

1 of 29

An Adaptively Evolving Intrusion Detection System using Pattern Recognition Techniques
Devi Parikh, Electrical and Computer Engineering, Carnegie Mellon University

Abstract: With networking technology evolving so rapidly, computer security has been receiving
a lot of attention in the recent years. Conventional intrusion detection methods in the field of
computer security are anomaly detection and misuse detection – the former suffers from high
false alarm rates while the latter lacks generalization capabilities and cannot detect new attack
types. Pattern recognition techniques can strike a fine balance in this trade off. The goal of this
work is to use pattern recognition techniques to develop a computer network intrusion detection
system that adaptively evolves with changing network conditions. In order to achieve this,
several sub goals were identified. Firstly, an algorithm was implemented that uses the ensemble
of classifiers approach to achieve better classification rates and effective data fusion capabilities
so as to combine information from multiple sources and can adapt to changing network
conditions. Secondly, thorough statistical analysis of the KDD database, that is widely used in
the community for demonstrating the effectiveness of pattern recognition techniques for
intrusion detection, was conducted to establish several claims that render the database (as split
into training and testing subsets as provided) inappropriate for pattern recognition tools. The
analysis could also be used to identify potentially irrelevant features. Thirdly, techniques to tune
the intrusion detection system towards minimizing the costs of the errors, and not the error rates
themselves, were implemented. And lastly, a transformation was developed to use the outputs of
the classifiers – multilayer perceptron (MLP) neural networks – as estimates of the posterior
probabilities of an instance belonging to a particular class; which would provide better
classification rates, and potentially improve the effectiveness of several classifier combination
rules such as sum rule, product rule, etc. These sub goals were addressed this semester and
conclusive results have been obtained that demonstrate the effectiveness of the strategies
proposed to address each of these issues. Future work involves integrating these different aspects
to develop a complete algorithm for adaptively evolving intrusion detection that exploits the
ensemble of classifiers approach to achieve effective intrusion detection that combines
information from multiple sources and is tuned towards minimizing the cost of the errors.

Paper Organization: The rest of the paper is organized as follows. The following four sections
address each of the four subgoals identified above. Section 1 addresses the use of Ensemble of
Classifiers Approach for Data Fusion and Adaptability, Section 2 describes the Statistical
Analysis of the KDD Database, Section 3 addresses the strategy used for Cost Minimization and
Section 4 addresses the transformation used for Estimating the Posterior Probabilities Based on
the Outputs of the Neural Networks. Within each of these sections, the motivation behind
attempting to address the issue, the goal and anticipated advantages, a discussion of counterpart
approaches, the approach used, the results obtained with a comparison to counterpart approaches,
along with an analysis of these results and conclusion drawn, and future direction to be pursued
will be presented. Section 5 concludes and summarizes the paper.

1. Ensemble of Classifiers Approach for Data Fusion and Adaptability
1.1. Motivation:
Computer security experts combine attack evidence from different feature sets to code attack
signatures [1]. Data fusion capabilities would mimic this. Network conditions are known to vary
with time, as different attack types surface and as network usage patterns change. In order to

2 of 29

maintain accurate intrusion detection under such evolving conditions, adaptability in an intrusion
detection system would be favorable.

1.2. Goal and Anticipated Advantages
The goal is to introduce data fusion and adaptability capabilities in the intrusion detection
system. This would ensure that complimentary information from multiple sources of information
is combined to make better informed classification decisions. It is anticipated that by using an
ensemble of classifiers approach, the classification performance of the system would be better
than the individual sources alone, and also better than naïve concatenation of features. Also, it is
anticipated that the accuracy of intrusion detection systems that do not evolve will deteriorate as
network conditions change, while the ensemble of classifiers based approach that allows for
adaptability will keep an intrusion detection system’s accuracy consistent even with changing
network conditions.

1.3. Background
The use of ensemble of classifiers for improving generalization performance has been
widespread [2], however, the use the ensemble of classifiers approach to solve the problem of
adaptability (similar to incremental learning) has been mostly unexplored. Various other
algorithms have been suggested, such as growing or pruning of classifier architectures, selection
of most informative training samples, ARTMAP algorithm, support vector machine classifiers
with provable performance guarantees, kernel Hilbert spaces and adding new IF–THEN rules to
an existing fuzzy inference system. These algorithms require an ad-hoc selection of a large
number of parameters or require precise a priori knowledge of data distributions [3]. A similar
short coming exists for the traditional data fusion algorithms based on Dempster-Schafer (DS)
theory of evidence and its many variations. The majority of suggested data fusion algorithms
have been developed in response to the needs of military applications, most notably target
detection and tracking. More complex data fusion strategies are also widely used in practice
including ensemble based variations of DS, neural networks, fuzzy systems, stacked
generalization and input decimation [4]. Ensemble approaches seek to provide a fresh and a more
general solution for a broader spectrum of applications. Learn++ has been shown to be capable
of data fusion and incremental learning [3,5].

1.4. Approach

Data fusion:
An ensemble of classifiers is generated corresponding to every class. Say there are C classes,
then C ensembles of classifiers are generated, each with a binary decision – positive (1): belongs
to this class, negative (0): does not belong to this class. Within each ensemble, an ensemble of
classifiers corresponding to each of the individual sources of information is generated. If there
are K different sources of information, each of the C ensembles contain K ensembles of
classifiers – with a total of C*K ensembles of classifiers. MLP neural networks are used as the
individual classifiers within these ensembles. There may be Tkc number of classifiers (MLP
neural networks) in each of the C*K ensembles of classifiers. These individual neural networks
within the ensembles corresponding to the individual sources of information are combined using
the weighted sum rule. That is, the Tkc classifiers within a particular ensemble among the C*K
ensembles are combined using the weighted sum rule thus providing a total of C*K composite

3 of 29

decisions. The decisions corresponding to the sources of information are then combined using
the weighted product rule. That is, the K decisions within each of the C ensembles are combined
using the weighted product rule, providing C final decisions. A pictorial representation of this set
up (for a particular class c) is shown in Figure 1. When a test instance is provided, it is assigned
to the class corresponding to one of the C ensembles of classifiers that picked the class. If
multiple ensembles pick the class, the instance is assigned to the class with the highest positive
score, which is explained below.

Π

FSk

FS4

FS3

FS2

FS1

Data Source &
Performance based
Weight AssigningFeature – specific

expert ensembles of classifiers

Final
Decision

Feature sets
obtained from
different data

sources

Σ

Learn++
An ensemble of classifiers is trained
with each dataset using Learn++.

An individual classifier trained according to Learn++ training rule

An ensemble of classifiers trained with a specific feature set

Σ Weighted sum rule

Π Weighted product rule

[]|| ttt NSPSH >=

Figure 1. Pictorial representation of the DLearnin based data fusion algorithm

An algorithm inspired in part by Learn++, Dlearnin, was used to train each of the C ensemble of
classifiers corresponding to the C classes. A description of Dlearnin is provided below.

