead of incurring the smaller cost ic0 and so pay an additional

cost iii ccd 01 −= .

We may put together the two plots from Figure 3.1 to obtain the entire training feature

space and this is shown in Figure 3.2.
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Feature Vector x

id

T

Region R0 Region R1

Figure 3.2. Training feature space

All the feature vectors corresponding to the M coding units are shown on the same plot

and we use triangles and squares as before to separate the data into the two classes. We now want

to partition this feature space using our classifier so that the total additional cost that we have to

pay for misclassification, i.e., making the wrong decision for any coding unit, is as small as

possible. For instance we may partition this space into two regions, 0R and 1R , using the

threshold T as shown in Figure 3.2. We choose to make decision 0D for all coding units with

feature vectors to the left of the threshold, i.e., in 0R , and decision 1D for all coding units with

feature vectors to the right of the threshold, i.e., in 1R . For such a case we pay the additional cost

id for each of the misclassified coding units, i.e., squares in 0R and triangles in 1R . In Figure

3.2 we show these as dark triangles and squares, as opposed to the lightly colored ones, for which

we make the right decision.

We would like our mode decisions to result in as small a total cost as possible. In order to

do this we need to choose 0R and 1R so that we minimize the total additional cost from making

wrong mode decisions. This kind of a problem of partitioning the feature space in order to

minimize the total cost is reminiscent of traditional classification theory, except that in traditional

classification theory the vertical axis corresponds to the probability densities of the feature

vectors under the different hypotheses, while in our problem this corresponds to the additional

cost we have to pay when we make a wrong decision. Hence, in order to use traditional

classification techniques to solve our problem, we need to modify our problem to fit the

classification scenario.

Our problem of minimizing the total additional cost may be mathematically written as in

equation (3.1).
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These two regions, 0R and 1R should together span the entire space, and have no

common sub-regions. However, we impose no constraints on the shapes of these regions as long

as they satisfy this minimization requirement. These regions may consist of non-contiguous sub-

regions and the boundaries between them may be arbitrarily shaped. Hence we formulate the

problem of minimization in terms of choosing the regions and not in terms of specifying linear

boundaries or thresholds separating them.

Let �
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idN . Our minimization problem of equation (3.1) may

be equivalently rewritten as follows.
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As mentioned before, we would like to use standard classification techniques to solve the

problem and identify these regions 0R and 1R . Such techniques involve estimating the

probability density function (pdf) of the feature vector under the different hypotheses and then

using these pdfs to identify the best regions. However, we cannot just partition the space by

examining the feature vector values, as we need to account for minimizing the total cost of

misclassification, i.e., the sum of the total heights associated with misclassified vectors.

Essentially, we need to convert these feature vectors with the associated heights to vectors that do

not have these additional heights, but we need to do this without losing the important information

that the heights carry. We may do this transformation by replacing a vector with height id with

id vectors at that location. In general it is not necessary that all the heights id are integers,

however without loss of generality we can scale them appropriately to make them integers. We

can thus modify our feature space and our modified feature space would look as shown in Figure

3.3.
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Figure 3.3. Transformation of feature space from old feature space (left) to new feature space (right)

From Figure 3.3 we can see that each vector in the old feature space is replaced by

multiple vectors at that location, the number of new vectors being equal to the height associated

with the original vector. Now, standard classification techniques may be applied in this new

feature space to estimate the pdfs for this new set of vectors. We rewrite our minimization

problem in this new feature space and then map it to the well-understood minimum probability of

error classification problem. We can thus use results from literature to find the regions that

minimize our criterion in this new feature space. Because of the way we transform the old feature

space to the new feature space, the regions we find in this new feature space are identical to the

regions we desire in the original feature space. This is because none of the training data points are

displaced from their original positions. The details of this proposed scheme are presented in the

following paragraphs.

In this new feature space 0N is simply the total number of triangles and 1N is the total

number of squares, where 0N and 1N are as defined before. We may define two new hypotheses

as following.
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minimization problem in equation (3.2) may be rewritten in this new domain as follows
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In practice, instead of using these discrete probabilities, we model the data using a

continuous pdf consisting of a mixture of Gaussians. This is because in order to classify a feature

vector we need to have the probability of occurrence of that vector. However we do not have

these probabilities for new input vectors that are not present in the training data set. By modeling

the feature vector pdf using a mixture of Gaussians we ensure that any feature vector may be

classified. These Gaussian mixtures are trained on the modified feature vectors using the

Expectation Maximization (EM) algorithm, more details on which may be obtained from [44]. An

example of trained Gaussian mixtures in the modified feature space is shown in Figure 3.4.

Feature vector x

pdf

Figure 3.4. Modeling the data by a mixture of Gaussians

The density function drawn with the dotted line corresponds to the data from the triangle

class while the density function drawn with the solid line corresponds to the data from the square

class. Using our continuous pdfs our minimization problem may be written as in equation (3.4).
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The functions )(⋅p correspond to the continuous pdf comprising of a mixture of

Gaussians. This kind of a minimization problem is equivalent to a minimum probability of error

classification scheme in this new feature space and it is well known from literature [9] that the
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regions may be determined using the likelihood ratio test. The likelihood ratio test may be written

as in equation (3.5).
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Hence, in order to classify a feature vector x , we evaluate the likelihood ratio for it and

if this exceeds the threshold obtained from training, we believe 1H is true and make decision 1D

otherwise we believe 0H is true and make decision 0D . In summary, this likelihood ration test

defines the decision regions in this new space. As we mentioned before, the regions that we

determine in this new feature space are identically the regions that we desire in our original

feature space. So by transforming our feature space and mapping the problem to a well-

understood minimization problem we can obtain the solution we desire.

The entire classification scheme may be summarized as follows. Given the training data

and the cost differences, we first transform the feature space to the new feature space and then

estimate the apriori probabilities, )( 0HP ′ and )( 1HP ′ , as well as the class conditional

probability density functions, )|( 0Hp ′x and )|( 1Hp ′x , using the EM algorithm to train the

Gaussian mixture. Once we have these pdfs, we use the likelihood ratio test for a new input

feature vector corresponding to a coding unit and determine which of the two hypotheses is more

likely to be true and using this result we make decision 0D or 1D for that coding unit.

3.2. Intra versus Inter Mode Decision

This decision is made for every macroblock (a 16×16 region in a frame) in the video

sequence. Intra coding involves coding using transform coding followed by quantization and

entropy coding. As opposed to this, Inter coding involves building a prediction for the current

macroblock using data from the previous frame using motion estimation and compensation and

coding the residue using transform coding, quantization and entropy coding. For most

macroblocks, Inter coding is more efficient in terms of compression, however this is not always

true. When there is a scene change or when we have a high motion sequence the prediction for

the macroblock from the previous frame is likely to be poor and in such cases it may be more

efficient to use Intra coding as opposed to Inter coding. Hence the encoder has to decide between

these for every macroblock. The decision that requires fewer bits is preferred.
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As converting to bits is computationally expensive, encoders use features as estimates for

the bits. Typically, a measure of the energy (with DC value removed) in the block is used as an

estimate of the bits needed for intra coding, while the mean absolute difference (MAD) is used as

an estimate for the bits needed for inter coding. The MAD between two 1616 × regions may be

defined as ��
= =

−=
16

1

16

1256

1

i j
ijij yxMAD . The block x represents the current block while the

region y is the motion compensated prediction for the block from the previous frame. The MAD

is thus a measure of the motion compensation performance, with a smaller MAD corresponding

to a better motion compensation. Hence the MAD is representative of the number of bits needed

to inter code the block.

The mode decision as recommended by the TMN-10 of the H.263 standard is

�
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1256
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i j
xijx mxE is used as the measure of energy, xm is the mean

or the DC value of the block and T is an empirically found threshold, specified in the TMN as

500.

We also test another feature, the mean removed MAD (mrMAD) as a feature to estimate

the bits needed for inter coding. We introduce this feature in [37]. This is very similar to the

MAD, except that instead of taking the absolute pixel difference and summing them up we first

remove the means from the blocks and then sum up the absolute pixel difference. The mrMAD

between two 1616 × regions may be defined as ( ) ( )��
= =

−−−=
16

1

16

1256

1

i j
yijxij mymxmrMAD .

As mentioned before, the block x represents the current block while the region y is the motion

compensated prediction for the block from the previous frame.

In order to collect training data we perform the exhaustive test for the Foreman,

Coastguard and Silent video sequences. Snapshots from these sequences are shown in Figure 3.5.
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Figure 3.5. Snapshots from Foreman (left) Coastguard (center) and Silent (right)

The sequences are in 176×144 (QCIF) format at a frame rate of 30 Hz. We choose these

sequences as possess a variety of motion. Foreman consists of large and uncorrelated motion,

especially due to the out of plane motion of the person in the foreground. Coastguard has

moderate to large motion, but it is very correlated as it is created by a panning camera. Silent

contains low to moderate degree of motion. These sequences are representative of the different

kinds of motion that we may encounter with video sequences.

We generate a sequence of values for the features and a sequence of the optimal

decisions. These exhaustive tests involve actually computing bits needed for Intra and Inter

coding and making the right decision, i.e. the decision resulting in fewer bits. After collecting the

sequence of right decisions and the values of the features we correlate these with the decision

sequence. From experiments we see that the energy is very well correlated with the bits needed

for intra coding (correlation coefficient of 0.87). The MAD and the mrMAD are features

representative of the bits needed for Inter coding. They have correlation coefficients of 0.90 and

0.94 respectively with bits for inter coding, independent of sequence. In order to test the

suitability of using these features, we correlate these with the optimal decision sequence (one

determined using the exhaustive test). The decision sequence is viewed as a sequence of +1s and

−1s with +1 corresponding to Intra and −1 corresponding to Inter. More details on our

computation of correlation coefficients are included in Appendix A in Section 3.7. The

correlation coefficients for each feature are presented in Table 3-1.

Table 3-1. Correlation coefficients of features with decision sequence

Feature Correlation coefficient with decision sequence

Energy (DC removed) 0.3221

MAD 0.4741

mrMAD 0.5111

From the table we see that the mrMAD is better correlated with the decision sequence

than the MAD, hence we choose this as a feature. Although the MAD has a higher correlation
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with the decision sequence than the energy, it is highly correlated with the mrMAD. As the

energy is representative of the bits needed for intra coding, we use this feature, instead of the

MAD, along with the mrMAD for our classification scheme.

We collected 79200 feature vectors from these three video sequences of which we used

5000 to train our classifier pdfs and the remaining to test the performance of the scheme. The

number of training vectors is small as compared to the test set, but using a larger training set does

not improve the performance of our classifier significantly. Using the training data, we train the

Gaussian mixtures using to obtain decision regions as shown in Figure 3.6.
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Figure 3.6. Intra-Inter training data (left) and decision regions (right)

The plot in Figure 3.6 shows 1000 training feature vectors on the left with triangles

corresponding to vectors that belong to the Intra class and squares corresponding to Inter class.

On the right we also show the decision regions that we obtain after training Gaussian mixtures on

this training data, with the Intra decision region enclosed inside the black boundary. We can see

that the decision regions are representative of the training data and may consist of disjoint sub-

regions, as we have for the Intra case. From the training data we can see that a linear decision

boundary is not suitable in this case. Thus, imposing no constraint on the shape of the decision

boundary aids our classifier in finding a better decision boundary. We achieved 98.2% correct

classification using our minimum probability of error classifier. The classification result shows a

variation of less than 1% across these different sequences. The classification scheme proposed in

the TMN achieves around 92% correct classification, because it uses a linear decision boundary.

Hence we can improve the mode decision using this scheme. We then implemented this mode
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decision in the H.263 framework and observed that the corresponding savings in total bit rate

over the TMN decision (including residue bits, motion vector bits and overhead bits) were around

4.5~4.8% for the Foreman, Coastguard and Silent video sequences. In practice, we may train the

classifier with such a set of video sequences that are representative of the different kinds of

motion and texture that we encounter in real video sequences and the trained classifier may then

be used to make the mode decision for any arbitrary test sequence.

3.3. Mode Decision for Skipping or Coding Frames: Instantaneous case

The goal of this mode decision is to decide between skipping and coding a frame in order

to maximize the perceived quality while achieving a target bit rate. In order to collect training

data for our classifier, we first implement an exhaustive search based mode decision. We compute

the effect of skipping as well as coding a frame on the quality q and the bit rate r before making a

decision. In order to measure the perceived quality we use a spatio-temporal quality metric

introduced by Wolf and Pinson [45]. We include a description of this metric in the Appendix in

Section 3.7. In order to control the rate of coded frames, we change the quantization step size

using the inverse quadratic model to relate the bit rate with the quantization step size. This model

was proposed in [7] and it relates the rate ( r ) to the quantization step size (Q) using

2Q

b

Q

a
r += , where a and b are constants that may be estimated using training data. We found

that such a simple model cannot capture the variation of bit rate with quantization step size across

many different scenarios, so we train separate models, i.e., parameters a and b, for low motion,

medium motion and high motion sequences. More details about the quality metric can be found in

Appendix B in Section 3.7.

Our cost is defined as a combination of the quality and rate, defined as rq λ+ , where the

factor λ is adjusted depending on application and we discuss this in more detail later. We

compare this cost for the skipping or coding and choose the one that requires the smaller cost.

Simultaneously we collect the cost difference and also evaluate some features that we use for

training our classifier. Using the method described in Section II, we train the density functions for

our features and implement our classification based scheme.

We first describe the exhaustive search based mode decision, after which we describe the

features that we choose for the classifier and finally we include the results of our implementation.



32

In all of the following discussion, the video sequence is represented by a sequence of frames

�� )1(),(),1( +− nXnXnX with n representing the time index. Since we are using lossy

compression techniques the sequence of decoded frames may be represented as

�� )1(ˆ),(ˆ),1(ˆ +− nXnXnX . These may not be identical to the original video sequence. The

previous decoded frame is used as reference to code the current frame and when a frame is

skipped it is replaced by the previous decoded frame.

