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An Adaptively Evolving Intrusion Detection System using Pattern Recognition Techniques 
Devi Parikh, Electrical and Computer Engineering, Carnegie Mellon University 

 
Abstract: With networking technology evolving so rapidly, computer security has been receiving 
a lot of attention in the recent years. Conventional intrusion detection methods in the field of 
computer security are anomaly detection and misuse detection – the former suffers from high 
false alarm rates while the latter lacks generalization capabilities and cannot detect new attack 
types. Pattern recognition techniques can strike a fine balance in this trade off. The goal of this 
work is to use pattern recognition techniques to develop a computer network intrusion detection 
system that adaptively evolves with changing network conditions. In order to achieve this, 
several sub goals were identified. Firstly, an algorithm was implemented that uses the ensemble 
of classifiers approach to achieve better classification rates and effective data fusion capabilities 
so as to combine information from multiple sources and can adapt to changing network 
conditions. Secondly, thorough statistical analysis of the KDD database, that is widely used in 
the community for demonstrating the effectiveness of pattern recognition techniques for 
intrusion detection, was conducted to establish several claims that render the database (as split 
into training and testing subsets as provided) inappropriate for pattern recognition tools. The 
analysis could also be used to identify potentially irrelevant features. Thirdly, techniques to tune 
the intrusion detection system towards minimizing the costs of the errors, and not the error rates 
themselves, were implemented. And lastly, a transformation was developed to use the outputs of 
the classifiers – multilayer perceptron (MLP) neural networks – as estimates of the posterior 
probabilities of an instance belonging to a particular class; which would provide better 
classification rates, and potentially improve the effectiveness of  several classifier combination 
rules such as sum rule, product rule, etc. These sub goals were addressed this semester and 
conclusive results have been obtained that demonstrate the effectiveness of the strategies 
proposed to address each of these issues. Future work involves integrating these different aspects 
to develop a complete algorithm for adaptively evolving intrusion detection that exploits the 
ensemble of classifiers approach to achieve effective intrusion detection that combines 
information from multiple sources and is tuned towards minimizing the cost of the errors. 
 
Paper Organization: The rest of the paper is organized as follows. The following four sections 
address each of the four subgoals identified above. Section 1 addresses the use of Ensemble of 
Classifiers Approach for Data Fusion and Adaptability, Section 2 describes the Statistical 
Analysis of the KDD Database, Section 3 addresses the strategy used for Cost Minimization and 
Section 4 addresses the transformation used for Estimating the Posterior Probabilities Based on 
the Outputs of the Neural Networks. Within each of these sections, the motivation behind 
attempting to address the issue, the goal and anticipated advantages, a discussion of counterpart 
approaches, the approach used, the results obtained with a comparison to counterpart approaches, 
along with an analysis of these results and conclusion drawn, and future direction to be pursued 
will be presented. Section 5 concludes and summarizes the paper. 
 
1. Ensemble of Classifiers Approach for Data Fusion and Adaptability 
1.1. Motivation:  
Computer security experts combine attack evidence from different feature sets to code attack 
signatures [1]. Data fusion capabilities would mimic this. Network conditions are known to vary 
with time, as different attack types surface and as network usage patterns change. In order to 
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maintain accurate intrusion detection under such evolving conditions, adaptability in an intrusion 
detection system would be favorable. 
 
1.2. Goal and Anticipated Advantages 
The goal is to introduce data fusion and adaptability capabilities in the intrusion detection 
system. This would ensure that complimentary information from multiple sources of information 
is combined to make better informed classification decisions. It is anticipated that by using an 
ensemble of classifiers approach, the classification performance of the system would be better 
than the individual sources alone, and also better than naïve concatenation of features. Also, it is 
anticipated that the accuracy of intrusion detection systems that do not evolve will deteriorate as 
network conditions change, while the ensemble of classifiers based approach that allows for 
adaptability will keep an intrusion detection system’s accuracy consistent even with changing 
network conditions. 
 
1.3. Background 
The use of ensemble of classifiers for improving generalization performance has been 
widespread [2], however, the use the ensemble of classifiers approach to solve the problem of 
adaptability (similar to incremental learning) has been mostly unexplored. Various other 
algorithms have been suggested, such as growing or pruning of classifier architectures, selection 
of most informative training samples, ARTMAP algorithm, support vector machine classifiers 
with provable performance guarantees, kernel Hilbert spaces and adding new IF–THEN rules to 
an existing fuzzy inference system. These algorithms require an ad-hoc selection of a large 
number of parameters or require precise a priori knowledge of data distributions [3]. A similar 
short coming exists for the traditional data fusion algorithms based on Dempster-Schafer (DS) 
theory of evidence and its many variations. The majority of suggested data fusion algorithms 
have been developed in response to the needs of military applications, most notably target 
detection and tracking. More complex data fusion strategies are also widely used in practice 
including ensemble based variations of DS, neural networks, fuzzy systems, stacked 
generalization and input decimation [4]. Ensemble approaches seek to provide a fresh and a more 
general solution for a broader spectrum of applications. Learn++ has been shown to be capable 
of data fusion and incremental learning [3,5]. 
 