As stated above, suppose there are C different classes. Let the different sources of information
(feature sets) available be denoted as FSk, k=1,2,…,K, where K is the total number of data
sources. It should be noted that the feature sets available are the same for all classes. Individual
classifiers for each feature set for each class are trained on a subset of the corresponding training
data, randomly selected from a dynamically updated distribution over the training data instances.
This distribution is biased towards those instances that have not been properly learned or seen by
the previous classifiers. The block diagram, for the Dlearnin algorithm for generating the
ensemble of classifiers for some class c, is provided in Figure 2; and described below in detail.

For each class c, c = 1,…,C, and for each feature set, FSk, k=1,…,K, comprised of a different
Feature Set that is submitted to Dlearnin, the inputs to the algorithm are (i) the training data Sk
comprised of mk instances kN

i ∈ℜx along with their correct labels yi = {+,-} or yi = {1,0}
i=1,…,mk where Nk is the number of features in the kth feature set; (ii) the validation data Vk

4 of 29

comprised of lk instances kN
i ∈ℜx along with their correct labels yi = {+,-} i=1,…,lk (iii) a

supervised classification algorithm BaseClassifier, generating individual classifiers (henceforth,
hypotheses); and (iv) an integer Tkc, the number of classifiers to be generated for the kth database
corresponding to the cth class. The parameters below refer to the algorithm running on the kth
database for class c, and hence the subscripts k and c are dropped when the meaning is
unambiguous to avoid subscripts of subscripts.

The BaseClassifier can be any supervised classifier such as a MLP, a support vector machine or
a decision tree. MLPs were used here. A sufficiently different decision boundary can then be
generated by each classifier if trained with slightly different training data subsets. Classifiers
may be made relatively weak, by adjusting training parameters (such as network size and error
goal) with respect to the complexity of the problem to ensure that additional diversity. However,
a meaningful minimum performance is enforced: a minimum performance of 0.5 is required
from the BaseClassifier i.e. it must classify atleast 50% of the instances in the validation data
correctly.

During the tth iteration, Dlearnin trains the BaseClassifier on a specifically selected subset of the
training data to generate hypothesis ht. The training subset TRt is drawn from the training data
according to a distribution Dt, which itself is obtained by normalizing a set of weights wt
maintained on the training data. The distribution Dt determines which instances of the training
data are more likely to be selected into the training subset TRt. Unless a priori information
indicates otherwise, this distribution is initially set to be uniform, by initializing

() 1 , 1, ,1w i m i mk k= ∀ = L , giving equal probability to each instance to be selected into the first
training subset. At each subsequent iteration t, the weights previously adjusted at iteration t-1 are
normalized to ensure a legitimate probability distribution Dt (step 1):

1
()

km

t
i

w i
=

= ∑twtD (1)

Training subset TRt is drawn according to Dt (step 2), and the BaseClassifier is then trained on
TRt (step 3). A hypothesis ht is generated by the tth classifier, whose error εt, is computed on the
entire validation data Vk as the proportion of the misclassified instances (step 4)

[]|)(|
1

iit

l

i
t yxh ≠= ∑

=

ε (2)

where, [| · |] evaluates to 1, if the predicate holds true, and 0 otherwise. As mentioned above, we
insist that this error be less than ½. If this is the case, the hypothesis ht is accepted and the error
is normalized to obtain

, 0 1
1

t
t t

t

ε
β β

ε
= < <

−
 (3)

5 of 29

Draw TRt from Dt 2

Generate ht 3

εt < ½

Update weights wt for next
distribution Dt+1 7

t < Tk

Combine Ht
by WPR Hf

Y

N

Y

Final Classification

Evaluate ht on Vk εt 4

N

B
as

e
 C

la
ss

ifi
er

Training
Data Sk

Tk
Initialized
Weights

Inputs at t=1 for FSk

Normalize weights wt Dt 1

5Combine ht by WSR Ht

Evaluate Ht on Sk Et 6

t =
 t

+
1

Y Compute weightsαk

Figure 2. DLearnin block diagram

If εt > ½, then the current hypothesis is discarded, and a new training subset is selected by
returning to step 2. All hypotheses generated thus far are then combined using weighted sum rule
[6] to obtain the composite hypothesis Ht (step 5). Let the outputs of the individual classifiers
generated this far be pst which is the positive score, that can be interpreted as the tth classifier’s
confidence that the instance is positive (with respect to class c considering feature set k) and nst
which is the respective negative score. pst and nst are normalized to 1. Weighted sum rule is

∑∑

∑









+


















=

t t
t

t t
t

t t
t

t

nsps

ps
PS

ββ

β

1log1log

1log

∑∑

∑









+


















=

t t
t

t t
t

t t
t

t

nsps

ns
NS

ββ

β

1log1log

1log
 (4)

6 of 29

The composite hypothesis thus becomes

[]|| ttt NSPSH >= (5)

where Ht now represents the ensemble decision. The weighted sum rule used by Dlearnin is an
undemocratic but useful combination procedure: each hypothesis is assigned a weight as the
logarithm of the reciprocal of its normalized error. Therefore, those hypotheses with smaller
validation error are awarded a higher voting weight and thus have more say in the final
classification decision. The logarithm function is used to map a wide range of 1/β values to a
smaller, more meaningful interval. The error of the composite hypothesis Ht is then computed as
the sum of the distribution weights of the instances that are misclassified by the ensemble
decision Ht (step 6)

: () 1
() () | () |

k

t i i

m

t t t t i i
i H y i

E D i D i H y
≠ =

= = ≠  ∑ ∑
x

x (6)

If Et > ½, then the current hypothesis is discarded, and a new training subset is selected by
returning to step 2. If this is not the case, the composite error is normalized to obtain

, 0 1
1

EtB Bt tEt
= < <

−
 (7)

and is used for updating the distribution weights assigned to individual instances

1
 , ()1 | () |() () ()

1 ,
t i it t t

B if H yH y t t i iw i w i B w it otherwise
+

=− ≠  = × = ×


xx
 (8)

Equation (8) indicates that the distribution weights of the instances correctly classified by the
composite hypothesis Ht are reduced by a factor of Bt (0<Bt<1). Effectively, this increases the
weights of the misclassified instances making them more likely to be selected to the training
subset of the next iteration.

Once all the Tk classifiers are generated for feature set k, the error of the kth feature sets on its
validation data is computed.

[]|)(|
1

iiT

l

i
k yxH ≠= ∑

=

ε (9)

Since the errors of the individual classifiers on the validation data is less than ½, the composite error is
also less than ½. The normalized error is calculated as

10,
1

<<
−

= k
k

k
k α

ε
ε

α (10)

7 of 29

which will be used to determine the weight of the kth feature set.

The above procedure is repeated for all K sources of information for all C classes.

When a test instance is presented, the composite hypothesis of all K feature sets of class c are
combined using the weighted product rule to obtain the final hypothesis.

The weighted product rule is

∏∏

∏









+


















=

k t
Tk

k t
Tk

k t
Tk

c

NSPS

PS
PS

ββ

β

1log1log

1log

∏∏

∏









+


















=

k t
Tk

k t
Tk

k t
Tk

c

NSPS

NS
NS

ββ

β

1log1log

1log
 (11)

where PSTk and NSTk are computed using equation (4) over all classifiers generated using feature
set k for class c.

The final hypothesis is then

[]|| cccfinal NSPSH >= (12)

The test instance is assigned to the class for which Hcfinal is 1 (positive). If this is true for zero or
more than one Hcfinal, the instance is assigned to the class with the highest positive score PSc.