The steps for the exhaustive search based mode decision are as follows. We first compute

the rate and quality when we skip a frame. We replicate the previous decoded frame to simulate

skipping the current frame. We then estimate the quality 1q of this sequence of two

frames { })1(ˆ)(ˆ),1(ˆ −=− nXnXnX . The bit rate 1r is estimated by averaging the bits needed to

code the past ten frames, setting the bits for the current frame to zero and multiplying by the

frame rate. We estimate the bit rate using a ten frame window as this smooths out the fluctuation

due to large or small number of bits to code the current frame.

We then estimate quality and bit rate for coding the frame. We determine the bits

available to code the current frame using history information and the target rate. We then estimate

the quantization step size needed to code this frame using the inverse quadratic model. Using the

previous decoded frame as reference and the computed quantization step size, we code the current

frame and reconstruct it. We compute the quality 2q of this two frames sequence

{ })(ˆ),1(ˆ nXnX − and the bit rate 2r as before.

We then compare 11 rq λ+ with 22 rq λ+ and decide which of the two is better. The

factor λ can be specified by the user in terms of the relative importance of either the rate or the

quality. In our tests we place a greater emphasis on the quality of the sequence. This is done by

adjusting λ so that λ times the target rate is 0.5 that is comparable to the range of the quality [-1,

0]. This is acceptable as we already use the quadratic model to try to control the bit rate. This

decision strategy may be represented pictorially as in Figure 3.7.
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Figure 3.7. Pictorial representation of Exhaustive scheme

This exhaustive scheme is very similar to the Viterbi decoding scheme [46] with no look-

ahead allowed, as at every instant in time n, costs for both the paths (skipping the frame or coding

it) are compared and the best path is chosen, with the other being discarded. In fact this rate

control strategy can be extended to allow for look ahead and this is described in Section 3.4.

There we also include a greater discussion relating our scheme to the Viterbi decoding scheme.

During this exhaustive mode decision we also evaluate some features. We start with a

large set of features and look at the correlation of these features with the decision sequence of the

exhaustive search based mode decision to identify the features we use for our classifier. Some of

the initial features that we identified are described in the following paragraph.

1) Size of motion vectors. This is computed as the sum of the square length of all the motion

vectors in the frame.

2) MAD or the sum of absolute difference (SAD) as a measure of quality of motion

compensation. The SAD is a scaled version of the MAD, where we omit the normalization by

256 while summing up the difference. We use the sum of the SAD across all the blocks of the

frame.

3) Measure of high frequency energy (HFE) in frame. This is obtained by taking a frame, down-

sampling it by a factor 2 horizontally and vertically, then up-sampling it back to the original

size and finding the energy in the difference between this and the original frame. This process

may be viewed as in Figure 3.8.
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Figure 3.8. Computation of HFE

In the above figure down-sampling includes a pre-processing by a low pass filter and up-

sampling includes a post-processing with a low pass filter.

4) Bits available to code current frame. This may be obtained from rate history.

5) Quantization step size used for current frame.

6) Energy in the frame difference between the current frame and previous frame.

We collected these features across the Foreman, Coastguard and Silent sequences, across

different target rates using our exhaustive search based mode decision. We then correlate these

features with the decision sequence that is viewed as a sequence of +1s and −1s with +1

corresponding to skipping a frame and −1 corresponding to coding it. More details of our

computation of these correlation coefficients are included in Appendix A in Section 3.7. The

correlation coefficient for each of the features is included in Table 3-2.

Table 3-2. Correlation coefficients for features with decision sequence

Sequence Target
(kbps)

Size of
MV

SAD HFE Available
Bits

Quant.
Step Size

Frame
difference

150 −0.5281 0.0643 −0.4741 0.0324 −0.1551 −0.4612
300 −0.3342 −0.0200 −0.2761 0.0113 0.0412 −0.2129
450 −0.4441 −0.0810 −0.3821 −0.251 0.1203 −0.1660Foreman

600 −0.4765 −0.2060 −0.4109 −0.1185 0.355 −0.3132
150 −0.3318 −0.0578 −0.5202 −0.0993 0.2612 −0.0745
300 −0.4001 −0.0339 −0.3942 −0.4613 0.5244 −0.0299
450 −0.4114 −0.1320 −0.431 −0.4112 0.4197 −0.0299Coastguard

600 −0.4759 −0.1203 −0.4527 −0.4176 0.4003 −0.0868
150 −0.3914 −0.0218 −0.3452 −0.2147 0.2881 −0.057
300 −0.3873 −0.1008 −0.3704 −0.2321 0.3092 −0.213
450 −0.3901 −0.2137 −0.3883 −0.3001 0.3111 −0.2247Silent

600 −0.3874 −0.0789 −0.3872 −0.1492 0.2427 −0.2019

As can be seen from Table 3-2, most features are negatively correlated with the decision

sequence while the quantization step size is positively correlated. This is as expected because

small motion vectors, small SAD, small HFE and a small frame difference all imply that the

current frame can be very well predicted by the previous frame, thereby meaning that they are
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similar. This means that we can skip the frame, as we would then replace it with the previous

frame. This biases the decision towards not coding the frame or a +1. So a smaller value of each

of these features corresponds to a large value in the decision sequence, hence a negative

correlation coefficient. A small number of available bits means that the quality of coding the

frame will be poor, hence this also tends to bias the decision towards skipping the frame, thereby

leading to a negative correlation. On the other hand a small quantization step size indicates that

the quality of coding the frame will be good, thereby biasing the decision towards coding the

frame and hence leading to a positive correlation coefficient.

Among these features we can see that the size of motion vectors and the HFE have the

largest correlation coefficient values across most sequences and most rates. They are also

relatively uncorrelated with a correlation coefficient 0.43. Hence, we choose these as

representative features for our test. The motion vectors are expensive to compute but we can

replace them with motion vectors from the previous frame, as the correlation between them is

quite large at 0.87. The HFE for any frame of the sequence needs to be evaluated only once as

this can be stored and looked up every time we code the sequence irrespective of the target rates.

We train the density functions, as described in Section 3.1, for these selected features and

build our classification based mode decisions. We evaluate these mode decisions over three

different sequences, Foreman, Coastguard and Silent. All these sequences are CIF at a frame rate

30 Hz. Of these sequences, Foreman is a high motion sequence, Coastguard is a medium motion

sequence and Silent is a low motion sequence.

The results are evaluated using rate distortion curves. Four different target rates (150,

300, 450 and 600 kbps) were chosen for the test. The distortion is measured using the spatio-

temporal quality metric that we described earlier. We also compare the rate control using these

mode decisions with one that we call No Skip rate control. This scheme tries to control the rate by

only changing the quantization step size and skips a frame only when there are no bits available

to code it. These results are shown in the following figures.
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Figure 3.9. Rate Control results for Foreman sequence
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Figure 3.10. Rate control results for Coastguard sequence
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Figure 3.11. Rate Control results for Silent Sequence
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We can see from these curves that rate control using both the exhaustive as well as the

classification based mode decision perform better than the No Skip rate control as they provide

smaller distortion at the same target rate. The distortion is measured using the spatio-temporal

quality metric that we described earlier. The performance of the classification based mode

decision is close to the exhaustive search based decision. The error probability for the classifier

for Foreman is 0.171, for Coastguard is 0.127 and for Silent is 0.131. This leads to the classifier

curve for Foreman not being as close to the exhaustive mode decision curve as it is for the other

sequences. We can also see that the average percentage improvement in quality across all the

rates over the No Skip rate control is smallest for the Foreman sequence. This is because Foreman

is a high motion sequence, hence skipping a frame is worse in quality than coding a frame a

majority of the time, thereby leading to fewer frames being skipped. In terms of computation

requirements the exhaustive mode decision uses roughly 3.5 times the computation as the

classification based mode decision. The encoder with the classification based mode decision has a

computation complexity within 5% of an encoder with no rate control strategy, where the

computation complexity is measured in terms of the time needed for processing the video data.

3.4. Mode Decision for Skipping or Coding Frames: Look-Ahead Case

We extend the mode decision in the previous section by allowing a one-step look-ahead

before making a decision. As in the previous section we first describe the exhaustive approach

followed by a description of the features that we select and the results for our experiments.

The steps in the exhaustive approach using look-ahead are as follows. We first skip the

current frame and replicate the previous decoded frame. The quality and the rate for this set of

two frames { })1(ˆ)(ˆ),1(ˆ −=− nXnXnX are computed as described before. Using this current

reconstructed frame as reference, the future frame is both coded and skipped. Quality and rate for

the two frame sequences { })1(ˆ)1(ˆ),1(ˆ)(ˆ −=+−= nXnXnXnX , when we skip the future

frame as well and { })1(ˆ),1(ˆ)(ˆ
1 +−= nXnXnX , when we code the future frame using this

skipped frame as reference, are computed.

We then code the current frame and quality and rate for { })(ˆ),1(ˆ nXnX − are computed.

Then using this coded frame as reference the next frame is both skipped and coded. Quality and

rate for { })(ˆ)1(ˆ),(ˆ nXnXnX =+ , when we skip the future frame and { })1(ˆ),(ˆ +nXnX , when

we code the future frame, are also computed. This process may be represented pictorially as in

Figure 3.12.
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Figure 3.12. All frames generated for look-ahead exhaustive decision

The decision on coding or skipping the current frame is made after looking at the total

cost ( ii rq λ+ ) for each of the four paths (skip, code), (skip, skip), (code, skip) and (code, code).

The path that provides the best cost is identified and the decision for the current frame is made

appropriately. This strategy is very similar to the Viterbi decoding scheme with a one step look-

ahead. The similarity is shown in Figure 3.13.
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Figure 3.13. Similarity with Viterbi Decoding Scheme

We look ahead one step while trying to make a decision at the current time instant n, i.e.

decide between nodes A and B. The costs ic in the figure corresponding to ii rq λ+ are

compared i.e. 31 cc + , 51 cc + , 42 cc + and 62 cc + are compared to get the best cost. The node

through which this path passes is chosen as the decision for the current frame while the other

node is discarded.
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For the look-ahead classifier, the feature set that we start with is the same as in the

previous section. Of these features we find that the size of motion vectors, the HFE and the

quantization step size are the most representative features, i.e. they have the largest correlation

coefficients with the decision sequence and have relatively low correlation between themselves.

Of these features, identifying motion vectors requires a large amount of computation, so we can

replace the motion vector size with the motion vectors from the previous frame. However, it is

not good to approximate the future frame motion vectors with those from the previous frame as

the correlation between the motion vectors that are two frames apart is not so large. Hence we

decide against using motion vector size as a feature for this decision strategy. As against this, the

quantization step size for the current frame and those for future frames can be estimated using the

model we have, so we prefer to use this. We choose four features for our classifier,

a) Quantization step size for current frame.

b) Estimate of quantization step size for future frame, if we skip the current frame.

c) Estimate of quantization step size for future frame, if we code the current frame.

d) HFE for the current frame.

All these features are easy to compute and as stated before, the HFE for any frame needs to be

evaluated only once for any sequence. These look-ahead mode decisions are applied to the

Foreman, Coastguard and Silent sequence and the results are compared with the No Skip rate

control. These results are shown in the following figures.
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Figure 3.14. Rate control results for Foreman sequence
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Figure 3.15. Rate control results for Coastguard sequence
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Figure 3.16. Rate control results for Silent sequence

As before, we can see that rate control using both the exhaustive as well as the

classification based mode decision perform better than the No Look rate control. The

performance of the look-ahead mode decisions is better than the instantaneous mode decisions.

The error probability for the classifier for Foreman is 0.168, for Coastguard is 0.202 and for

Silent is 0.206 and hence the performance of the classifier is not as good as the exhaustive mode

decision. As pointed out earlier the average percentage improvement in quality across all the rates

over the No Skip rate control is smallest for the Foreman sequence as it is a high motion

sequence. In terms of computation requirements the look-ahead exhaustive mode decision uses

roughly 8x times the computation as the classification based mode decision. As before, the

encoder with the classification based mode decision has a computation complexity within 5% of

an encoder with no rate control. The number of steps that we are allowed to look-ahead can be
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increased for a greater improvement in performance, as the classification based mode decision

does not require a significant increase the computation requirements.

Through our experiments we have shown that we can use classification based strategies

to intelligently decide between skipping a frame and coding it to achieve a better rate control

strategy than just changing the quantization step size to control rate and use frame skipping only

when we have no bits available to code the current frame. All of this discussion was for rate

control at the frame level, so we use one quantization step size for the entire frame, however our

classification based schemes can easily be extended to block layer rate control, when we can

decide to skip or code a block intelligently. Another approach to the frame skipping is to keep the

frame rate uniform, but changing it appropriately to meet the target rate. This approach to rate

control may also be implemented using our classification based strategy. We may use a classifier

to make the decision to change the frame rate after a certain number of coded frames, using the

strategy described above. The training data may be collected by exhaustively examining different

features under different frame rates and the overall rate-distortion performance.

3.5. Extension to Scalable Coding

Scalable bitstreams are used by video coding schemes to improve the error resilience

over lossy networks. The bitstream is partitioned into multiple layers and consists of a base layer

and one or more enhancement layers. The base layer is usually assigned the highest priority and

error protection and possesses enough information for the decoder to reconstruct the video

sequence at a lower resolution, frame rate or quality. The enhancement layers consist of residue

information between the base layer and the actual video sequence thereby allowing for

reconstruction of the video at a higher resolution, frame rate or quality. There are three different

scalabilities supported in the H.263 and MPEG-2 standards, which are the Spatial, Temporal and

SNR scalabilities. In the spatial scalability, video at a lower resolution forms part of the base

layer. In temporal scalability, the base layer consists of the video sequence coded at a lower frame

rate, while in SNR scalability the base layer consists of the video sequence coded at a high

quantization step size. In this section we consider two of these scalability modes, temporal and

SNR that are relevant to the skip or code mode decision mentioned earlier. We focus our

discussion to the use of one enhancement layer. The work described here can be extended to

using multiple enhancement layers.