1.4. Approach 
 
Data fusion: 
An ensemble of classifiers is generated corresponding to every class. Say there are C classes, 
then C ensembles of classifiers are generated, each with a binary decision – positive (1): belongs 
to this class, negative (0): does not belong to this class. Within each ensemble, an ensemble of 
classifiers corresponding to each of the individual sources of information is generated. If there 
are K different sources of information, each of the C ensembles contain K ensembles of 
classifiers – with a total of C*K ensembles of classifiers. MLP neural networks are used as the 
individual classifiers within these ensembles. There may be Tkc number of classifiers (MLP 
neural networks) in each of the C*K ensembles of classifiers. These individual neural networks 
within the ensembles corresponding to the individual sources of information are combined using 
the weighted sum rule. That is, the Tkc classifiers within a particular ensemble among the C*K 
ensembles are combined using the weighted sum rule thus providing a total of C*K composite 
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decisions. The decisions corresponding to the sources of information are then combined using 
the weighted product rule. That is, the K decisions within each of the C ensembles are combined 
using the weighted product rule, providing C final decisions. A pictorial representation of this set 
up (for a particular class c) is shown in Figure 1. When a test instance is provided, it is assigned 
to the class corresponding to one of the C ensembles of classifiers that picked the class. If 
multiple ensembles pick the class, the instance is assigned to the class with the highest positive 
score, which is explained below. 
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Figure 1. Pictorial representation of the DLearnin based data fusion algorithm 

 
An algorithm inspired in part by Learn++, Dlearnin, was used to train each of the C ensemble of 
classifiers corresponding to the C classes. A description of Dlearnin is provided below.  
 
As stated above, suppose there are C different classes. Let the different sources of information 
(feature sets) available be denoted as FSk, k=1,2,…,K, where K is the total number of data 
sources. It should be noted that the feature sets available are the same for all classes. Individual 
classifiers for each feature set for each class are trained on a subset of the corresponding training 
data, randomly selected from a dynamically updated distribution over the training data instances. 
This distribution is biased towards those instances that have not been properly learned or seen by 
the previous classifiers. The block diagram, for the Dlearnin algorithm for generating the 
ensemble of classifiers for some class c, is provided in Figure 2; and described below in detail. 
 
For each class c, c = 1,…,C, and for each feature set, FSk, k=1,…,K, comprised of a different 
Feature Set that is submitted to Dlearnin, the inputs to the algorithm are (i) the training data Sk 
comprised of mk instances kN

i ∈ℜx  along with their correct labels yi = {+,-} or yi = {1,0} 
i=1,…,mk where Nk is the number of features in the kth feature set; (ii) the validation data Vk 
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comprised of lk instances kN
i ∈ℜx  along with their correct labels yi = {+,-} i=1,…,lk (iii) a 

supervised classification algorithm BaseClassifier, generating individual classifiers (henceforth, 
hypotheses); and (iv) an integer Tkc, the number of classifiers to be generated for the kth database 
corresponding to the cth class. The parameters below refer to the algorithm running on the kth 
database for class c, and hence the subscripts k and c are dropped when the meaning is 
unambiguous to avoid subscripts of subscripts.  
 
The BaseClassifier can be any supervised classifier such as a MLP, a support vector machine or 
a decision tree. MLPs were used here. A sufficiently different decision boundary can then be 
generated by each classifier if trained with slightly different training data subsets. Classifiers 
may be made relatively weak, by adjusting training parameters (such as network size and error 
goal) with respect to the complexity of the problem to ensure that additional diversity. However, 
a meaningful minimum performance is enforced: a minimum performance of 0.5 is required 
from the BaseClassifier i.e. it must classify atleast 50% of the instances in the validation data 
correctly. 
 
During the tth iteration, Dlearnin trains the BaseClassifier on a specifically selected subset of the 
training data to generate hypothesis ht. The training subset TRt is drawn from the training data 
according to a distribution Dt, which itself is obtained by normalizing a set of weights wt 
maintained on the training data. The distribution Dt determines which instances of the training 
data are more likely to be selected into the training subset TRt. Unless a priori information 
indicates otherwise, this distribution is initially set to be uniform, by initializing 