Conceptual similarity between data fusion and adaptability:

In many applications that call for automated decision making, it is not unusual to receive
data obtained from different sources that may provide complimentary information. A suitable
combination of such information is usually referred to as data fusion, and can lead to improved
accuracy and confidence of the classification decision compared to a decision based on any of
the individual data sources alone. On the other hand, it is not uncommon for testing conditions to
evolve. A classification system may be exposed to data belonging to different distributions, or
even different classes while it is in the field. And in order to maintain consistent classification
accuracy, the system is required to evolve with the changing environment conditions.
Consequently, both adaptability and data fusion involve learning from different sets of data. If
the consecutive datasets that later become available arise from different classes or different
distributions of data, the data fusion problem turns into an adaptability problem. Recognizing
this conceptual similarity, it is anticipated that an approach similar to that used for data fusion
would provide the system with adaptability capabilities.

1.5. Results and Discussion
Experiments were carried out on a subset of the database created by DARPA in the framework of
the 1998 Intrusion Detection Evaluation Program [7]. A subset of this was pre-processed by
Columbia University and distributed as part of the UCI KDD Archive and was used at the KDD
1999 cup [8] is widely used to establish the effectiveness of pattern recognition techniques for

8 of 29

intrusion detection. The database consists of five different classes: 1 normal and 4 different
attack types including probing: surveillance and other probing, e.g. port scanning, DOS: Denial
of Service, R2L: unauthorized access from a remote machine e.g. guessing password, U2R:
unauthorized access to local superuser (root) privileges, e.g. various “buffer overflow” attacks.
However, for initial runs, the problem was treated as a two class problem: normal vs attack.
Hence, C = 2. In the Dlearnin algorithm described above, since C = 2, both ensembles would be
trained with the identical data and hence only one ensemble was used. The data base consists of
41 features divided into 3 feature sets: basic features, content features and traffic features. Hence,
K = 3.

Two MLP neural networks with one hidden layer and 40 hidden layer nodes were used within
each of the ensembles for each feature set for all classes. Dlearnin was run 30 times with
different subsets of data used for training, validation and testing. For every run, 1000 normal
instances and 1000 attack instances were randomly picked for training, 2000 each for validation
and 2000 each for testing from the available ~97,000 normal instances and ~39,70,000 attack
instances. For each of these splits, three different error goals were used: 0.3, 0.1 and 0.05. For
each experiment, the performance of each feature set alone on the test data was noted, and the
performance of data fusion using Dlearnin was noted. The averages and 95% confidence
intervals of these were compared for all three different error goals. It was found that the best
results were obtained (in terms of classification rate) by using the error goal of 0.05. The results
corresponding to this error goal are provided in Table 1.

Table 1: Comparing classification performance of fusion with the individual feature sets

Performance Basic Content Traffic Fusion
Mean % 91.05 80.64 93.02 95.94
95% CI width 0.7175 2.5183 0.25 0.53

It can be see that the data fusion performance is better than the individual feature sets with
statistical significance at 95% confidence level. This establishes the effectiveness Dlearnin to
achieve efficient data fusion.

The next set of experiments were conducted using all five classes, C = 5. In order to compare the
results using the other pattern recognition algorithms, the entire KDD database was used, split
into training and testing subsets as provided. In order to make fair comparisons, the cost/instance
(note: cost and cost/instance are used interchangeably) was used as the performance metric
instead of the classification rate. The cost matrix provided with the KDD database is as shown
below in Table 2.

Using Dlearnin, the best cost obtained was 0.2440. The cost values obtained by the entries in the
KDD Cup 1999 contest are shown in Table 3 [9]. It can be seen that the value achieved by
Dlearnin lies among the top 5 entries.

9 of 29

Table 2: Cost matrix as provided for the KDD database

Real/Predicted normal Probe DOS U2R R2L
normal 0 1 2 2 2
probe 1 0 2 2 2
DOS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Table 3: The cost/instance of entries in the KDD Cup 1999 contest

0.2331 0.2443 0.2531 0.2644 0.3854
0.2356 0.2474 0.2545 0.2684 0.3899
0.2367 0.2479 0.2552 0.2952 0.5053
0.2411 0.2523 0.2575 0.3344 0.9414
0.2414 0.2530 0.2588 0.3767

Some of the other cost values obtained using MLP, a multiple classifier system made of MLP, K-
means and Gaussian are 0.2424 and 0.2254 respectively [1]. Also, modular architectures were
used to achieve cost values of 0.2074 and 0.1688 [1]. Two different schema for K-means were
used to achieve cost values of 0.2487 and 0.2635 [10]. Several other algorithms such as Majority
voting, Bayesian Average, Belief, etc. have been used that gave cost values ranging from 0.192
to 0.880 [11-14].

This shows that Dlearnin provides competitive results. However, it should be noted that in order
to achieve the low cost of 0.2440, thorough classifier selection and several stages of fine tuning
had to be conducted.

1.6. Future Work
The data fusion performance has been shown to be superior to the individual sources of
information with statistical significance. Experiments will be run to compare the Dlearnin
performance with other contemporary data fusion algorithms and naïve schemes such as
concatenation of the feature sets.

An approach to be followed to introduce the adaptability capabilities has been identified. The
Dlearnin algorithm will be modified to incorporate this approach. Testing scenarios to simulate
changing network conditions will be simulated to test the algorithm. The performance of the
system would then be tracked as the testing environment evolves and would then be compared to
the performance of a conventional classification system that does not possess such adaptive
capabilities. It is anticipated that the performance of the conventional classification system
would deteriorate where as that of the proposed adaptive system using Dlearnin would be
consistent even with changing environment conditions.

10 of 29

2. Statistical Analysis of the KDD Database
2.1. Motivation
While implementing Dlearnin on the KDD database, several inconsistencies were observed. In
order to determine the reasons for this, statistical analysis of the database was to be conducted. It
was suspected that the distributions of the training and testing data sets (as provided at the KDD
Cup 1999) were different, a scenario that renders pattern recognition techniques inappropriate.

2.2. Goal and Anticipated Advantages
The goal was to use statistical tools to determine if the training and testing distributions of the
KDD database were the same or not. This would enable us to pre-process the data, if required,
and reduce the variability and inconsistencies in the results obtained. Also, the irrelevant features
would be identified, elimination of which would reduce the dimensionality of the problem and
hence facilitate learning.

2.3. Background
The analysis of variance (ANOVA) is a test that can be used to determine if the means of
different populations are different with statistical significance, where the populations being
compared differ from each other by some factor. ANOVA tests use the chi-squared distribution
of the F parameter, where F is a measure of the ratio of inter-group variance to intra-group
variance. The higher the value of F, the less likely the means are to be statistically the same. A
tolerance parameter is to be specified for ANOVA testing, which specifies the probability of the
means of the populations under comparison being the same. It determines how high the value of
F should be to reject the null hypothesis that the means being compared are in fact the same. If
this parameter is chosen to be 0.05, the conclusions drawn are statistically significant with 95%
confidence.