Temporal scalability is achieved by skipping frames while coding the base layer, to

obtain a lower frame rate video. Frames that are skipped are predicted (may be forward,

backward or bi-directionally predicted) from the current and previous coded frames and the
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residue and motion vectors are included in the enhancement layer. SNR scalability is achieved by

coding frames at a higher quantization step size at the base layer and then coding the residue

between these frames and the actual video at a lower quantization step size to form the

enhancement layer.

Using the mode decisions described in Sections 3.3 and 3.4, we code a video sequence by

sometimes using a high quantization step size and sometimes skipping frames. Hence, this coded

video may be viewed as a base layer generated using a encoder that switches between SNR and

temporal scalabilities, as detailed later. We can therefore extend our work from the previous

section to investigate the error resilience and performance of our strategy when implemented over

lossy networks. To do this, we first generate an enhancement layer corresponding to our base

layer. This process is highlighted in Figure 3.17 and Figure 3.18.

Frames skipped
in base layer

Prediction for
skipped frames

Base Layer

Original Video

Enhancement Layer

Figure 3.17. Enhancement layer generation for skipped frames

From the figure we can see that when we skip a frame in the base layer, we build a

prediction for the frame, that may be forward, backward or bi-directionally predicted from the

preceding and following coded frames and the residue between this prediction and the original

video is included as part of the enhancement layer. This is equivalent to temporal scalability.

The process of generating the enhancement layer when we code a frame in the base layer

is highlighted in Figure 3.18.
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Figure 3.18. Enhancement layer generation for coded frames

Coded frames are subtracted from the original video and the residue for each of these

frames is included as part of the enhancement layer, which is coded at a lower quantization step

size. This is equivalent to SNR scalability.

Our coding scheme switches between these two modes and we call it adaptive

SNR/temporal (AST) scalable coding. Once we have built the enhancement layer corresponding

to our base layer, we code it at the same target rate as the base layer. In order to achieve the target

rate, we change only the quantization step size and do not allow for skipping of frames. We then

simulate lossy network conditions and then reconstruct the video sequence by combining the two

layers. The lossy conditions are simulated by throwing away some of the base layer macroblocks

and some of the enhancement layer macroblocks and then combining the layers. We examine

different error rates and their impact on the performance. Some error concealment is used at the

decoder side to improve the quality of the decoded video. When a base layer macroblock is

corrupted it is replaced by the corresponding macroblock from the previous frame, while when an

enhancement layer macroblock is corrupted, it is thrown away. We also generate an enhancement

layer for the No Skip rate control scheme (identical to SNR scalability) and code and combine the

layers as before. The resulting rate distortion curves are plotted in Figure 3.19.
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Figure 3.19. Performance under lossy network conditions

The curves plotted in the figure are with 5% loss in the base layer and 10% loss in the

enhancement layer. We simulate this lossy environment by randomly discarding 5% of the blocks

from the base layer and 10% of the blocks from the enhancement layer. As can be seen from the

plots, the performance of the AST is better than using just SNR scalability across different target

rates for all the three sequences, with only one exception (Silent sequence at 1200 kbps, 600 kbps

for base layer and 600 kbps for enhancement layer). Sample frames from the Foreman sequence

to highlight the improvement in distortion are shown in Figure 3.20.

Figure 3.20. Sample frames from Foreman sequence with 5% base loss and 10% enhancement loss

SNR Scalability (left) and AST Scalability (right)

The SNR scalability frame has a PSNR of 27.7 dB while the AST scalability frame has a

PSNR of 29.09 dB as compared to the original frame.

We also investigate the effect of varying the enhancement layer and base layer losses at a fixed

target rate of 300 kbps for base layer and 300 kbps for enhancement layer. We compare the

performance with SNR scalability and the resulting improvements are shown in Figure 3.21.
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Figure 3.21. Improvement in quality of AST over SNR scalability for different error rates

All of the above plots are generated for a target rate of 300 kbps for the base layer and the

same for the enhancement layer. We can see that for all the different error rates the performance

in terms of quality is better when we generate the base layer using the classification based mode

decision as opposed to just changing the quantization step size. We can also see that the

percentage improvement in quality is higher for Silent and Coastguard sequences as opposed to

the Foreman sequence. This may be explained by a combination of facts. When we skip a frame,

the enhancement layer carries greater amount of information for high motion sequences than it

would for a low motion sequence. Also we have a larger amount of losses in the enhancement

layer as compared to the base layer. So we lose more information for higher motion sequences

when we skip frames in the base layer. Hence we have a smaller improvement for the Foreman

sequence. The case with 0% loss in the base layer and 100% loss in the enhancement layer

degenerates to the rate control problem that we focused on in Sections 3.3 and 3.4.

3.6. Conclusion

The main contribution of this chapter is the classification based approach to mode

decisions in the video encoding process. We successfully convert the problem of minimization of

a certain cost function into a standard minimization of classification error problem and use

traditional pattern classification techniques to solve it. We use this approach to improve the

performance of the Intra-Inter mode decision and reduce the bitstream size by 4.5~4.8% over the

mode decision as provided in TMN 10. We then use this approach to the rate control problem and

show an improvement in performance in the rate-distortion sense over using the no skip approach

both for the instantaneous as well as the look-ahead mode decision. The improvement in quality

for the instantaneous decision is 4~12% while for the look-ahead decision it is 7~18% over the no

skip rate control. We also extend this work to the scalable video coding and show that with the
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adaptive SNR/temporal (AST) scalability we improve the performance in terms of quality under

error prone conditions by 5~15% over using SNR scalability only. More details on this chapter

and the classification based framework for mode decisions may be obtained from our paper in

[47].

3.7. Appendices

Appendix A: Correlation coefficient between decision sequence and feature

sequence

In order to compute the suitability of features to use in our classifier, we compute the

correlation coefficient between the features and the optimal decision sequence. The optimal

decision sequence is found using the exhaustive schemes and we view it as a binary sequence of

+1s and –1s, corresponding to the two mode decisions. Before we correlate the feature sequence

with the decision sequence, we threshold the feature sequence to convert it also to a binary

sequence of +1s and –1s. This is done so that we get a better estimate of correlation between the

feature sequence and the decision sequence. If we do not convert the feature sequence to a binary

sequence, even if the feature is perfectly representative of the decision sequence, i.e. it is high

when we have decide Intra (+1) and low when we decide Inter (–1) we do not get a correlation

coefficient 1. We highlight this with an example in Figure 3.22.
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1
Thresholded Feature Sequence

Figure 3.22. Correlation between decision sequence and feature sequence

In this figure each of the three sequences has 50 samples. The feature sequence may be used to

predict the decision sequence very precisely, because we can see that when the feature has a high

value, the decision sequence has value +1 and when the feature value is low, the decision

sequence has value –1. However, when we compute the correlation coefficient between these two
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sequences, the resulting value is only 0.44. As against this, if we convert the feature sequence to a

binary sequence, using a threshold of 0, before computing the correlation coefficient, the resulting

value is 1 as desired. We try multiple thresholds to convert every feature sequence into a binary

sequence before correlating with the decision sequence and report the best correlation coefficient

obtained.

Appendix B: Spatio-Temporal Quality Metric

A quality metric should measure spatial as well as temporal quality. The PSNR provides

a poor measure of temporal quality, hence we use the metric proposed by Wolf and Pinson [45].

To evaluate this metric, first the luminance components of the input and output video streams are

processed using horizontal and vertical edge enhancement filters. These processed streams are

partitioned into spatio-temporal (S-T) regions in which features that quantify spatial activity as a

function of angular orientation are extracted. These are then clipped to emulate perceptibility

thresholds. Distortions due to gains and losses in feature values are calculated using functional

relationships between the input and output feature values that emulate visual masking. These

distortions are then collapsed over space and time. The choice of edge enhancement filters and

the perceptibility thresholds are optimized based on their correlation with perceptual distortions.

The block diagram of this process is shown in Figure 3.23.

Extract features and
apply perceptibility

thresholds

Edge Enhancement (Horizontal)

Visual Masking Functions

Spatial + Temporal Collapsing

Xout
Xin

Gain(s,t) Loss(s,t)

Edge Enhancement (Vertical)

Edge Enhancement (Horizontal)

Edge Enhancement (Vertical)

Quality Metric

Figure 3.23. Computation of spatio-temporal metric

The quality metric computed as in Figure 3.23 lies in the range [-1,0] with 0 corresponding to

perceptually lossless video. We use the negative of this feature as a measure of distortion, with 0

corresponding to no visible distortion and 1 corresponding to a large distortion.
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4. Mixtures of Principal Components for

Error Concealment

This chapter introduces a stochastic modeling technique called Mixtures of Principal

Components to capture data variations efficiently and accurately. This new model for data is then

used for error concealment, a decoder post-processing technique to reduce the distortions due to

lossy network transmission of video.

Many branches of science are faced with the problem of analyzing high dimensional

multi-variate data. Due to lack of visualization tools and also in order to have efficient data

processing dimensionality reduction for this multi-variate data becomes critical. Most

dimensionality reduction techniques try to reduce or eliminate statistical redundancy between the

components of the high-dimensional data to obtain a lower dimensional representation without

significant loss of information. There are many linear and non-linear techniques that have been

proposed in literature to solve this of dimensionality reduction problem.

Among the linear dimensionality reduction techniques is the Principal Components

Analysis (PCA). Given a set of data vectors, PCA identifies the principal directions of variation

in the data space. These principal directions of variation correspond to the eigenvectors of the

covariance matrix of the data and may be used to represent the data. These eigenvectors may be

ranked in the order of importance based on the magnitude of their corresponding eigenvalues,

with the eigenvector corresponding to the largest eigenvalue being the most significant one and so

on. These eigenvectors may be used as basis vectors to reconstruct the original data vectors. Since

we know the principal directions, we may discard some eigenvectors, corresponding to small

eigenvalues without incurring a great increase in reconstruction error. This allows us to model the

data using a small set of eigenvectors. As mentioned before, for the PCA to represent large

variations in the data set, PCA will require larger dimensional representation than would be

required by a non-linear modeling technique. However non-linear modeling techniques have

problems such as in the lack of ease of computation and the absence of a simple forward

backward transformation between the low-dimensional representation and the actual data set.
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We would like to use the advantages of using a linear modeling technique, however we

would like to extend the PCA to improve the modeling performance for data with large

variations. Hence we propose a mixture of principal components (MPC) to represent the data

while optimizing the reconstruction error, however we would like to avoid hard partitioning of

the data in order to exploit both the local as well as the global information in the data. Our

approach uses a linear combination of reconstructions from component eigenspaces to represent

the data. We show an illustration of our approach in Figure 4.1.

1x11x̂

12x̂

1m

2m

11u

21u

Figure 4.1. Illustration of mixture of eigenspaces

In Figure 4.1 we show data representation and reconstruction using a mixture of two

component eigenspaces with one eigenvector each. The original data is distributed as shown by

the two ellipses while the eigenspaces have means 1m and 2m , and eigenvectors 11u and 21u

respectively. In the figure, the means are shown as black diamonds and the direction of the

eigenvectors is shown as a line passing through the corresponding means. Given a data sample

1x , shown as a dark circle, we first project it onto each of the component eigenspaces to obtain

11x̂ and 12x̂ . We then linearly combine these two projections to obtain the best reconstruction for

the data, shown as the dark triangle in the figure.

The problem we are trying to solve is the following. Given a set of data vectors with

variations, we would like to automatically train a set (mixture) of eigenspaces so that the

reconstruction error is as small is possible. We would like to train all the parameters of these

component eigenspaces (the means and the eigenvectors) automatically, as well as weights to

linearly combine the individual reconstructions. We formulate this problem of training as a

minimum error optimization problem and provide a solution using an iterative Expectation

Maximization (EM) kind of algorithm. We iteratively update the weights, the means and the
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eigenvectors, one by one, ensuring that when we update one of the three, the other two are kept

fixed.

Once we provide the solution to the problem, we then highlight the use of these

eigenspaces using simulated data and real applications. We first create some random data clusters

and try to model them using MPC. We show the improvements over using the PCA and also

illustrate some trivial cases for the performance of the MPC. We also include a brief comparison

with previously proposed linear extensions to the PCA. Among these extensions are the PPCA

and the VQPCA as described in Section 1.2. These extensions to the PCA, including the MPC,

can be classified into those that use hard or soft clustering techniques and those that are optimized

in terms of the squared error or the likelihood of observing the data. We group these appropriately

in Table 4-1.

Table 4-1. Linear Extensions to the PCA

Optimize Likelihood of

Observing Data

Optimize Reconstruction

Error

Hard Clustering VQPCA

Soft Clustering PPCA MPC

As may be seen from Table 4-1, PPCA uses soft clustering of data while optimizing the

likelihood of observing data, while VQPCA uses hard clustering and optimizes the reconstruction

error. The MPC uses soft clustering of the data while trying to optimize the reconstruction error.

It is known from literature that the reconstruction error performance of the VQPCA is better than

the reconstruction error performance of the PPCA. This is to be expected, as the PPCA is not

designed to optimize the reconstruction error. In our work we are also attempting to optimize the

reconstruction error, so we also include a brief comparison with the VQPCA and show that for

sample random data the MPC has better error performance.

We then focus on using this model for error concealment of video sequences with losses

due to transmission over networks. Loss of compressed video information during transmission

leads to objectionable visual distortion in the reconstructed video. Hence it is necessary for the

decoder to perform error concealment to minimize this distortion. Some previously described

error concealment schemes use spatial domain interpolation, projection onto convex sets (POCS)

and temporal domain interpolation, such as interpolating the motion field. We propose to use

model based error concealment. Given a region of interest in the video, we build a model for the

data using the MPC and then use this model to replenish any missing data. We evaluate the
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performance of the scheme in terms of the PSNR as compared to the error free video sequence

and highlight improvements over the currently used error concealment schemes.