The Fisher Ratio is defined as the ratio of inter-class scatter to intra-class scatter. Hence the
higher the Fisher Ratio, the more relevant the feature is. For a two class problem the Fisher Ratio
is given as

21

2
21)(

vv
mmFR
+
−

= (13)

where m1 is the mean of class 1, m2 is the mean of class 2, v1 is the variance of class 1 and v2 is
the variance of class 2. For a multi-class problem, the Fisher ratio is calculated as the average of
the Fisher Ratios between all possible combinations of two classes.

2.4. Approach:
The features were assumed to be independent. Based on the domain knowledge of the features,
this assumption is valid. ANOVA test and the Fisher ratio were the two statistical tools that were
used.

Now, the following are the two conditions that need to be satisfied in order to use pattern
recognition tools effectively:

a) The distribution of the features should be statistically different for different classes
b) The distributions of the features for the training and testing data should be the same

11 of 29

ANOVA testing was used to identify the features that violated any of these two conditions.
Central limit theorem makes the use of ANOVA testing valid. 95% confidence level was used to
determine if the means of the training and testing data were statistically the same for every
feature and every class. If there is less than 5% chance that the means are the same, it can be said
with statistical significance that the training and testing data sets come from different statistical
distributions for that feature, and thus violate condition (b). However, this can be fixed by
reshuffling the data and separating them randomly into training and testing instead of using the
provided split. Similarly, the means of the data coming from different classes (combined training
and testing data) were compared for all feature sets using a 95% confidence level. If there is
more than a 5% chance that the means are statistically the same, it can be said that the
distributions of the classes are not statistically different for that feature. This violates condition
(a). This indicates that the feature may be irrelevant.

The features were sorted in ascending order of their Fisher Ratio values. In order to determine
which features should be eliminated, a threshold can be used. This threshold can be determined
by generating an artificial feature with random values, and computing the fisher ratio for this
artificial feature. All feature values with a fisher ratio less than this threshold can be identified to
be irrelevant (since they are worse than random) and can thus be eliminated.

2.5. Results and Discussion
The results obtained are presented in Table 4. Column 1 shows the different features. Features 1
to 9 belong to feature set 1: basic features, features 10 to 22 belong to feature set 2: content
features and features 23 to 41 belong to feature set 3: traffic features. The second column
indicates the values for the Fisher Ratio. The higher the fisher ratio, the more relevant the feature
is. The third column shows the rank of the features in ascending order of the fisher ratio value.
Again, the higher the rank, the more relevant the feature is. The fourth column: #vb indicates
how many of the five classes violate condition (b) for that feature. The fifth column #~va
indicates how many of the five classes satisfy the condition (a) for that feature. The last column
indicates how many of the five classes satisfy both conditions (a) and (b) for the particular
feature.

Table 4: Results obtained for the statistical analysis of the KDD database

feat Fisher Ratio FR Rank #vb #~va #~va+ #~vb
1 0.0092 14 5 3 0
2 0.3831 26 3 2 0
3 0.4809 28 3 3 1
4 0.6114 29 4 3 1
5 0.0069 12 4 0 0
6 0.0066 11 4 0 0
7 0 2 0 1 1
8 0.0022 9 1 0 0
9 0.0015 7 1 1 1
10 0.0278 17 5 0 0
11 0.0171 16 0 1 1

12 of 29

12 0.7799 35 4 2 1
13 0.0014 6 3 0 0
14 0.0141 15 1 3 1
15 0.0001 3 0 0 0
16 0.0006 5 2 0 0
17 0.0073 13 2 3 1
18 0.0033 10 2 1 0
19 0.0018 8 3 1 0
20 0 1 0 0 0
21 0.0005 4 1 0 0
22 0.0347 18 2 2 0
23 1.4599 41 5 3 0
24 0.9176 37 5 3 0
25 0.1019 22 5 0 0
26 0.0779 19 5 2 0
27 0.698 33 4 3 2
28 0.6213 30 4 3 2
29 0.7077 34 4 5 2
30 0.8432 36 3 1 1
31 0.1624 24 5 3 0
32 0.2321 25 3 5 3
33 1.3317 39 4 3 1
34 0.9412 38 5 5 1
35 1.3357 40 4 3 0
36 0.4152 27 4 5 1
37 0.1424 23 3 3 1
38 0.0987 21 5 0 0
39 0.0781 20 5 0 0
40 0.6745 32 5 3 2
41 0.629 31 4 3 2

It can be seen that most features either violate condition (a) or condition (b) for most of the
classes. This information is summarized in Table 5. Also, it can be seen that in general, feature
set 3 (features 23 to 41) have higher Fisher ratios.

Table 5: Summary of results of statistical analysis of KDD database

#~va+ #~vb # features
0 22
1 13
2 5
3 1

It can be seen that of the 41 features, 22 features violate condition (a) or (b) for all five classes.
13 features violate one of the two conditions for 4 classes, 5 features violate either of the

13 of 29

conditions for 3 classes and 1 feature violates one of the two conditions for 2 classes. There is no
feature that satisfies both conditions for all five classes, or even four out of the five classes.

Table 6 provides more insights into the inappropriateness of the database for pattern recognition
(given the particular split into training and testing).

Table 6: Further analysis of results of statistical analysis of KDD database

 Metric 1 Metric 2 Corr Coef Ideal
FR rank #vb 0.6573 -1
FR rank #~va 0.6744 1
Fisher Ratio #vb 0.462 -1
Fisher Ratio #~va 0.5584 1
#vb #~va 0.343 -1
Fisher Ratio # sep + con 0.3037 1
FR rank # sep + con 0.4103 1

As stated earlier, ideally we would want features to satisfy both conditions (a) and (b). Hence,
we would want features with high Fisher Ratios (or high #~va) to have low #vb. Ideally, we
would want the correlation coefficient between the Fisher ratio and #vb to be -1. However, given
the split of training and testing, it is seen that the higher the fisher ratio of a feature, the higher
the #vb with a correlation coefficient of 0.65. Several such observations have been made in
Table 6. It should be noted that Fisher Ratio and #~va are inherently similar properties of the
features, and hence are highly correlated due to their basic definitions.

As stated earlier, by reshuffling the data and randomly splitting it into training and testing data
subsets, the violations of condition (b) can be fixed. In order to make a quick assessment of how
the classification performance improves just by reshuffling the data and using only relevant
features, the following experiment was conducted.

The data was reshuffled and training and testing subsets were created randomly. Also, only
feature set 3 was considered since based on the above analysis, feature set 3 was the most
relevant. Classification was then performed using a simple classification technique of using the
Mahanalobis distance. When a test instance is presented, the Mahanalobis distance of the
instance from each of the C classes is computed, and the instance is assigned to the class with the
least Mahanalobis distance. The Mahanalobis distance rc of the test instance from class c is
computed using the following equation:

)()'(12
cccc xxr µµ −Σ−= − (14)

where x is the test instance, µc is the mean of class c and Σc is the covariance matrix of class c.

The cost/instance was noted. A similar test was conducted using the training and testing split as
provided. It was found that the cost/instance using feature set 3, the provided split into training
and testing, and Mahanalobis distance was 0.4838. When the data was reshuffled and randomly
split into training and testing, under the same testing conditions, the cost/instance was found to

14 of 29

be 0.15271 which is significantly lower. Also, it should be noted that this low cost/instance was
achieved using a very simple classification technique, without any fine tuning or extensive
classifier selection which is in drastic contrast with the sophisticated Dlearnin algorithm
described in Section 1.4, and the intense classifier selection conducted to achieve a cost/instance
of 0.2440. This shows that the given split of data into training and testing was indeed
inappropriate, and much is to be gained by reshuffling the data and performing feature selection.

2.6. Future Work
The ANOVA tests will be conducted again on a random split of data to ensure that the training
and testing data are representatives of each other and come from the same statistical
distributions. This will also help justify the use of the statistical tools used above. Fisher Ratios
need not be computed again because they are independent of the data split into training and
testing. Also, the probe method described in the approach will be used to eliminate features and
the performance of the classification system without these features will be compared to the
performance using all the features. Also, one feature will be eliminated at a time (in ascending
order of their Fisher ratios) and this will be continued till the performance of the classification
system deteriorates. Physical interpretation of the features that are identified as irrelevant will be
attempted to tie the statistical results to the domain knowledge.

In order to establish the effectiveness of Dlearnin in comparison with other algorithms on a
different split of training and testing data than the one provided, some of the other algorithms
may be implemented to simulate identical testing conditions.

Also, a smaller version of the database will be created so that tests can be simulated faster.

3. Cost Minimization
3.1. Motivation
As with several applications, the costs of the errors involved are different. A cost matrix
corresponding to the different errors involved is provided with the KDD database and is shown
in Table 2. All the classification strategies used so far have been geared towards maximizing the
classification rate and not minimizing the cost, which is the true performance metric here.

3.2. Goal and Anticipated Advantages
The goal is to develop strategies to gear the classification system towards minimizing the cost of
the errors incurred, and not the error rate itself. The anticipated advantages are that the cost
incurred during final classification will be less than those incurred by systems that are not tuned
towards cost minimization.

3.3. Background
For the KDD database in particular, explicit tools to minimize the cost function have not been
widely explored.

3.4. Approach
In order to make classification decisions, the outputs of the classification system for a particular
test instance for every possible class are noted. That is, the PSc and NSc values are noted for c ∈
1,…,C. If the costs of both errors (false positive and false negative) for all classes were equal, the

15 of 29

instance would be assigned to a particular class if PSc > NSc. If this is true for zero or multiple
classes, the instance is assigned to the class with the highest PSc value. It should be noted that the
PSc and NSc values are normalized to 1. Hence the following two classification decisions are
equivalent

If (PSc > NSc)
 Instance positive
Else (15)
 Instance negative

If (PSc > 0.5)
 Instance positive
Else (16)
 Instance negative

Thus it can be seen that the classification decision becomes a thresholding operation on PSc,
where the threshold is 0.5 if the costs of the two types of errors involved are equal.

However, if there are different costs associated with different errors, this may not be the
optimum strategy to make classification decisions. For example for a two class problem,
intuitively, if the cost of false positives is higher than false negatives, an instance should be
classified as negative more frequently than as positive, in other words, the instance should be
classified as positive only if the classifier is ‘very confident’ of its decision. If not, the instance
should be classified as negative to be on the ‘safe side’. Hence, when different costs are involved
for the two types of errors, it is the threshold (which is 0.5 if cost of different types of errors are
equal) that needs to be altered in order to minimize the cost.

In order to determine the optimum threshold to minimize the cost of errors, the cost of false
positive and false negative for all the classes are to be determined. The provided cost matrix is a
C x C matrix, where C is the number of classes. These need to be converted to C 2 x 2 cost
matrices. In order to determine this, we need an estimate of what proportion of false negatives
belonging to class c are assigned to class 1, class 2, … , class C. And then knowing the cost of
these errors (as provided by the C x C cost matrix), the expected cost of a false negative
associated with class c can be determined. This information is provided by a confusion matrix.
An appropriate multiplication of the cost matrix and a normalized version of the confusion
matrix (based on the validation data using the conventional threshold values of 0.5) would
provide us with an estimate for the C 2 x 2 cost matrices. This is depicted below:

Suppose the provided C x C cost matrix is given by:

CstM =



















CCCC

C

C

cstcstcst

cstcstcst
cstcstcst

...
...

...

...

21

22221

11211

 =



















0...
...

...0

...0

21

221

112

CC

C

C

cstcst

cstcst
cstcst

 (17)

16 of 29

where cstij is the cost of classifying an instance that belongs to class i as class j. The cost of a
correct classification is 0.

Suppose the confusion matrix on the validation data is given by

CnfM =



















CCCC

C

C

cnfcnfcnf

cnfcnfcnf
cnfcnfcnf

...
...

...

...

21

22221

11211

 (18)

Where cnfij is the number of instances that belonged to class i but were classified as class j.

For class c, in order to determine the expected cost of false positives

Exp(FPcstc) = ∑
=

C

i
icic cstp

1
* (19)

Where pic is the probability of an instance belonging to class i being classified as class c. Since
the cost of a correct classification is zero, it can be included in the summation in equation (19).

pic =
∑
=

C

i
ic

ic

cnf

cnf

1

 (20)

To reiterate, in order to determine the cost of false positives for all the C classes, the columns of
the confusion matrix should be normalized to 1. Then this normalized version of the confusion
matrix is multiplied (element by element) to the cost matrix. The columns of the resultant C x C
matrix are summed to provide a row vector with C elements. Each of these elements provides the
expected cost of false positives for the C classes. This is shown below:

Let,





















































=



















∑∑∑

∑∑∑

∑∑∑

===

===

===

0...
...

...0

...0

*.

...

...

...

...

0...
...

...0

...0

21

221

112

11
2

2

1
1

1

1

2

1
2

22

1
1

21

1

1

1
2

12

1
1

11

21

221

112

CC

C

C

C

i
iC

CC
C

i
i

C
C

i
i

C

C

i
iC

C
C

i
i

C

i
i

C

i
iC

C
C

i
i

C

i
i

CC

C

C

cstcst

cstcst
cstcst

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

fpfp

fpfp
fpfp

 (21)

17 of 29

where the .* operation indicates element by element multiplication. Then,

[] 







= ∑∑∑

===

C

i
iC

C

i
i

C

i
iC fpfpfpFPcstExpFPcstExpFPcstExp

11
2

1
121 ...)(...)()((22)

A similar computation is carried out to determine the expected cost of false negatives for all the
C classes. This is briefly summarized below:

Let





















































=



















∑∑∑

∑∑∑

∑∑∑

===

===

===

0...
...

...0

...0

*.

...

...

...

...

0...
...

...0

...0

21

221

112

11

2

1

1

1
2

2

1
2

22

1
2

21

1
1

1

1
1

12

1
1

11

21

221

112

CC

C

C

C

i
Ci

CC
C

i
Ci

C
C

i
Ci

C

C

i
i

C
C

i
i

C

i
i

C

i
i

C
C

i
i

C

i
i

CC

C

C

cstcst

cstcst
cstcst

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

cnf

fnfn

fnfn
fnfn

 (23)

then,



























=



















∑

∑

∑

=

=

=

C

i
Ci

C

i
i

C

i
i

C fn

fn

fn

FNcstExp

FNcstExp
FNcstExp

1

1
2

1
1

2

1

...
)(

...
)(
)(

 (24)

The resultant 2x2 cost matrix for class c is









0)(

)(0

c

c

FPcstExp
FNcstExp

 (25)

Having determined these C 2 x 2 cost matrices, the problem breaks down to finding C optimum
thresholds for each of the C ensembles. The following strategy is used to determine each of the C
thresholds.