In order to illustrate the improvements to be gained by capturing data variations

efficiently we use the MPC for the task of face recognition. We examine face data with pose and

lighting variations and use both the PCA and the MPC to capture the data variations to model

each of the subjects in the database. We then use these models for recognition and show that

using the MPC leads to a significant improvement in the recognition performance. We also

briefly examine a face tracking problem that is difficult for conventional trackers due to extreme

lighting variations. We propose a scheme to model the background using the MPC to capture the

large lighting variations. The model may be used to reconstruct the background given a test image

and we can obtain a foreground map by subtracting the background from the test image. This

foreground map may then be used by the tracker to track the face. We illustrate this approach

using data collected in a car environment.

This chapter is organized as follows. Section 4.1 describes the notation used in this

report. We provide the formulation of the problem in terms of an optimization criterion in Section

4.2, where we also describe the iterative approach to obtaining the solution. Sections 4.3, 4.4 and

4.5 include the derivations for the solutions for the weights, the means and the eigenvectors.

Section 4.6 relates this derivation to the PCA, considering the case when we have only one

mixture component. We then include some simulation results in Section 4.7. We use the MPC for

error concealment in Section 4.8. We use the MPC for the task of face recognition in Section 4.9.

We also describe our face tracking work in Section 4.10. We conclude in Section 4.11.
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4.1. Notation
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4.2. Optimization Criterion

Given a set of data vectors, we are attempting to represent them using a mixture

containing M eigenspaces, each of which has P eigenvectors. We need to find the means and

the eigenvectors for each of these mixture components and also we need to find the set of weights

to combine the reconstructions from each of these components. We attempt to find these by

minimizing the mean squared error between the data vectors and the final reconstruction. This

problem of minimizing the squared error through the choice of the means, the sets of eigenvectors

and the set of weights, may be mathematically written as in equation (4.1).
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The approach we adopt is an iterative one, similar to the EM algorithm for Gaussian

mixture training. The solution is iterative due to the fact that we cannot find an analytical solution

for the means, the weights and the eigenvectors. We solve for the weights and the means in terms

of the eigenvectors and substitute these values into the optimization criterion, to obtain an

analytical solution for the eigenvectors. However, we then need to solve an equation with order

greater than four to obtain the solution for the eigenvectors. It is known from literature that a

closed form solution for such equations cannot be obtained. Hence we use an iterative approach
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to obtain the solution. We first initialize the weights, the means and the eigenvectors for the

different components randomly. We first optimize the weights for each data vector individually,

following which we optimize the means of the component eigenspaces and finally optimize the

eigenvectors. During the process of optimizing one set of parameters, (the weights, the means and

the eigenvectors), all the other parameters are fixed, similar to the EM training. This process is

repeated till convergence (parameters do not change by more than a threshold).

4.3. Solution for the weights

The weights are solved for individually for each of the vectors. So from our optimization

criterion, we may drop the summation over all vectors. The only constraint on the weights is that

we impose on the weights is that they are required to sum to one. We may rewrite the

optimization criterion in (4.1) as follows.
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since we are weighting and summing each of the mixture component reconstructions (columns of

the matrix iX̂ ) with weights ijw (elements of weight vector iw ), to get as close to the original

vector as possible.

Adding in the constraint using the Lagrange multiplier, equation (4.2) may be rewritten

as below.
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Taking derivatives with respect to iw and λ and setting the result to zero we get the

following equations
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The two equations in (4.4) may be grouped together as follows
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We can thus solve for the weights using equation (4.5).
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4.4. Solutions for the means

While solving for the means we now fix the weights and the eigenvectors. We may

rewrite equation (4.1) as follows
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We need to now expand iX̂ in terms of the means before we can take derivatives and set to zero.
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In the above equation jB is the matrix that projects data onto the sub-space spanned by the

eigenvectors in jU , while jA is the matrix that projects data onto the space orthogonal to this

sub-space. We may use equation (4.7) to replace iX̂ in equation (4.6) and hence, the optimization

criterion may be rewritten as follows.
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We may now expand equation (4.8) into individual terms and rewrite it as follows.
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We now drop the terms independent of jm and expand the inner product terms.
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Notice that iji
T
jj

T
i wweew == , which are scalars and so may be moved to the front of each

term. We now take derivatives with respect to qm and set the result to zero.
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Now we may use the properties that 0BAAAAIUU ==�= j
T
jjj

T
jMj

T
j & to simplify

equation (4.11) as follows.
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Equation (4.12) has multiple solutions due to the fact that jA is singular. One solution for the

means is as follows.
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Clearly, any vector orthogonal to qA may be added to qm as defined in equation (4.13) to still

remain a valid solution to equation (4.12). Thus, the means are allowed to move within the sub-

space (hyper-plane) spanned by the eigenvectors in qU . This non-uniqueness does not affect the

reconstruction error, as it is measured as a distance from the projection onto the hyper-plane,

which is independent of the location of the mean within this hyper-plane. As an illustration we

show a simple example scenario in Figure 4.2.



56

Am

Bm
Cm

BA,x̂
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Figure 4.2. Projection onto eigenspace as function of mean location

In the example scenario we consider a single eigenspace with one principal direction 1u ,

shown in the figure as the principal axis of the ellipse. When we project data point x onto this

eigenspace, whether the mean is located at position Am or at position Bm , the resulting

projection is BA,x̂ . In fact this is always the resulting projection as long as the location of the

mean changes along the line specified by 1u passing through Am . As an illustration when the

mean moves to location Cm , the resulting projection also changes to Cx̂ , which is different from

BA,x̂ , thereby leading to a different reconstruction error. Hence we can tolerate this non-

uniqueness of the solution for the mean, as long as it is limited to within the hyper-plane spanned

by the eigenvectors. For our training we use the solution for the means from equation (4.13) as it

is the minimum norm solution for the mean.

4.5. Solution for Eigenvectors

We may now fix the weights and the means. The optimization criterion from equation

(4.1) may be rewritten below in equation (4.14).
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Let us define ( ) jk
T

jiijky umx −= . Using this, the minimization criterion of (4.14) may be

written as follows.
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We now expand the terms in equation (4.15) and get the following.
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Now we may drop all terms independent of jku and rewrite equation (4.16) using the knowledge

that all eigenvectors of one mixture component are orthogonal to each other. (Note: Eigenvectors

from different mixture components are not constrained to be orthogonal).
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We also need to add the constraint that the eigenvectors need to have a norm of 1, and we may

use the Lagrange multiplier method to add in the constraint to obtain equation (4.18).
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We may now take derivative with respect to rsu and set the result to zero to obtain equation

(4.19). Note that the term in the third line of equation (4.18) has two terms containing rsu , one

when sbra == & and one when skrj == & , which do not happen together due to the
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ja ≠ condition. Both these terms are identical and their derivative may be grouped together as

shown below in equation (4.19).
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This is clearly an eigenvector, eigenvalue problem that may be written as rsrsr uuC λ= where

the matrix rC is defined as follows.
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The first P eigenvectors of this matrix are the desired eigenvectors of the mixture component.

4.6. Simplification for M=1

In order to verify the correctness of the derivation we consider the case when the number

of mixture components is one, when our derivation should be identical to the PCA. We first

examine the mean. The mean may be obtained as in equation (4.13). However, when we have

only one component, we can make a lot of simplifications and these are shown below.
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All the weights are set to one, since there is only one component, and then the term consisting of

reconstructions from other mixture components may be removed. This means that the mean may

be obtained as shown below.
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This is clearly the sampled mean, which is identical to the PCA. After examining the mean, we

now examine the matrix rC defined as in equation (4.20).
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Since there is only one mixture component, the third term vanishes, all the weights are set to one

and the summation over the number of mixtures may be replaced with the single term with

1== rj . Using this simplification, the matrix rC may be rewritten as below.
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Clearly, this is identical to the sample covariance matrix for the PCA.

4.7. Simulation Results

In order to evaluate the performance of the MPC representation, we create some sample

test data. One issue that needs to be addressed before modeling the data is the choice of the

number of mixture components M and the number of eigenvectors P per component. Currently

we do not have an analytical solution to determine these numbers, and they are determined

empirically. The number of mixture components M is incremented while measuring the

performance of the model in terms of the task at hand, until we realize that the improvement in

performance is marginal, defined using a threshold. For any given M, the number of eigenvectors

P, is chosen so that we capture 90% of the energy of the original data.

We first create 2-D data uniformly distributed in a ring and then try to model the data

using two mixtures with one eigenvector each. The resulting means and eigenvectors are

superimposed on the data and are shown in Figure 4.3.
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Figure 4.3. Means and eigenvectors for ring data

From Figure 4.3 we see that the two components have eigenvectors that are parallel to

each other, with means diagonally across the ring. This is to be expected; due to the way we

define the final reconstruction (linear combination of the individual reconstructions). Any point in

the 2-D space may be reconstructed without any error using projections onto two parallel lines

and interpolating them using weights. This leads to there being no error in the data

representation. Such trivial cases occur when the number of mixture components equals or

exceeds the dimension of the data to be represented. However such cases are not commonly

encountered in practice, as typically the number of mixture components used is much smaller

than the data dimension. We show the squared error for this case in Figure 4.4.
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Figure 4.4. Squared error for 2-D ring data
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In Figure 4.4, we plot the squared error as a function of the number of iterations. We

show the intermediate iteration steps, after updating the weights (plus), the means (square) and

the eigenvectors (circle). We start with a random initialization and the corresponding error is

plotted using a star. As can be seen the squared error for this MPC goes to zero. We also include

the error for PCA with one eigenvector, shown as a straight line on the plot.

We next create a set of 3-D data, distributed in two clusters and try to model the data

using two mixture components with one eigenvector each. We create 3-D data clusters as they are

easy to visualize and may be shown on a plot. The results of the training are shown in Figure 4.5.

Figure 4.5. 3-D data with mixture means and eigenvectors

In the plot, the data vectors are plotted as stars and on the data we superimpose lines

parallel to the two mixture component eigenvectors, and passing through their respective means.

As can be seen, the two means of the mixture components converge to the center of the clusters,

with the eigenvectors capturing the principal direction of the cluster. We also try to model the

data using PCA with two eigenvectors and the resulting squared error is shown in Figure 4.6.
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Figure 4.6. Squared error for 3-D data in two clusters

We can see from Figure 4.6 that the error for the MPC with two components with one

eigenvector each is much smaller than for PCA with two eigenvectors also. In fact even though

the PCA has the same number of total eigenvectors as the MPC, the MPC has around 8 times

smaller squared error, leading to a more efficient representation. This shows that the MPC is

more efficient than the PCA to represent data that consists of multiple clusters.

For this same random data we also train the multiple clusters using the VQPCA

algorithm. In order to make a fair comparison we train two clusters with one eigenvector each, as

for the MPC. The resulting means and eigenvectors are shown in Figure 4.7.

Figure 4.7. Cluster means and eigenvectors for VQPCA
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As can be seen from Figure 4.7, the means and the eigenvectors correspond to the means

and eigenvectors identified by the MPC. The corresponding squared for the VQPCA is shown in

Figure 4.8.
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Figure 4.8. Squared error for the VQPCA

When we compare this squared error for the VQPCA with that for the MPC, we see that

the squared error for the VQPCA is around twice as large as thereby showing that the MPC has

better error performance. This is to be expected, as for the same set of means and eigenvectors,

the VQPCA is a special case of the MPC, with the weights chosen so that one of the weights is

one and the rest are all zero. The above discussion is just to illustrate that the error performance

of the MPC is better than that of the VQPCA.

4.8. Error Concealment using Mixtures of Principal Components

Loss of data during transmission leads to objectionable visual distortion in the

reconstructed video. Hence it is necessary for the decoder to perform error concealment, to post-

process the video to remove these artifacts. Most of the existing work on error concealment uses

spatial and temporal interpolation schemes.

We propose a model based error concealment scheme. We build models for regions of

interest in the frame and use these models to replenish any missing data. Such a model based

concealment approach is very useful especially for the MPEG-4 standard, which uses object

based coding, thereby making it easy to determine regions of interest and build appropriate

models for them. This model may be created from the data available or may be trained offline

using some training data. Once the parameters of the model are estimated, this model may be
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used to represent the object and hence any missing data in the object in the frame may be replaced

using data from the model. In order to capture the many variations among objects of interest we

would like to model them using the MPC. For illustration, in our experiments we used faces as

regions of interest, however the modeling technique is not restricted to any particular type of data.

As an illustration we show this error concealment scheme in Figure 4.9.
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Replace missing data

w1

w2 w3

Project

Project

Project

Figure 4.9. Mixture of eigenspaces for error concealment in faces, as illustration

In Figure 4.9, we name the three components of the eigenspace mixture, the left eigenspace,

the right eigenspace and the center eigenspace to correspond to the natural poses of a human face.

Each individual reconstruction is obtained in a way identical to the PCA reconstruction

procedure. The final reconstruction of the data is obtained by linearly combining the individual

reconstructions from each of these component eigenspaces, using a set of weights. This process of

error concealment consists of two stages, first the projection onto the eigenspaces and linear

combination of the component projections to obtain the final reconstruction and secondly

replacing the missing data using the final reconstruction. Both these operations, of the projection

onto the eigenspaces and the replacement of missing data may be viewed as projections onto

convex sets. Each eigenspace itself is a convex set and a linear combination of data from many

convex sets also leads to a convex set. So all the reconstructions lie in a convex set. Since the

process of replacement only changes the missing data entries all vectors (the region of interest) in

this set have the same known real values for the components not affected by error. Such a set is

also convex. Given that both our operations are projections onto convex sets, we may iterate the

process to obtain better results. This technique of POCS was used for image restoration by Sezan

and Tekalp and more details on POCS may be found in [48]. Our error concealment scheme may

be summarized as follows.