Consider class c. The 2 x 2 cost matrix for class c provides us with the ratio of the cost of false
positives over the cost of false negatives i.e. it provides us with an estimate of how much more
expensive it is to classify an instance as class c when it is not, vs. the cost of classifying an
instance that is indeed class c, as not class c. Let this ratio be rc

18 of 29

)(
)(

c

c

FNcstExp
FPcstExp

rc = (26)

This ratio will determine how much the threshold should be deviated from 0.5. If for instance,
the cost of false positives is greater than the cost of false negatives, i.e. rc > 1, the threshold
should be made higher. When the threshold is made higher, larger instances are classified as
negative. This reduces the false positive rate, but it increases the false negative rate. However, if
the ratio of the increase in false negative and decrease in false negative is less than rc, increasing
the threshold would still reduce the cost incurred. The threshold should be increased till the ratio
of the rate of increase in false negative and rate of decrease in false positives exceeds rc.
Similarly, if rc < 1, the threshold should be reduced till the ratio of increase in false positives to
the decrease in false negatives exceed 1/rc.

In order to determine this, we need additional information other than just rc. We need
information about the rate at which the false negatives go up/down and false positives go
down/up as the threshold is increased/decreased. In order to determine this, the PSc and NSc
values for all the instances in the validation data were noted. A histogram was plotted of the PSc
values of instances that belong to class c and of the instances that do not belong to class c. This
would give us an estimate of how many false negatives increase as the threshold is increased,
how many false positives increase as the threshold is decreased, and so on.

Suppose the values of the histogram of PSc for the instances that belong to class c are Ninc(th)
and the values of the histogram of of PSc for the instances that donot belong to class c are
Noutc(th). Note that the values of the Ninc(th) and Noutc(th) are for discrete values of the
thresholds, at some small increments ∆th.

For a given value of threshold th = τ, the number of false positives is

∑
>τth

c thNout)((27)

And the number of false negatives is

∑
<τth

c thNin)((28)

Hence the cost incurred for this value of the threshold th = τ is

∑∑
>>

+=
ττ

τ
th

cc
th

ccc thNinFNcstExpthNoutFPcstExpcst)(*)()(*)()((29)

The optimum threshold (that minimizes the cost) is then

)(minargcos_ ττ
τ

ctcopt cst= (30)

19 of 29

Having determined the τcopt_cost for all the C classes, the classification decision is then based on
these new optimum thresholds and not 0.5. The classification decisions for each of the classes
then become

If (PSc > τcopt_cost)
 Instance positive
Else (31a)
 Instance negative

The instance is assigned to the class which satisfies the above condition. If zero or more than one
class satisfy this condition (31a), the instance is assigned to the class that has the maximum (PSc
- τcopt_cost) value. (31b)

To make comparisons, three different classification rules were implemented:
1) The regular classification rule: where the cost of errors is not considered, and a threshold of

0.5 is used to make classification decisions.

If (PSc > 0.5)
 Instance positive
Else (32a)
 Instance negative

If condition (32a) is satisfied for zero or more than one class, the instance is assigned to the class
with the highest (PSc – 0.5) value (32b)

2) The optimum for classification decision rule: where the cost of errors are still not considered,

however the threshold for optimum classification is determined and considered while making
the classification decisions. The threshold for optimum classification is determined by using
equation (30) with rc = 1 or)()(FNcstExpFPcstExp = .

If (PSc > τcopt_classification)
 Instance positive
Else (33a)
 Instance negative

If condition (33a) is satisfied for zero or more than one class, the instance is assigned to the class
with the highest (PSc – τcopt_classification) value (33b)

3) The optimum for cost decision rule: where the cost of errors are now considered and the

threshold for minimizing the cost of errors is determined using equation (30) and considered
while making the classification decisions

20 of 29

If (PSc > τcopt_cost)
 Instance positive
Else (34a)
 Instance negative

If condition (34a) is satisfied for zero or more than one class, the instance is assigned to the class
with the highest (PSc – τcopt_cost) value (34b)

It is anticipated that the classification accuracy of optimum for classification scheme will be
higher than both regular and optimum for cost, where as the cost of optimum for cost scheme
will be lower than both regular and optimum for classification.

It should be noted that the above classification strategies are applied to the final stage after
Dlearnin, when the decisions of the ensembles corresponding to the different classes Hcfinal
according to equation (12) are to be combined to make a final decision.

3.5. Results and Discussion
The proposed strategy was first tested on artificial data. Data was generated from three different
two dimensional Gaussian distributions. A total of about 16000 instances were generated – about
5333 from each class. Of these, 167 were used for training, 166 for validation and the remaining
5000 for testing. The data distribution can be seen below:

Figure 3: Artificial data distribution for a 3 class problem

21 of 29

The Dlearnin algorithm was implemented. Here C = 3 and K = 2. Two MLP neural networks
were generated for each of the ensembles corresponding to each feature set and each class. The
neural networks had one hidden layer with 2 hidden layer nodes. They were trained with an error
goal of 0.07.

In order to draw statistically valid conclusions, the experiments were repeated 50 times, every
time generating different data for training, validation and testing, however using the same
distributions to generate the data. The results obtained are shown in Table 7.

Table 7: Comparing results obtained using three different thresholds for classification

 regular optimum for classification optimum for cost
Test Accuracy: Mean 90.25 % 91.68 % 89.97 %
Test Accuracy: 95% CI width 1.78 % 0.61 % 1.90 %
Test Cost: Mean 0.21 0.20 0.18
Test Cost: 95% CI width 0.026 0.020 0.016

It can be seen that as expected, the classification accuracy of optimum for classification is
highest, while that for optimum for cost is the lowest. However, the cost for optimum for cost is
lowest while that for optimum for classification is the highest.

3.6. Future Work
The above approach has been implemented only for an artificial database. This will now be
implemented on other benchmark databases with arbitrarily chosen cost matrices and also on the
KDD database where a cost matrix has been provided (Table 2).

In the above described approach, the cost matrix and confusion matrix are used to determine the
optimum thresholds for minimizing cost. With these new thresholds, the confusion matrix
changes, and hence a new set of thresholds can be determined using the cost matrix and the new
confusion matrix. This suggests a recursive strategy to determine the optimum thresholds for
minimizing the cost. This will be implemented to understand convergence issues. Also, the first
iteration may be the most significant in terms of improvement, and hence analysis will be
conducted to see if any significant gain is achieved in subsequent iterations.

4. Estimating the Posterior Probabilities Based on the Outputs of the Neural Networks
4.1. Motivation
In determining the optimum threshold using the strategy discussed in Section 3.4, the 2x2 cost
matrices for all C classes are determined using the confusion matrix determined using the
validation data. This is data dependent, and hence, a strategy that uses fewer data dependent
parameters would be preferred.