1. Project region of interest onto the MPC to obtain reconstruction.

2. Replace missing data in region of interest using reconstruction.

3. Iterate 1 and 2 until convergence
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We collect a face sequence with the person moving his head from left to right, thereby

showing broadly three poses, left, center and right. We cropped the faces in a 32×32 window

using a face tracker developed by Huang and Chen [49] to provide the location of the faces. In

order to illustrate the fact that the data actually comes from multiple clusters, we perform the

following experiment. We determine the first three eigenvectors of the data using PCA and plot

the corresponding coefficients in 3-D space. These are as shown in Figure 4.10.
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Figure 4.10. First three eigen-coefficients of real face data

From the plot we can see that the data may be approximated using three clusters, one

each corresponding to the left, the right and the center poses. So we now try to represent the data

using a MPC with three components, each one having two eigenvectors (making a total of six

eigenvectors) and compare this with PCA with six eigenvectors. The squared error for the data

representation using the MPC and using PCA is shown in Figure 4.11.
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Figure 4.11. Squared error for face data

We can clearly see that using the MPC has smaller error, even with the same number of

total eigenvectors as the PCA. In fact the error for the mixture is around 25% smaller than for the

PCA. When we examine the means and eigenvectors for the resulting mixture components we see

that they correspond to the left pose, the center pose and the right pose. These are shown in

Figure 4.12.

Mean for mixture 1 Mixture 1 Evec 1 Mixture 1 Evec 2

Mean for mixture 2 Mixture 2 Evec 1 Mixture 2 Evec 2

Mean for mixture 3 Mixture 3 Evec 1 Mixture 3 Evec 2

Figure 4.12. Means and eigenvectors for the MPC

We can see from Figure 4.12, that the means converge to the three poses, left, right and

center. The eigenvectors also highlight the dominant motion associated with each cluster.
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Now that we have a model to represent the data accurately, we use this model for error

concealment. We first simulate bursty packet loss using a two-state Markov chain, a simple

model proposed by Yajnik et al [50]. This model is shown in Figure 4.13.

Good Bad

p

q

1-p 1-q

Figure 4.13. Two state Markov chain to simulate bursty packet loss

Each time we receive a packet we check the state of the Markov chain, if it is in the Bad

state the packet is dropped and replaced by zero, otherwise the packet is successfully decoded.

The parameters p and q of the Markov chain are selected as follows. We first choose q using

the thumb rule that ( ) Tq MBS <−1 , where the MBS is the maximum burst size, i.e., maximum

number of consecutive bad packets and T is a very small number. This does not ensure that the

MBS is not exceeded, however it is exceeded with a very small probability T . We then choose

p so that the overall loss probability is as desired. p and q are related to the overall loss

probability α as
qp

p

+
=α . For the purposes of our experiment we choose MBS to be 4 and

vary the loss probability across different values. Also, for ease of implementation, in our

experiments we use one packet to contain data for one 16×16 block. However, the scheme is not

limited to such packet sizes, but may be applied across a variety of packet sizes.

The first experiment we perform is on Intra coded frames. For these frames, the loss of a

block corresponds to the loss of actual image data and so missing blocks lead to a large drop in

the quality. We test our concealment scheme on a sequence with 180 frames. We train the

mixture and the PCA using 20 of the frames and we use these trained eigenspaces to conceal

errors in the remaining 160 frames. In practice, the decoder is aware of which frames are clean

and which frames have errors, so it is reasonable to assume that the model can be trained on some

clean data before being used for error concealment. We perform two iterations of POCS to obtain

better convergence results. As a measure of our error concealment performance we evaluate the

PSNR between the frame with error concealment and the frame with no errors. We compare the

error concealment performance using the mixture as well using the PCA. The PSNR values for

these different concealment schemes are shown in Figure 4.14.
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Figure 4.14. Error concealment results for Intra coded sequence

The results in Figure 4.14 are obtained for the case when the loss probability α is set to

be 0.3 and a quantization step size of 1 is used while coding the sequence. From the figure we see

that the MPC as a model for the data out-performs the PCA in terms of error concealment by

around 1.5 dB. There is a 15 dB improvement over performing no error concealment and this is to

be expected as the loss of any block leads to objectionable visual artifacts. We show some sample

frames with error concealment from this sequence in Figure 4.15.

Real Face No concealment Errors concealed

Figure 4.15. Error concealments using MPC for Intra case
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In Figure 4.15 we show three sample frames with and without error concealment. The

frames on the right have the errors concealed using the MPC as model. The no concealment case

shows the missing blocks set to black, with the bursty nature of the errors indicated by the

consecutive error blocks that occur on the faces.

We repeat the experiment across different loss probabilities and different quantization

step sizes. We use varying quantization step sizes to illustrate the performance across different bit

rates. Although a fixed quantization step size does not correspond to a fixed bit rate, we can use

the quantization step size as indicative of the bit rate, with a large quantization step size

corresponding to a low bit rate and a high quantization step size corresponding to a high bit rate.

In each case the PSNR is computed with respect to the quantized sequence, however with no

errors. These results are included for both the error concealment schemes in Figure 4.16.
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Figure 4.16. Error concealment across different loss probabilities and quantization step sizes (Intra)

We can see from Figure 4.16 that the MPC consistently outperform the error concealment

using the PCA, even with the same number of total eigenvectors. On the average the

improvement in error concealment performance is around 1.5~2 dB.

We then focus on error concealment for Inter coded sequences. For these sequences we

assume that the motion vectors are available and packet loss corresponds to loss of the residue

block. There are many advanced error resilient modes in both H.263 and MPEG-4 that allow for

such availability of motion vectors under lossy conditions. Hence this means that we always have

the motion compensated prediction for the current frame. The no concealment scenario involves

replacing the residue block with zero, thereby using the motion compensated prediction from the

previous frames. Using the motion compensated prediction is one of the error concealment
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schemes in practice currently. Although propagation of errors becomes a concern, still the visual

artifacts are not as bad as when we lose data in the Intra case, especially when the sequence does

not have too much arbitrary motion. As opposed to this, the MPC and PCA based concealment

schemes project the face into the respective eigenspaces and replace blocks in the face for which

the residue block was lost. We perform two iterations of the POCS to obtain these results. In

order to highlight the improvements of using a model based concealment scheme as opposed to

using the motion compensated prediction, we sub-sampled the sequence in time by a factor of

three, thereby making the motion compensated prediction not as good as for the full frame-rate

sequence. The results for the error concealment across the frames of the sequence are shown in

Figure 4.17.
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Figure 4.17. Error concealment Results for Inter coded frames

We can see from Figure 4.17 that the MPC consistently outperforms the PCA as a model

for error concealment. The error concealment using the MPC has around 7. 25 dB better PSNR

than the no concealment scheme and around 1 dB higher PSNR than the error concealment using

PCA.

On the average the no concealment scheme has a PSNR of around 20.1 dB, which is

much higher than the Intra no concealment case, since the no concealment scheme in the Inter

case uses the motion compensated prediction. We notice that with no error concealment the

PSNR degrades across time, as errors accumulate. However, there are frames when the no

concealment PSNR increases, for instance we can see from the plot that around frame 18, the

PSNR for the no concealment scheme rises sharply. This is explained by the fact that frame 18
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has some intra coded blocks in the face region, and few errors, thereby leading to a virtual

refresh. We show an example of three consecutive frames, frames 16, 17 and 18, in Figure 4.18 to

highlight this.

Real Face Motion compensated Errors concealed

Frame 16

Frame 17

Frame 18

Figure 4.18. Sample frames with error concealment using MPC

We can see from Figure 4.18 that frames 16 and 17 not only have poor PSNR but the

errors propagate between frame 16 and 17 due to the use of the motion compensated prediction,

however due the presence of intra coded blocks and few errors in frame 18, the PSNR for the no

concealment scheme improves. As against this, the frames with errors concealed using the MPC

have a steadily high PSNR, although there is some smoothing due to the POCS iterations.

We then repeat the experiment across different loss rates and quantization step sizes and

the results are shown in Figure 4.19.
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Figure 4.19. Error concealment across different loss probabilities and quantization step sizes (Inter)

We can see from Figure 4.19 that the error concealment using the MPC as a model

performs consistently better than error concealment using the PCA, by around 1 dB across all the

different quantization step sizes and loss probabilities. Both the PCA and the MPC based error

concealment schemes work better than the motion compensated prediction used by the no

concealment scheme. The MPC based error concealment outperforms the no concealment on the

average by 5~7 dB. For the inter case we can tolerate loss probabilities of up to 0.5 due to the fact

that we discard residue blocks instead of actual image data.

4.9. Mixture of Principal Components for Face Recognition

Face recognition has generated much interest in the research community primarily

because of the multitude of applications it enables. Automatic face recognition is very useful as a

non-intrusive authentication, verification and identification tool. Among face recognition

techniques template matching techniques are very popular. Template matching involves building

a template or model for each object in the database and then using that to classify the test face. A

sample template matching recognition system is shown in Figure 4.20.
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Figure 4.20. Sample face recognition system

In Figure 4.20 that the test face is matched with the models in the database, each of which

returns a score (probability, likelihood, distance etc.) and all the scores are passed to a comparator

that decides on the final result.

The eigenface approach for recognition was proposed by Turk and Pentland [51] who

used PCA to create an eigenspace for all the subjects in the database. The test face is projected

onto this eigenspace and the resulting coefficients are used to classify it among one of the many

subjects. More recently other approaches have been proposed that use PCA to create individual

eigenspaces [52], i.e., eigenspaces for each subject separately. The test face is projected onto

these different eigenspaces and the eigenspace that has the smallest reconstruction error for the

test face is chosen as the result.

As discussed earlier, the MPC is more efficient than the PCA at capturing data variations,

especially when the data consists of multiple clusters. Face data with multiple poses and under

different illuminations is likely to exhibit such multiple clusters, as illustrated by the simple

example with pose variations in Figure 4.10. Hence, it is likely that using the MPC to represent

each individual, instead of the PCA will lead to a better modeling performance. The consequence

of having more accurate models for each individual is to improve recognition performance.

In order to verify these claims we use the MPC for a recognition task. The subjects we

use are part of the Pose, Illumination and Expression (PIE) [53] database. This is a publicly
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available database collected at the Robotics Institute at Carnegie Mellon University. This

database consists of 68 subjects showing 13 poses, under 23 different illumination conditions and

with 4 different expressions, making a total of 41368 images. Of this database, we use five

subjects with only pose and illumination variations as part of our recognition task. Sample images

for these five subjects are shown in Figure 4.21.

Figure 4.21. Sample images for five subjects in database

For each of the subjects shown in Figure 4.21, we use 13 poses with 22 illumination

conditions, making a total of 286 images per person. Of these 286 images we use 143 for training

and the rest for testing. The faces were cropped out from these images manually and then were

resized to 32×32 to train the mixtures of eigenspaces. For each subject we train four mixture

components with two eigenvectors each. We choose this number as it allows us to capture around

90% of the training data energy. Simultaneously we also train eigenspaces with 8 eigenvectors

using PCA. An example of the mixture parameters at convergence for one of the subjects is

shown in Figure 4.22.

Mean for component 1 Component 1 Eigenvector 1 Component 1 Eigenvector 2

Mean for component 2 Component 2 Eigenvector 1 Component 2 Eigenvector 2

Mean for component 3 Component 3 Eigenvector 1 Component 3 Eigenvector 2

Mean for component 4 Component 4 Eigenvector 1 Component 4 Eigenvector 2

Figure 4.22. Converged parameters for MPC for Subject 3

As can be seen from Figure 4.22, the means for the four mixture components converge to

different poses while the eigenvectors primarily capture the lighting variations within each



75

component. This leads us to believe that the pose variations are more dominant than the lighting

variations in this training set.

We then use these models for each subject in the recognition system shown in Figure

4.20 and evaluate the recognition performance. We project each test face onto the model for each

person, evaluate the reconstruction error and assign the test face to the class with the smallest

reconstruction error. Simultaneously we also collect recognition results using the PCA

eigenspaces with 8 eigenvectors each to model each person. The results of the recognition are

shown Figure 4.23.
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Figure 4.23. Recognition results for 5 subjects

From Figure 4.23 we can see that the recognition using MPC outperforms the PCA

recognition across all the subjects in the database. The overall recognition using the MPC is

95.8% as opposed to 83.8% using the PCA, making sure that the total number of eigenvectors

used for both cases is the same. We also highlight the confusion matrix for the MPC in Table 4-2.

Table 4-2. Confusion matrix for recognition with MPC

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Subject 1 134 1 4 0 4

Subject 2 0 139 2 1 1

Subject 3 0 1 136 0 6

Subject 4 1 0 2 137 3

Subject 5 0 0 3 1 139

In Table 4-2, the different rows correspond to each subject, while the columns represent

what the subject is recognized as. For instance, if we read off values from the first row we can see
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that Subject 1 is recognized as Subject 1, 134 times, as Subject 2, once, as Subject 3, four times,

and as Subject 5, four times. As desired, the diagonal elements of this matrix are the largest

values leading to good recognition performance. We show some examples of confusing faces in

Figure 4.24.

Figure 4.24. Confusing images in recognition database

The faces shown in Figure 4.24 are not recognized correctly by the system primarily due

to the extreme dark lighting in the images, with a large portion of the face being dark. Overall,

however the recognition system performance improves significantly when we replace the PCA

with the MPC as a model for the subjects. The improvement for these five subjects is around 12%

thereby supporting our claim that the MPC are indeed better models for data with large variations

and this better modeling performance leads to the improved recognition performance.

4.10. Mixture of Principal Components for Tracking

In this section we describe a scheme to use the MPC for foreground background

segmentation and illustrate how this may be used for face tracking. We collect data for a person

in a moving car and the resulting sequence has extreme lighting, large changes in the face pose

and rapid motion. These large variations make it difficult for conventional face trackers to track

the face in this sequence. We show some sample frames from the sequence in Figure 4.25.

Figure 4.25. Sample frames from car sequence

We can see from Figure 4.25 that there are large variations in the face appearance caused

due to the motion, pose changes and lighting variations. Conventional hue based trackers cannot

account for these large changes and provide poor tracking performance. The MPC is very useful
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in capturing statistical properties of data with large variations. We may thus use it to model the

background under these different lighting conditions so that we may segment out the foreground,

and the foreground map may be then fed to a tracker to obtain a reliable result. This scheme is

shown in Figure 4.26.