If the underlying distributions of the different classes are known, Bayes classifier can be used
and it would provide the optimum classification rate. However, if the cost of different errors are
different, in order to minimize the expected cost, Bayes classifier would need to be modified.
Suppose the cost of false positives is r times the cost of false negative. In this case, a given
instance is classified as positive only if the posterior probability of the instance being positive is

22 of 29

r times the posterior probability of the instance being negative. In a multi-class problem, if the
cost of assigning an instance belonging to class i to class j is rij times more than assigning an
instance of class j to class i, then an instance is classified as class i only if

pi >= rij*pj, for all j ∈ 1,…,C (35)

Where pn is the posterior probability that the instance belongs to class n, n ∈ 1,…,C

If the outputs of the neural networks could be transformed to reflect estimates of the posterior
probabilities, then a strategy similar to that explained above in equation (35) could be used to
make classification decisions without explicitly determining the optimum thresholds for all the
classes, and this would eliminate a portion of the data dependency.

Also, while analyzing the histograms discussed in Section 3.4, it was found that even if the costs
of the different types of errors involved in the same i.e.)()(FNcstExpFPcstExp = , the optimum
threshold for classification is in fact not 0.5, and is often biased. In order to use decision rules
similar to equations (15) and (16), the outputs of the neural networks should be transformed such
that their optimum threshold for classification (as determined using the histograms discussed in
Section 3.4) would map to 0.5.

Moreover, as discussed earlier in condition (33b), when zero or more than one class pick an
instance as positive, the instance is assigned to the class with a higher (PSc - τcopt_classificationt)
value. However, this may not be the optimum way. The confidence of the classifier in its
decision may not be linear. This is illustrated with the following example:

Suppose τ1opt_classification = 0.3, and τ2opt_classification = 0.8 and for a particular test instance PS1 =
0.55 and PS2 = 0.99. Both classes pick the instance as positive. (PS1 - τ1opt_classificationt) = 0.25 and
(PS2 - τ2opt_classificationt) = 0.19. Using the strategy described earlier, the instance would be
classified as class 1. However, it is likely that an increase of 0.19 given that the optimum
threshold was so high may be more significant than an increase in 0.25 for a mediocre threshold.
A transform is required to understand if this non-linearity exists, and capture it if it does.

It should be noted that the strategies proposed in Section 3.4 was implemented at the final
decision level, where as the transforms proposed in this Section are implemented at the
individual classifier levels.

4.2. Goal and Anticipated Advantages
The goal is to develop a transform that converts the outputs of neural networks into estimates of
the posterior probabilities. Although the motivation of developing such a transform to estimate
the posterior probabilities based on the outputs of the neural networks lies in minimizing the cost
of the classification errors, there are several anticipated advantages to this strategy
1) The classification rate would increase (because the optimum threshold determined using
validation data is used for classification instead of using 0.5 which was found to be sub optimal)
2) Classifier combination rules such as the sum rule and product rule would be more effective
since they require estimates of posterior probabilities

23 of 29

3) The cost of the classification errors will be reduced and may be more consistent and reliable
because fewer data dependent parameters are involved

To reiterate, the goal is not only to increase the classification rate (this may be accomplished by
several and perhaps simpler methods that consider the optimum threshold for classification).
However, the goal is also to obtain better estimates of the posterior probabilities in terms of their
absolute values.

4.3. Background
Two strategies are commonly used to transform the outputs of multilayer perceptron neural
networks into estimates of the posterior probabilities

a) Normalization:
The outputs of the neural networks are normalized to 1, and these are often used as the estimates
of the posterior probabilities. If the outputs of neural networks are op and on (these are always
positive for MLP neural networks using sigmoid as the transfer function), estimates of the
posterior probabilities are

onop
opopppnorm +

=
onop

ononppnorm +
= (36)

b) Softmax:
If the outputs of neural networks are op and on, estimates of the posterior probabilities are

)exp()exp(
)exp(

max onop
opop ppsoft +

=
)exp()exp(

)exp(
max onop

ononppsoft +
= (37)

KL Distance: KL (Kullback Leibler) Distance is a measure that can be used to judge how close
two probability distributions are. KL distance between two discrete distributions p and q is
defined as:

∑ 







=

i iq
ipipqpKL
)(
)(log)(),(2 (38)

4.4. Approach
As stated earlier, upon analysis of the histograms of PSc for instances that belong to class c and
instances that do not belong to class c, it was found that the optimum threshold for classification
(even while considering equal cost of errors) is not 0.5. Which means that PSc > NSc does not
necessarily indicate that the instance has a higher probability of being positive than negative. The
goal is to thus transform these PSc values to better reflect the posterior probabilities. In order to
accomplish this, the transform must satisfy the following requirements:

1) Optimum threshold should be mapped to 0.5: so that PSc > NSc indeed indicates that the
instances has a higher probability of being positive than negative.

2) 0 should be mapped to 0
3) 1 should be mapped to 1

24 of 29

It should be noted that throughout this Section, the cost of the different types of errors are
assumed to be the same and hence the optimum thresholds are the thresholds that maximize the
classification rate. The only goal (so far) is to obtain better estimates of the posterior
probabilities – minimizing the cost and establishing that the sum rule, product rule, etc. are more
effective with the proposed transform are subsequent goals which will be addressed in future
work.

A transform that satisfies these requirements, that we call the Dtransform is shown below:

)log(
)5.0log(

),(ττ ooD = (39)

where o is the raw output of the MLP neural network, and τ is the optimum threshold for
classification determined using equation (30) with)()(FNcstExpFPcstExp =

The estimates of the posterior probabilities are then given by

)1,(),(
),(

optopt

opt
rmppdtransfo onDopD

opD
op

ττ
τ

−+
=

)1,(),(
)1,(

optopt

opt
rmppdtransfo onDopD

onD
on

ττ
τ

−+

−
= (40)

In order to establish that the proposed Dtransform provides better estimates of the posterior
probabilities than Normalization and Softmax, the estimates of these three methods were
compared to the estimates obtained using Bayes (and normalized to 1). Bayes estimates could be
determined because artificial data was used with known distributions. Three different
performance measures were used to establish this fact:

1) Classification accuracy
2) Mean squared difference between the transform and Bayes estimates
3) KL distance between the distribution provided by the transform and Bayes distribution

It can be argued that the proposed Dtransform would perform better than Normalization and
Softmax in all there of the above measures simply because it consider the optimum threshold
values and reduces the classification error closer to the Bayes error, and hence any transform or
classification decision that considers these optimum thresholds would outperform Normalization
and Softmax in the above three performance metrics. In order to counter this argument, the
following transform will be used to make comparisons. We call it THsoftmax – which is a
modified version of Softmax, except it considers the optimum threshold as well.

))1(exp()exp(
)exp(

max
optopt

opt
ppthsoft onop

op
op

ττ
τ

−−+−

−
=

 (41)

))1(exp()exp(
))1(exp(

max
optopt

opt
ppthsoft onop

on
on

ττ
τ

−−+−

−−
=

25 of 29

Hence, comparisons were made between Normalization, Softmax, THsoftmax and Dtransform
for all three performance metrics specified above.