MPC for background

Project
Reconstruct

Test Frame
Background

Reconstruction
Foreground

Map

Figure 4.26. Foreground-background segmentation using MPC for background

In Figure 4.26 we build a model for the background under different lighting conditions.

In order to train this model we collect a sequence in the moving car, but without the person in the

seat. This provides us with the background under different lighting variations. This model may be

then used to reconstruct the background in any test frame hence we may obtain the foreground

map, which is used by the tracker to provide a stable tracking result. We model the background

using a mixture of six eigenspaces, with two eigenvectors each. The resulting means for the six

components are shown in Figure 4.27.

Figure 4.27. Mean frames for the six components
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In Figure 4.27 we show the six means for the different components of our model. Clearly,

these correspond to different lighting conditions. We evaluated the performance of the proposed

scheme on the real video sequence and preliminary results indicate that the tracking result is

stable and can maintain track even across rapid pose and lighting changes. We show some results

of the tracking in Figure 4.28.

Figure 4.28. Sample tracking results

As may be seen, the results of the tracking, shown as the white rectangular box in the

figure, are stable across different lighting conditions as well as across different poses of the user.

Of course since the tracking is based on the segmentation result, the hair, which is an important

distinguishing factor for segmentation, is also considered part of the face. This may be corrected

by fusing the tracking results with a color or hue based tracker.

4.11. Conclusion

We have introduced MPC to model data that belongs to multiple clusters and have

described an EM like algorithm to train the parameters for the MPC. We have shown using

simulated data that using the MPC provides us much better performance than using the PCA,

even when both use the same number of parameters. We then use the mixtures of PCA for error

concealment of video sequences with losses due to transmission over networks. We perform

concealment for both Intra coded as well as Inter coded sequences across a variety of quantization

step sizes and packet loss probabilities. We show that using a model based approach to error

concealment leads to very good error concealment performance, measured by examining the

PSNR as compared to the error free video sequence. We show that using the MPC as a model

leads to better error concealment performance than using the PCA as a model by around 1~2 dB,

even with the same number of total parameters. We also show that model based error

concealment provides much better performance by around 5~7 dB over the traditional use of

motion compensated residue for concealment. We then use the MPC to improve a face

recognition system. We use the MPC to model lighting and pose variations for each subject in the
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test database and realize that the means of the components converge to the different poses while

the eigenvectors for each component capture the lighting variations. We train four mixture

components with two eigenvectors for each subject and simultaneously also train PCA with 8

eigenvectors for each subject. We test recognition over five subjects and show that using the

MPC leads to an improved recognition performance by around 12%. Thus the MPC may be used

to capture pose and lighting variations efficiently leading to an improved recognition performance

over the PCA. We also illustrate the use of the MPC in foreground background segmentation and

the use of the segmentation result to obtain robust tracking performance. It is very important to

realize that the MPC may be used to model any kind of data with large amounts of variation

thereby making is suitable for any task requiring statistical modeling tools and across any

domain, not just the pixel based spatial domain.
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5. Modeling of Variable Bit Rate Video

Traffic

This chapter describes the statistical models we develop to capture the variations in real

video traffic. These models are not actually part of the encoding or decoding process, however

they play a significant role in video coding optimization. Accurate models for video traffic may

be used to determine the network state and this information is very useful to network providers

and designers as it allows them to evaluate the performance of the network in order to make

certain guarantees and predictions of the network behavior. This information may also be used by

the encoder and the decoder to improve the coding performance.

Variable bit rate (VBR) video coding allows for great flexibility in terms of selection of

video coding parameters, efficient compression ratios and can maintain desired video quality.

Bitstreams from various VBR video sources can also be efficiently multiplexed over the network

using statistical multiplexing techniques. All the above factors have led to VBR video encoders

being the preferred mode of coding video streams and the focus of this paper is on modeling such

video sources. Modeling video sources is important as it allows for network and video codec

designers to estimate the parameters of networks like packet loss probabilities and end-to-end

delays so that they can guarantee a desired quality of service (QoS).

This chapter introduces flexible models for VBR traffic that allow for the various

characteristics of such traffic, such as variable GOP structure, different activity levels and

different frame types. We use doubly Markov models and AR processes to capture these

properties. Most of the prior work in modeling VBR traces assumes that modeling the mean and

the variance of the data is sufficient to capture the stochastic properties of the trace. So the

modeled traces are created using a Gaussian probability density function (pdf) for the noise, with

the appropriate means and variances. We show, by examining the real pdf of the data traces, that

this Gaussian density assumption for the model is not accurate. Instead, real data has pdfs that are

better modeled using Exponential distributions and this Gaussian assumption, hence limits the

performance of the models.
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This chapter is organized as follows. Section 5.1 describes the models and Section 5.1.3.2

includes a discussion of results in terms of statistical parameters as well as in terms of network

simulations. Section 5.2 includes the extension of the models to capture the probability density of

the data accurately, and some simulation results with the modified model. We then conclude with

the summary of the models and their performance.

5.1. Activity Adaptive Models

Video sequences have large variations in action levels between scenes. This leads to large

variations in the bits per frame within I, P or B frames, corresponding to different activity levels.

An accurate model needs to capture the effect of having different frame types, as well as this

variation in activity level within frames of one type. We thus propose a number of doubly

stochastic processes to model both the activity level changes and I, P and B frames corresponding

to a certain activity level. As before, the temporal correlation between I, P or B frames

corresponding to an activity level is captured using AR(1) processes with Gaussian distributions.

Our models are flexible and allow for a variable GOP structure.

5.1.1. Trace Characteristics

Typical traces with I, P and B frames and variable GOP structure are created as follows.

The video encoder first identifies which frames of the sequence need to be coded as I frames.

These are frames that lie across scene changes and so cannot be coded efficiently using

prediction. This may be determined by creating a prediction for every frame and counting the

number of blocks in the frame that need to be intra coded, i.e., cannot be predicted well. Frames

that have a large number of intra coded blocks are classified as I frames. After identifying the I

frames the sequence is encoded with a repeating the pattern of two B frames followed by a P

frame, until the next I frame is reached. Clearly, when the interval between two I frames is not a

multiple of three this pattern cannot always be inserted. In that case the last pattern is terminated

when the I frame is reached. An example sequence of coded frames is as shown in Figure 5.1.
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Figure 5.1. Variable Length GOPs with B frames

From the sequence we see that the interval between the first two I frames is a multiple of

three and so the BBP pattern can be repeated once, but after this none of the successive I frames

have an interval that is a multiple of three, so in all the other cases the BBP pattern is terminated

when the next I frame is reached. Traces generated in such a way have a variable length GOP

structure as well as all three kinds of frames. We propose a number of doubly stochastic

processes to model both the activity level changes and I, P and B frames corresponding to a

certain activity level. The temporal correlation between I, P or B frames corresponding to an

activity level is captured using AR(1) processes with Gaussian distributions.

5.1.2. Type I Models

We divide the video sequence frames into three different activity levels, high-activity,

medium-activity and low-activity, based on the number of bits needed to code the frame. The

Type I models, as for the I and P models, choose between generating an I frame, a P frame or a B

frame before deciding the activity level of the video frame. The traces that we wish to model have

some specific characteristics. For instance there are a lot of repeated pairs of B frames, but no

instance of three or more consecutive B frames. Similarly, P frames never occur consecutively

due to the way in which we create the traces that we wish to model. So we may modify the

structure of the Markov chain corresponding to I, P and B frames in order to account for these

specifics in our traces. Hence, instead of having only three states corresponding to I, P and B

frames, we introduce an artificial fourth state that we call the BB state. For each transition into

this state two B frames are produced. As against this transitions into any of the other three states,

I, P or B, result in only one frame being generated. This BB state simulates the repeated B frame

structure in our real traces. The other constraints on having no more than two repeated B frames
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and having no repeated P frames are automatically satisfied when we estimate the transition

probabilities of the model from our training data.

5.1.2.1. Type I Doubly Markov Model

This model has two Markov chains, the outer one having I, P, B and BB states, as

described earlier, and the inner one having states corresponding to the activity levels of the type

of frame generated. Each of the frames generated, may belong to one of the three activity levels.

Our proposed model looks as shown in Figure 5.2.

H M

L

H M

L

AR (1)

I State P State

H M

L

B State

H M

L

B B State

Figure 5.2. Type I Double Markov Model for trace with B frames

As can be seen from the figure, the outer Markov chain has some constraints on its

structure due to the particular characteristics of the data we are trying to model. For instance,

there are no transitions in either direction between the BB state and the B state, or self transitions

for either of these states, to prevent the occurrence of three or more consecutive B frames.

Similarly there are no self-transitions in the P state, as we cannot have consecutive P frames.

Also, we realize that we generate a single B frame only when the BBP pattern needs to be

prematurely terminated, so the B state may transition only to the I state. All these conditions need

not be imposed on the model, training it using the real trace will ensure this transition, structure,

however we may use this apriori knowledge to reduce the number of parameters to be estimated

during training.

Within each of the four outer states, we have another Markov chain that determines the

activity level of the frame to be generated. These activity Markov chains are never restarted. The

process of generating data using this model is as follows. We first decide to generate an I frame, a

P frame, a B frame or two consecutive B frames. After this, we determine the activity level of the

frames using the inner Markov chain. The frames are generated from a Gaussian probability
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density function (pdf), using an AR(1) processes to capture the temporal correlation between

them. The two frames in the BB state are generated from the same activity level.

The training procedure for this model is as follows. Using the sequence of I, P, B and

repeated B frames from the real trace we may estimate the initial and transition probabilities of

the outer Markov chain. We then need to estimate the inner Markov chain initial and transition

probabilities and the means, variances and AR process parameter ρ for each of the AR(1)

processes. We separately collect all I frames, all P frames, all single B frames and all repeated B

frames from the real trace. We then use two thresholds for each of these and divide them into

high-activity, medium-activity and low-activity. From these sets of data we can estimate the

means, variances and AR process parameter ρ of all the AR(1) processes. By looking at the

sequence of transitions between these activity levels for each of the four frame types, I, P, B or

BB, we can estimate the initial and transition probabilities for the inner Markov chain.

5.1.2.2. Type I Simplified Model

As before, we try to reduce the parameters for the model by removing Markov chains

when they are not necessary. For the I and B states we found experimentally that

))(())1(|)((
i

SnSP
j

SnS
i

SnSP =≈=−= for the inner Markov chain. This means that the

transition probabilities between the inner Markov chain states are the same as the unconditional

probabilities of being in any of them, so we can replace the Markov chain with a set of

unconditional probabilities with which we generate a frame belonging to a certain activity level.

This may be explained by the fact that the I and B states occur infrequently and always in

different GOPs, typically with a large interval between them. So the dependence of the current

activity level on the previous activity level is small. This is however not true for the BB or the P

states as they occur frequently and many times in the same GOP. Hence these Markov chains

cannot be replaced. The simplified model is as shown in Figure 5.3.



85

H , M or L

AR (1)

I State P State

H, M or L

B State

H M

L

B B State

H M

L

Figure 5.3. Type I Simplified Model

As for the Doubly Markov model, the structure of the model is chosen keeping in mind

the particular characteristics of the data we are trying to model. For this model, we first decide

whether we want to generate an I frame, a P frame, an individual B frame or a pair of B frames

and following this we decide which activity level this frame/frames should belong to. For the I

and B states we decide with a fixed probability the activity level of the generated frame, while for

the BB and P states we use the Markov chain to determine the activity level of the frames. As

before, none of the inner activity Markov chains are restarted.

The training procedure for this model is very similar to that for the Doubly Markov

model. The only difference is that for the I and the B states the unconditional probability of

generating a frame belonging to a certain activity level is just the number of frames at that

activity level divided by the total number of frames of that type.

5.1.3. Type II Models

We also implement the Type II models where we first choose which activity state the

current frame belongs to before deciding to generate an I, P or a B frame. Here again, using

knowledge of the training data characteristics, we choose to use the four state I, P, B and BB

model to generate frames. This Markov chain, is now, however the inner Markov chain for this

model.
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5.1.3.1. Type II Doubly Markov Model

We also implement the Type II model, where the outer Markov chain corresponds to the

activity level and within each activity state there is another Markov chain corresponding to the I,

P, B and BB states. This model may be shown as in the following figure.
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I P

B B

B

M e d iu m A c tiv ity

Figure 5.4. Type II Doubly Markov Model

This model makes the assumption that the entire GOP belongs to one activity level,

however, this assumption is not very valid and the performance of the model suffers due to this.

In order to generate data using this model, we first use the outer Markov chain to decide the

activity level of the current GOP, following which we generate the GOP using the inner Markov

chain. When the inner Markov chain transitions back to the I state, we have completed generating

one GOP, and so we use the outer Markov chain to determine the activity level of the next GOP.

We reinitialize all inner Markov chains after generating one GOP.

In order to train this model, we first obtain the mean bit rate for each GOP and then use

two empirical thresholds to partition this sequence of GOPs into activity levels. This sequence of

activity levels may be used to train the outer Markov chain. The means, variances and AR process

parameter ρ for each of the AR(1) processes may be estimated using the knowledge of the

activity level of each frame. We then collect sets of sequences of I, P, B and repeated B frames

for each activity level and each of these sets is used to train the initial and transition probabilities

for the inner Markov chains.

Our training data shows a great dependency in terms of deciding the current frame based

on the previous frame and so we cannot replace any of the inner Markov chains with

unconditional probabilities. So, this model cannot be simplified further.
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5.1.3.2. Results and Discussion

In order to evaluate the performance of our models we look at both the stochastic

properties of the generated data as well as use network simulations to look at the loss probabilities

and delays encountered by the traces. All the models were trained on the same data and

characteristics of the generated bit rate were compared with those of the real data. The training

data was from two different sequences. The first was a high motion video sequence made up of

advertisements. We call this sequence Ads. This sequence had frequent scene changes, camera

zooms and pans and a lot of motion. The second sequence was a news clip and we call it News.

This sequence contained news reports from different locations and hence it contained a moderate

amount of motion and some scene changes. Sample frames from both the sequences are shown in

Figure 5.5.

Figure 5.5. Sample frames from Ads (left) and News

Both sequences consisted of five minutes of data sampled at 15 Hz, making a total of

4500 frames. Each sequence was converted to bits using a H.263 standard compliant video codec.

A random GOP was achieved as described in Section 5.1.1, and a frame is coded as an I frame if

more than 70% of its blocks need to be intra coded. In order to illustrate the need for the flexible

GOP structure, we compare our results with the Fixed GOP model.

5.1.4. Stochastic Properties of Modeled Traces

We compare the mean squared error in modeling the real autocorrelation function by our

models with the error using the trace generated by the Fixed GOP model. The mean squared error

in autocorrelation function using our proposed models, is smaller by an order of magnitude for

both the Ads as well as the News sequence. These results are included in Table 5-1 with the entry

in each column corresponding to the mean squared error in modeling real autocorrelation function

normalized by the error in modeling the real autocorrelation function using the Fixed GOP model.
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Table 5-1. Error in modeling real autocorrelation function normalised by Fixed GOP error

Sequence Fixed GOP
Model Error

Type I Doubly
Markov Error

Type I Simplified
Error

Type II Doubly
Markov Error

Ads 1 0.083 0.081 0.101
News 1 0.074 0.077 0.092

From the table we can see that our models produce traces that are statistically similar to

the real data as the error is around 10~13 times smaller than that for a fixed GOP model. From the

table we can see that our models produce traces that are statistically similar to the real data. As an

example of the traces generated we show 3000 samples of the trace and the autocorrelation

function for the real data and traces from models in Figure 5.6, Figure 5.7 and Figure 5.8.
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Figure 5.6. Real trace and its autocorrelation function.
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Figure 5.7. Trace and autocorrelation function for simulated data
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Figure 5.8. Trace and autocorrelation function for data from Fixed GOP model

From the figures we see that the data generated by our proposed models produces a trace

that is similar to the real trace. This may be seen by the similarity in the autocorrelation function

and the fact that the trace clearly exhibits different activity levels and a variable GOP structure,

measured as the length between two I frames. As opposed to this the fixed GOP model is

constrained by having to use a fixed GOP structure. This means that I frames occur at regular
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intervals and hence the trace that exhibits periodicity. This periodicity is evident when we

examine the autocorrelation function and manifests itself in the regularly occurring spikes

5.1.5. Network Simulations

In order to actually translate this statistical similarity into the ability to actually predict

the packet loss probabilities and delay, we perform the following simulation. We first look at a set

of real traces and packetize them with one frame being viewed as one packet. We view each trace

as being generated by a different video source and packets from these different sources are

statistically multiplexed into a common buffer. Since each packet corresponds to a frame, our

packets arrive at regular intervals, thereby leading to a certain periodicity in the system. In order

to reduce this periodicity we uniformly distribute the starting times of the different sources within

one frame interval of each other. So packets from the same source arrive at regular intervals of

one another, but the packets from different sources start arriving at different times, which are

uniformly distributed within one frame interval. All these packets enter a buffer with a fixed size,

which is then drained at a fixed drain rate. The setup for this simulation is as shown in Figure 5.9.

Packets from Video Source or Model

Buffer

Steady Drain RatePackets from Video Source or Model

Packets from Video Source or Model

Packets from Video Source or Model

Statistical
Multiplexing

Figure 5.9. Simulation setup to evaluate delay and loss probability for statistically multiplexed trace

As shown in Figure 5.9 packets from multiple sources are multiplexed into the buffer

using statistical multiplexing, i.e., a first in first out (FIFO) scheme without any resource

reservation. We evaluate the loss probability and delay encountered by the packets in this set up,

and repeat this experiment for different buffer sizes and drain rates. A packet is considered lost

when on its arrival the buffer is not sufficiently empty. Delay is measured for transmitted packets

and includes both the waiting time in the buffer as well as the transmission time (packet size

divided by the buffer drain rate).

Using the same setup we then replace each video source by our model and evaluate the

loss probabilities and delay for our models. For comparison, we also replace each source with the

fixed GOP model and evaluate the loss probability and delay for the packets generated by this

model. We perform this experiment using traces from the Ads sequence and repeat it for traces

from the News sequence.
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In our simulation we use five source or model traces. We perform the experiment twice,

the first time when all the sources are operating at the same quantization step size and the second

time when some sources operate with different quantization step sizes. When the traces are

generated using the same quantization step size their bit rates are comparable, whereas when the

traces are generated using different quantization step sizes, their bit rates show a large variation.

These two experiments are performed to examine the properties of the trace under different

scenarios.

The results of the first simulation are shown in the following figures. Since we have all

sources at one quantization step size, one model may be used to generate all the multiplexed

traces for one kind of sequence (Ads or News). We present these simulation results for the trace

generated by one of our models, the Type I Simplified Model and the trace generated using the

Fixed GOP model in Figure 5.10 and Figure 5.11.
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Figure 5.10. Loss probability and delay for real and modeled traces (Ads) using multiplexed streams
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Figure 5.11. Loss probability and delay for real and modeled traces (News) using multiplexed

streams

Figure 5.10 shows loss probability and delay results for statistically multiplexed streams

for the Ads sequence, while Figure 5.11 shows results for the News sequence. We can see from

the figures that the performance of our model is better than the performance of the fixed GOP
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model. Our predictions for loss probability and delay are within 4~15% of the actual values. In

terms of squared error, our prediction of the loss probability for the real data is 18 times smaller

for Ads and 6 times smaller for News than the error for the fixed GOP model. Similarly the

squared error in our prediction of the delay is around 20 times smaller for Ads and 3.5 times

smaller for News than the error for the fixed GOP model. The gains for the Ads sequence are

larger as it is a high motion sequence with frequent scene changes and changes in activity levels,

so a fixed GOP model cannot accurately capture all these variations.

The second simulation involves multiplexing traces from sources using different

quantization step sizes. This is more representative of the real scenario when we have many

traffic flows with different parameters. For our simulation we multiplex two sources using a

quantization step size 8, two using a quantization step size 16 and one using a quantization step

size 24. We need to train different models for these different traces, as the quantization step size

variation is too large to be captured using one model. As before, we examine the loss probability

and delay predicted by our model and the fixed GOP model as compared to the actual delay and

loss probability. For the sources with different parameters our models predict delay and loss

probability within 7% of the actual values. As compared to the fixed GOP model the squared

error in prediction of loss probability is around 30 times smaller for the Ads sequence and around

12 times smaller for the News sequence. Similarly the prediction in delay is also around 35 times

smaller for the Ads sequence and around 15 times smaller for the News sequence. Our models

may hence be used to predict accurately the delay and loss probabilities encountered by

multiplexing traces into a common buffer, whether we have traces with the same parameters or

traces with different parameters.

5.2. Probability Density Function for AR processes

Autoregressive (AR) processes are wide sense stationary stochastic processes that model

certain temporal relationships between consecutive samples. An AR(1) process is an AR process

of order one. This means that there is some dependence of every sample on the previous sample.

An AR(1) process )(nX may be represented as in equation (5.1).

1with)()1()( ≤+−= ρρ nWnXnX (5.1)

In equation (5.1), )(nW is white noise and ρ is the AR process parameter that defines

the extent of dependence between samples. This corresponds to a special temporal relationship

between samples, which is reflected in the autocorrelation function for the process. For such an

AR(1) process, the autocorrelation function ( ) ( )[ ] k
xx knXnXEkR ρσ 2)( =−= is an
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exponentially decaying function, when the variance of )(nW , 2
Wσ is related to the AR process

variance, 2σ as ( ) 222 1 σρσ −=W . There are many real life processes that may be modeled by

an AR process. In particular when we examine traces generated by VBR sources we see that the

temporal relationship between consecutive samples of the same frame type is well captured by an

AR(1) process. All of the above discussion assumes that the stochastic process )(nX is zero

mean. However this is not true for our data since the data consists of actual bits per frame, which

cannot be negative. Hence we first remove the mean from the data and then model the

autocorrelation function of the mean-removed data using an AR(1) process. As an illustration of

the fact that we may model the data using AR(1) processes, we do the following. We first collect

all I frames from the Ads sequence that belong to the medium activity level. We then compute the

autocorrelation function for these frames after removing the mean and show this function in

Figure 5.12. In the figure, we also superimpose on this plot an exponentially decaying function to

show that the AR(1) model is a good model for real data.
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Figure 5.12. Modeling of real autocorrelation function (mean-removed) using AR(1) process

In Figure 5.12, we show the autocorrelation function for I frames belonging to the

medium activity level and show that an AR(1) model with parameter 7.0=ρ can capture the

temporal correlation quite accurately. However, it is not enough just to capture the temporal

correlations, since each sample of the process has a certain probability density function (pdf)

associated with it. We need to capture this information also. Most previous work on modeling

VBR video traces does not focus on this aspect and simply models the distribution using a
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Gaussian with the mean and variance corresponding to the data. This approach is often

inaccurate, as the pdf of the data may not conform to the Gaussian assumption.

If )1( −nX has a pdf )()1( xf nX − , then )1( −nXρ has a pdf ��
�

�
��
�

�
− ρρ

x
f nX )1(

1
due to the

scaling factor ρ . We know that )(nW and )1( −nXρ are uncorrelated, since )1( −nXρ depends

only on past values of the noise and the noise is white, i.e., noise samples are uncorrelated. Hence

when we sum )(nW and )1( −nXρ , the resulting pdf may be obtained as a convolution of their

individual pdfs. So, if )(nW has a pdf )(xgW then the pdf of )(nX , )()( xf nX is

)(
1

)( )1()( xg
x

fxf WnXnX ∗��
�

�
��
�

�
= − ρρ

(5.2)

where ∗ corresponds to convolution between the two functions. If samples of the AR process are

to have the same pdf )(xf we need )()( xf nX to be the same as )()1( xf nX − , or

)(
1

)( xg
x

fxf W∗��
�

�
��
�

�
=

ρρ
(5.3)

Equation (5.3) provides us a relationship between the noise pdf and the desired pdf for

the AR(1) process. Hence for the data samples to have a specified pdf )(xf , we need to solve

equation (5.3) for )(xgW . This equation is reminiscent of two-scale dilation equations that have

been studied in wavelet literature. In particular, these have been analyzed in the past by

Daubechies and Lagarias [31] and by Strang [32]. They studied equations of the form shown in

equation (5.4).

1with)()(
0

>−= �
=

αβα
N

n
nn xhcxh (5.4)

They provided sufficient conditions on the coefficients nc for a solution )(xh to exist to

the above problem. In some sense this is the converse of the problem we are trying to solve, as we

are trying to solve for the noise pdf, that is analogous to the coefficients in the two-scale dilation

equations. However their results are relevant as we can use them to predict the pdf of the samples

of the AR(1) process if we can start with an appropriate noise pdf.

A sufficient condition for the dilation equation to have a solution is described in terms of

a function of the sequence of coefficients.

ωβ

α
ω nj

N

n
necP �

=
=

0

1
)( (5.5)
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At most one unique solution, up to normalization, for the two-scale dilation exists if

�
=

==
N

n
ncP

0

or1)0( α , and in such a case the Fourier transform of this unique solution may be

written as in equation (5.6).

∏
∞

=

−=
1

)()0()(
j

jPHH ωαω (5.6)

The equation for the pdf of the AR(1) process consists of convolution between two

continuous functions, however if the noise pdf is discrete (consists of delta functions) then

equation (5.3) is identical to the two-scale dilation equation examined in wavelet literature. A

discrete noise pdf may be written as in equation (5.7)

�
=

−=
N

n
nnW xxg

0

)()( τδλ , with �
=

=
N

n
n

0

1λ (5.7)

In equation (5.7) )(⋅δ is the Dirac-Delta function. If we replace this form for the noise in

equation (5.3) for the AR process pdf we obtain the following equation.
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Equation (5.8) is identical to the two-scale difference equation, when 0>ρ . In this case

we may use the results from dilation equation theory, and the sufficient condition for the solution

)(xf to exist is described in equation (5.9).

ρρ
λ

ρ
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or
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ˆ
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==
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n
nc (5.9)

However, as mentioned before, �
=

=
N

n
n

0

1λ , thereby ensuring that the sufficient condition

is always satisfied when 0>ρ .

We illustrate the above with some simple examples. For instance if we start with a noise

pdf with 25.0,25.0,5.0,5.0 1010 =−=== ττλλ , we can create an AR(1) process with 5.0=ρ

and uniform pdf. We highlight this in Figure 5.13.
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Figure 5.13. Creating AR process with uniform pdf

Similarly we can also create an AR(1) process with 5.0=ρ having the triangle pdf as

shown in Figure 5.14.
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Figure 5.14. Creating AR process with triangle pdf

As shown in Figure 5.14, for the triangle pdf we need to choose our coefficients as

5.0,0,5.0,25.0,5.0,25.0 210210 ==−==== τττλλλ . In fact, for 5.0=ρ , we can create any

pdf that may be expressed in terms of multiple convolutions of the uniform pdf with itself, using a

discrete noise pdf and we describe this in the following discussion.

All of the above discussion helps us predict the pdf of the AR(1) process if we start with

a certain pdf, however we can also examine our original convolution equation and try to solve for

the noise pdf that creates a general pdf. We may rewrite equation (5.3) in the frequency domain

representation.

)(

)(
)(or)()()(

ρωψ
ωψ

ωψρωψωψωψ
f

f
gfgf == (5.10)

In equation (5.10), )(ofansformFourier trthe)),(()( xyxyy ℑ=ωψ . These functions

)(⋅ψ are called characteristic functions and are the Fourier transform pairs of the pdfs. Using

equation (5.10), we can determine the characteristic function of the noise )(ωψ g , given the

desired pdf )(xf and hence characteristic function )(ωψ f , for the AR(1) process. We can then

invert the Fourier transform of the characteristic function )(ωψ g to obtain the pdf of the noise,
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)(xgW . We can thus use equation (5.10) to generate some useful pdfs like Gaussian, Exponential

and Laplacian as well as the Uniform and Triangle pdf as mentioned before, for AR processes

with certain ρ . We show some pdfs that we can create using this process and the corresponding

noise pdfs in Table 5-2.