In terms of classification accuracy, it is expected that the accuracy of Normalization and Softmax
will be identical since they effectively reflect the same classification rule. However, the accuracy
of THsoftmax and Dtransform should be greater than Normalization and Softmax. However, the
accuracy of Dtransform may not be higher than THsoftmax with statistical significance, since
they both consider the optimal threshold while making classification decisions. Inspite of this, it
is expected that mean squared difference between Dtransform and Bayes estimate as well as the
KL distance between Dtransform and Bayes distributions will be lower than Normalization,
Softmax and even THsoftmax with statistical significance.

4.5. Results and Discussion
The above approach was implemented for a two class problem. The data was artificially
generated from two dimensional Gaussian distributions and was distributed as seen below:

Figure 4: Artificial data distribution for a 2 class problem

Two neural networks were trained – one for each of the two classes. Each had one hidden layer,
with 2 hidden layer nodes. The networks were trained with an error goal of 0.1. It was realized
that while making final classification decisions, only the positive score values of the classifiers
are considered. Hence, it was not evident as to why the Dtransform should map the optimal
threshold (for classification, as stated earlier, the costs are assumed to be equal for the different
types of errors) to 0.5, and not any other value between 0 and 1. The only requirement should be
that the Dtransform should map all the optimal thresholds for different classes to a common

26 of 29

value. This adds a parameter to the Dtransform. Let this parameter be called the mapped_to
value. The Dtransform thus becomes:

)log(
)_log(

),(ττ
tomapped

ooD = (42)

Different mapped_to values were experimented with ranging from 0.1 to 0.9. The performance
of the four transforms: Normalization, Softmax, THsoftmax and Dtransform were compared for
each of the mapped_to values. As before, the experiments were repeated 50 times for different
data sets (same distribution) and the average values are presented here. The results obtained on
the test data are shown in the plots below in Figures 5, 6 and 7:

Figure 5: Classification accuracy on test data – comparing four different transforms

As expected, the accuracy for Normalization and Softmax is identical. While the accuracies for
THsoftmax and Dtransform are similar. However, there is a significant increase in classification
accuracy when the optimal threshold is considered – hence the accuracies of THsoftmax and
Dtransform are significantly greater than those for Normalization and Softmax.

It can be seen that for mapped_to values less than about 0.5 the mean squared difference between
the Dtransform and Bayes estimates as well as the KL distance of the Dtransform from the Bayes
estimates is less than any of the other three transforms. This establishes that the Dtransform
provides better estimates of the posterior probabilities than the other three transforms, for
mapped_to values less than about 0.5.

27 of 29

4.6. Future Work
Detailed analysis is to be conducted to understand the effect of different mapped_to values on
the performance of Dtransform. Also, similar tests have been run on three and four class
problems. Also, tests have been run using just one neural network with C output nodes, each of
which mimic the positive nodes of the C individual classifiers used thus far. The results obtained
for these are more involved than those obtained for the two class problem, and detailed analysis
is to be carried out to identify the trends in these results.

Figure 6: Mean squared difference with Bayes – comparing four different transforms

Figure 7: KL distance from Bayes – comparing four different transforms

28 of 29

Analysis is to be carried out to see if a range of mapped_to values can be identified that work
well for a wide range of datasets, and theoretical explanations of why these values work well are
to be investigated.

Decision rules such as those in equation (35) are to be used using the estimates provided by
Dtransform to see if the cost can be significantly minimized and results obtained in Section 3.5
can be replicated using the Dtransform. Also, tests are to be run to compare the effectiveness of
the sum and product rules using the estimates provided by Dtransform as opposed to those
provided by Normalization, Softmax and THsoftmax.

5. Summary
To summarize, the overall goal of this work is to use ensemble of classifiers approach to achieve
efficient intrusion detection what is tuned towards minimizing the cost of the errors and not the
error rate itself, and that is capable of evolving with changing environment conditions. In order
to achieve this, several subgoals were identified. First, efficient data fusion strategies were
established in the Dlearnin algorithm which is inspired in part by Learn++. An approach has
been identified that will be followed to introduce the adaptability capabilities into the
classification system. Secondly, statistical analysis of the KDD database, which is widely used to
establish the effectiveness of pattern recognition tools for intrusion detection, was conducted and
results indicated that the split of training and testing data as provided are not good
representatives of each other and come from different statistical distributions. Also several
irrelevant features were identified. Eliminating the irrelevant features and reshuffling and
randomly resplititng the data into training and testing subsets provided drastically better results,
even with very simple classification techniques. Thirdly, strategies to gear the classification
system towards minimizing the cost instead of the error rate were implemented, and convincing
results were presented on artificial data. Finally, a transform was proposed to convert the outputs
of MLP neural networks into estimates of the posterior probabilities and results were presented
that indicate the superiority of this transform over other conventional methods in terms of
estimating the posterior probabilities for artificial data. Future work involves further
investigating, testing and optimizing these different techniques, introducing adaptability, and
finally - integrating the different components into Dlearnin to achieve efficient intrusion
detection.

References
[1] G. Giacinto, F. Roli, and L. Didaci, “A Modular Multiple Classifier System for the Detection
of Intrusions in Computer Networks”, International Workshop on Multiple Classifier Systems,
2003
[2] T.G. Dietterich, “Ensemble methods in machine learning,” Proc. 1st Int. Workshop on
Multiple Classifier Systems (MCS 2000), LNCS vol. 1857, pp. 1 – 15, Springer: New York, NY,
2000.
[3] R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An Incremental Learning Algorithm
for Supervised Neural Networks,” IEEE Trans Systems, Man and Cybernetics, 2001
[4] L. Kuncheva and C. Whitaker, “Feature Subsets for Classifier Combination: An Enumerative
Experiment,” 2nd Intl Workshop on Multiple Classifier Systems, MCS 2001

29 of 29

[5] D. Parikh, M. Kim, J. Oagaro, S. Mandayam, R. Polikar, “Ensemble of Classifiers Approach
for NDT Data Fusion” Proc. IEEE Int. Ultrasonics, Ferroelectrics and Frequency Control 50th
Anniversary Joint Conf., 2004
[6] J. Kittler, M. Hatef, R. Duin, J. Matas, “On Combining Classifiers”, IEEE Transactions on
Pattern Analysis and Machnine Intelligence 20, pp 226-239, 1998
[7] DARPA Intrusion Detection Evaluation, Lincoln Laboratory, MIT
http://www.ll.mit.edu/IST/ideval
[8] The UCI KDD Archive, Information and Computer Science, University of California, Irvine,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
[9] C. Elkan, “Results of the KDD’99 Classifier Learning”, ACM SIGKDD Explorations 1, 63-
64, 2000
[10] G. Giacinto, R. Perdisci, F. Roli, “Network Intrusion Detection by Combining One Class
Classifiers”, ICIAP 2005
[11] G. Giacinto and F. Roli, “Intrusion Detection in Computer Networks by Multiple Classifier
Systems”, International Conference in Pattern Recognition 2002
[12] L. Didaci, G. Giacinto and F. Roli, “Ensemble Learning for Intrusion Detection in
Computer Networks”, AIIA 2002 (Italian Association on Artificial Intelligence)
[13] G. Giacinto, F. Roli, and L. Didaci, “Fusion of Multiple Classifiers for Intrusion Detection
in Computer Networks” Pattern Recognition Letters 2003
[14] M. Sabhnani, “Application of Machine Learning Algorithms to KDD Intrusion Detection
Dataset in Misuse Detection Context”