Table 5-2. Noise pdfs needed to create some desired pdfs

Desired pdf ρρρρ Noise pdf (Zero mean)

Uniform ±0.5 )25.0(5.0)25.0(5.0)( −++= xxxgW δδ

Triangle ±0.5 )5.0(25.0)(5.0)5.0(25.0)( −+++= xxxxgW δδδ

Gaussian All values Gaussian

Exponential

( )

��

�
�
� −>=

+−

otherwise0

1;
)(

1 xe
xf

x

0>ρ ( ) ( )

��

�
�
� +−≥−+−+=

−+−

otherwise0

1;)1(1
)(

1 ρρρρδ ρ xex
xg

x

W

Laplacian

xexf −=
2

1
)(

All values
( ) x

W exxg −−+=
2

)1(
)(

2
2 ρδρ

The list of pdfs included in Table 5-2 is not exhaustive and includes only some common

pdfs of data. All of the noise pdfs have a mean set to zero and variance ( ) 221 σρ− , where 2σ is

the variance of the AR process. The noise samples can be scaled appropriately to create an AR

process with arbitrary variance. We show an illustration of the Noise pdfs for the Exponential and

the Laplacian AR processes in the following figure.
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Figure 5.15. Noise pdfs for some AR processes with ρρρρ = 0.4

As is also evident from the table, it is not necessary that all pdfs for an AR process with

all different ρ are realizable, as when we invert )(ωψ g it is not necessary that we get a non-

negative function, which is a required property of a pdf. For instance, creating the exponential pdf

with negative ρ requires the noise pdf to be negative, however this is not possible, and so we

cannot create an exponential pdf for an AR process with negative ρ . However it is important to

note that if the pdfs )(1 xf and )(2 xf may be created using this procedure, then the pdf

)()()( 213 xfxfxf ∗= can always be created using this procedure. This may be shown as follows.

Let the characteristic functions for the three processes be 3,2,1);( =ifi ωψ . Also, let the

corresponding noise pdf for the processes be 3,2,1);( =ixgi with characteristic functions

3,2,1);( =igi ωψ . The characteristic function for the noise to create )(3 xf may be written as in

equation (5.11).
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f
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When we invert the Fourier transform on both sides of the equation, we have

)()()( 213 xgxgxg ∗= . Since the convolution of two valid pdfs is also a pdf, this means that we

can always create the AR process with pdf )(3 xf . We can thus use equation (5.10) and this

knowledge to create AR processes with different kinds of pdfs.



99

5.3. Modeling results with accurate pdf modeling

When we examine the pdfs of the real data traces, we find that they have shapes similar

to the exponential pdf with 0>ρ and we show this in Figure 5.17. We may thus use the

procedure from Section 5.2 to create appropriate AR processes with Exponential pdfs instead of

the Gaussian pdfs. We replace the Gaussian pdf with an Exponential pdf for the Type I Simplified

model, described in Section 5.1.2.2, and re-examine the performance of our model. As before, we

present results in terms of both the error in autocorrelation function as well as using network

simulations.

We first examine the stochastic properties of the trace and measure performance in terms

of the error in the autocorrelation function. The autocorrelation functions of the real trace and the

trace generated by Type I Simplified model with the Exponential pdf are shown in Figure 5.16.

Figure 5.16. Autocorrelation function for real and modeled data for Ads sequence

We can see from Figure 5.16 that the autocorrelation function for the model with the

Exponential pdf is quite close to the real autocorrelation function. In terms of root mean squared

error in the autocorrelation function, the model with the Exponential pdf has autocorrelation

function within 2~4% of the real autocorrelation function. Thus the error is reduced by a factor of

2~3 by actually modeling the pdf of the data. The autocorrelation functions for the individual I, P

or B, high, low or medium activity frames are identical for both cases, since the parameters of the

AR process are the same in both cases. However when we aggregate these frames by interleaving,

the resulting overall autocorrelation function is dependent on the pdf of the data, and not just on

the mean and the variance. Thus, modeling the pdf of the data accurately leads to a better
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modeling of the autocorrelation function. As an illustration we also show the pdf of the high

activity B frames from the Ads sequence, the pdf of high activity B frames generated by the

model using the Gaussian assumption and using the Exponential pdf in Figure 5.17.
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Figure 5.17. pdf of high activity B frame data and data from models

We can see that the model needs to use the exponential pdf to capture the real pdf of the

data accurately.

We then use the network simulation to evaluate the performance of the model in

predicting the real delay and loss probability. These results are shown for the two sequences in

Figure 5.18 and Figure 5.19.
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Figure 5.18. Loss probability and delay for Ads sequence
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Figure 5.19. Loss probability and delay for News sequence

In the figures, the circles correspond to the delay and loss probability encountered by real

data, while triangles correspond to predictions by the model using the Exponential pdf and pluses

correspond to predictions by the model using the Gaussian pdf. We can see from the figures that

the triangles are closers to the circles than the pluses, which means that actually modeling the pdf

of the data improves the performance of the model in predicting delay and loss probability

encountered by real data using network simulations. In terms of absolute performance, the loss

probabilities and delays predicted by the Exponential model are within 1~3% of the real values as

opposed to within 4~15% for the Type I Simplified model, across both the sequences. These

predictions are very accurate and these models may be used to estimate network parameters for

our conditions under test.

5.4. Conclusion

We propose several models for VBR video sources that allow for a flexible GOP

structure, thereby modeling typical traces better. We propose two different kinds of models for

data with I, P and B frames. These are the Type I models that choose the type of the frame first

before deciding the activity level the frame belongs to and the Type II models that decide the

activity level of the frame before choosing the type of the frame. We show that the generated

traces are statistically similar to the real data using the error in the autocorrelation function as a

measure, which is smaller by a factor of 10~13 over using a fixed GOP model. We also evaluate

the performance of the models in terms of predicting the loss probability and delay when we run

these traces through a network simulation and show that the delay and loss probabilities predicted

by our models are accurate. Our predictions for loss probability and delay are within 4~15% of

the loss probability and delay encountered by real traces. The predictions for loss probabilities are
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6~18 times smaller in squared error than predictions using a fixed GOP model and our

predictions for delay are 3~20 times smaller than the fixed GOP model predictions.

We realize that a Gaussian assumption for the pdf of the data is inaccurate and focus on

creating AR processes with the appropriate pdfs to match the data characteristics. We relate the

procedure of creating AR processes with appropriate pdfs to solutions of dilation equation from

wavelet theory and include solutions for some common pdfs. We then use an Exponential pdf,

corresponding to the pdf of the actual data, instead of the Gaussian pdf with our proposed model

and re-examine the performance. Performance is measured in terms of both the stochastic

properties as well as using simple network simulations. We find that the error in autocorrelation

function is an additional 2~3 times smaller for the model using the Exponential pdf as opposed to

the model with the Gaussian assumption, which highlights the importance of modeling the pdf of

the data accurately. We also see that the prediction for the delay and loss probabilities are

between 1~3% of the real values with this more accurate model for the pdf, as opposed to within

4~15% with the Gaussian assumption.
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6. Summary and Future Directions

All the work in this thesis is directed toward using stochastic modeling techniques to

improve the performance of video coding. We target optimization of video coding in terms of the

complexity-quality-bit rate tradeoff and to achieve this goal we focus both on encoder

optimizations as well as decoder post-processing. More specifically, we target the mode decisions

in the encoding process and error concealment as part of the decoding process. Simultaneously

we also realize that these optimizations require information regarding the network condition. In

order to get such information from the network we build accurate models for the video traffic so

that these may be used to probe the network.

The first contribution of this thesis is in building a classification based framework for

making mode decisions to optimize the video encoding. We use features that may be easily

computed from the video data to provide an indication of the cost of making a mode decision.

The cost may be defined in terms of one or more parameters of the complexity-quality-bit rate

tradeoff. We then transform this minimization of cost problem to a more classically understood

error probability minimization problem and then use the standard likelihood ratio test to make the

optimal decision. This framework is independent of the level at which the mode decision is to be

made or the cost that we need to minimize. We illustrate this approach using two common mode

decisions in the encoding process, the Intra-Inter decision, made for every 16×16 block in the

video frame, and the decision to code or skip a frame in order to meet a certain output target bit

rate. We show that using the classification based framework, with the choice of suitable features,

we can outperform currently recommended mode decisions in standards.

We use this framework to improve the performance of the Intra-Inter mode decision and

reduce the bitstream size by 4.5~4.8% over the mode decision as recommended in the TMN 10 of

the H.263 standard. We then use this framework to solve the rate control problem and provide

two solutions. The first uses only information from the current frame and the past, and is called

the instantaneous mode decision and the second that looks ahead at one future frame before

making a decision for the current frame, called the look-ahead mode decision. We show an

improvement in performance in the rate-distortion sense over using the current approach both for

the instantaneous as well as for the look-ahead mode decision. The improvement in quality, while
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achieving the same target bit rate for the instantaneous decision is 4~12% while for the look-

ahead decision it is 7~18% over the currently proposed rate control. We also extend this work to

the scalable video coding and show that with the adaptive SNR/temporal (AST) scalability we

improve the performance in terms of quality under error prone conditions by 5~15% over using

SNR scalability only.

The second set of contributions of this thesis come from the building of a general

stochastic framework for modeling data with large variations. We describe the limitations of the

Principal Component Analysis (PCA) in capturing properties of data that consists of multiple

clusters and extend the PCA to Mixture of Principal Components (MPC). MPC uses a mixture of

eigenspaces to capture the data variations leading to a more efficient representation of such data.

We introduce an iterative training algorithm to train these multiple eigenspaces automatically

from the data. We also introduce the notion of model based error concealment, where we use a

model for a region of interest to replenish any missing data and minimize distortions due to lossy

network transmission. Such a model based concealment approach is very useful especially for the

MPEG-4 standard, which uses object based coding, thereby making it easy to determine regions

of interest and build appropriate models for them.

We use the MPC to capture pose variations in real data and use this model for error

concealment under different loss probabilities and target rates of transmission. We show that

using such a model based approach to error concealment leads to very good error concealment

performance, measured by examining the PSNR as compared to the error free video sequence.

We show that model based error concealment provides much better performance by around 5~7

dB over the traditional use of motion compensated residue for concealment. We also show that

among the model based concealment schemes, using the MPC as a model leads to better error

concealment performance than using the PCA as a model by around 1~2 dB, even with the same

number of total parameters.

We realize that this better model for data for variations may be used for tasks other than

model based error concealment. We illustrate this fact using two tasks, a face recognition task and

a face tracking task. We test recognition over five subjects from the Pose Illumination Expression

(PIE) database, exhibiting multiple poses and viewed under different and extreme lighting

variations. We show that using the MPC against using the PCA, leads to an improved recognition

performance from 83.7% to 95.8%. Thus the MPC may be used to capture pose and lighting

variations more efficiently than the PCA, thereby leading to an improved recognition

performance. We also illustrate the use of the MPC in foreground background segmentation and

the use of the segmentation result to obtain robust tracking performance. It is very important to
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realize that the MPC may be used to model any kind of data with large amounts of variation

thereby making is suitable for any task requiring statistical modeling tools and across any

domain, not just the pixel based spatial domain.

The final set of contributions of this thesis lie in the modeling of video traffic. We

propose flexible models to capture the different frame types, activity levels and varying scene

lengths present in real video traffic data. We use doubly Markov models with autoregressive,

AR(1) processes to capture all these data variations. We also attempt to capture the probability

density of the data accurately to improve the accuracy of modeling. These models may be used by

network designers to estimate the performance of the network under different test conditions, so

that they may provide certain performance guarantees. We examine the performance of the

models in terms of the stochastic properties of the trace as well as using network simulations. We

show that the generated traces are statistically similar to the real data using the error in the

autocorrelation function as a measure, which is smaller by a factor of 10~13 over using

previously proposed models. We also evaluate the performance of the models in terms of

predicting the loss probability and delay when we run these traces through a network simulation

and show that the delay and loss probabilities predicted by our models are accurate. Our

predictions for loss probability and delay are within 4~15% of the real values. The predictions for

loss probabilities are 6~18 times smaller in squared error than predictions using previously

proposed models and our predictions for delay are 3~20 times smaller than previously proposed

models model predictions.

We realize that a Gaussian assumption for the pdf of the data is inaccurate and focus on

creating AR processes with the appropriate pdfs to match the data characteristics. We relate the

procedure of creating AR processes with appropriate pdfs to solutions of dilation equation from

wavelet theory and include solutions for some common pdfs. We then use an Exponential pdf,

corresponding to the pdf of the actual data, instead of the Gaussian pdf with our proposed model

and re-examine the performance. We find that the error in autocorrelation function is an

additional 2~3 times smaller for the model using the Exponential pdf as opposed to the model

with the Gaussian assumption, which highlights the importance of modeling the pdf of the data

accurately. We also see that the prediction for the delay and loss probabilities are between 1~3%

of the real values with this more accurate model for the pdf, as opposed to within 4~15% with the

Gaussian assumption.

All these optimizations are built into the H.263 video codec developed here at CMU to

demonstrate the actual coding performance improvements. It needs to be stressed that these

optimizations are not specific to the H.263 standard and may easily be adapted to a video codec
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employing a different coding standard. The H.263 standard was used as it provided a ready

platform to evaluate these algorithms.

There are some interesting extensions for the work described in this thesis. For all of our

work in this thesis, we do not actually transmit the data over real networks, but use network

simulations to gather the results. It is of interest to be able to use these optimizations over a real

network scenario to evaluate the performance. Some other issues that are interesting in such a

scenario include greater cooperation between the encoder and the decoder, via a feedback channel

in order to further improve the performance of the system. The MPC that we developed in this

thesis may be used for any other applications requiring modeling data. For instance they may be

used to capture expression variations in human faces. The mixtures may also be extended to

account for the likelihood of the data belonging to multiple clusters.
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