( ) 1 , 1, ,1w i m i mk k= ∀ = L , giving equal probability to each instance to be selected into the first 
training subset. At each subsequent iteration t, the weights previously adjusted at iteration t-1 are 
normalized to ensure a legitimate probability distribution Dt (step 1): 
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Training subset TRt is drawn according to Dt (step 2), and the BaseClassifier is then trained on 
TRt (step 3). A hypothesis ht is generated by the tth classifier, whose error εt, is computed on the 
entire validation data Vk as the proportion of the misclassified instances (step 4) 
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where, [| · |] evaluates to 1, if the predicate holds true, and 0 otherwise. As mentioned above, we 
insist that this error be less than ½. If this is the case, the hypothesis ht is accepted and the error 
is normalized to obtain 
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Figure 2. DLearnin block diagram 
 
If εt > ½, then the current hypothesis is discarded, and a new training subset is selected by 
returning to step 2. All hypotheses generated thus far are then combined using weighted sum rule 
[6] to obtain the composite hypothesis Ht (step 5). Let the outputs of the individual classifiers 
generated this far be pst  which is the positive score, that can be interpreted as the tth classifier’s 
confidence that the instance is positive (with respect to class c considering feature set k) and nst 
which is the respective negative score. pst and nst are normalized to 1. Weighted sum rule is 
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The composite hypothesis thus becomes  
 

[ ]|| ttt NSPSH >=                                 (5) 
 
where Ht now represents the ensemble decision. The weighted sum rule used by Dlearnin is an 
undemocratic but useful combination procedure: each hypothesis is assigned a weight as the 
logarithm of the reciprocal of its normalized error. Therefore, those hypotheses with smaller 
validation error are awarded a higher voting weight and thus have more say in the final 
classification decision. The logarithm function is used to map a wide range of 1/β values to a 
smaller, more meaningful interval. The error of the composite hypothesis Ht is then computed as 
the sum of the distribution weights of the instances that are misclassified by the ensemble 
decision Ht (step 6)  

 

: ( ) 1
( ) ( ) | ( ) |

k

t i i

m

t t t t i i
i H y i

E D i D i H y
≠ =

= = ≠  ∑ ∑
x

x             (6) 

 
If Et > ½, then the current hypothesis is discarded, and a new training subset is selected by 
returning to step 2. If this is not the case, the composite error is normalized to obtain 
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and is used for updating the distribution weights assigned to individual instances  
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Equation (8) indicates that the distribution weights of the instances correctly classified by the 
composite hypothesis Ht are reduced by a factor of Bt (0<Bt<1). Effectively, this increases the 
weights of the misclassified instances making them more likely to be selected to the training 
subset of the next iteration.  
 
Once all the Tk classifiers are generated for feature set k, the error of the kth feature sets on its 
validation data is computed. 
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Since the errors of the individual classifiers on the validation data is less than ½, the composite error is 
also less than ½. The normalized error is calculated as  
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which will be used to determine the weight of the kth feature set.  
 
The above procedure is repeated for all K sources of information for all C classes. 
 
When a test instance is presented, the composite hypothesis of all K feature sets of class c are 
combined using the weighted product rule to obtain the final hypothesis. 
 
The weighted product rule is  
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where PSTk and NSTk are computed using equation (4) over all classifiers generated using feature 
set k for class c. 
 
The final hypothesis is then 
 

[ ]|| cccfinal NSPSH >=             (12) 
 
The test instance is assigned to the class for which Hcfinal is 1 (positive). If this is true for zero or 
more than one Hcfinal, the instance is assigned to the class with the highest positive score PSc. 
 
Conceptual similarity between data fusion and adaptability: 

In many applications that call for automated decision making, it is not unusual to receive 
data obtained from different sources that may provide complimentary information. A suitable 
combination of such information is usually referred to as data fusion, and can lead to improved 
accuracy and confidence of the classification decision compared to a decision based on any of 
the individual data sources alone. On the other hand, it is not uncommon for testing conditions to 
evolve. A classification system may be exposed to data belonging to different distributions, or 
even different classes while it is in the field. And in order to maintain consistent classification 
accuracy, the system is required to evolve with the changing environment conditions. 
Consequently, both adaptability and data fusion involve learning from different sets of data. If 
the consecutive datasets that later become available arise from different classes or different 
distributions of data, the data fusion problem turns into an adaptability problem. Recognizing 
this conceptual similarity, it is anticipated that an approach similar to that used for data fusion 
would provide the system with adaptability capabilities. 
 
1.5. Results and Discussion 
Experiments were carried out on a subset of the database created by DARPA in the framework of 
the 1998 Intrusion Detection Evaluation Program [7]. A subset of this was pre-processed by 
Columbia University and distributed as part of the UCI KDD Archive and was used at the KDD 
1999 cup [8] is widely used to establish the effectiveness of pattern recognition techniques for 
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intrusion detection. The database consists of five different classes: 1 normal and 4 different 
attack types including probing: surveillance and other probing, e.g. port scanning, DOS: Denial 
of Service, R2L: unauthorized access from a remote machine e.g. guessing password, U2R: 
unauthorized access to local superuser (root) privileges, e.g. various “buffer overflow” attacks. 
However, for initial runs, the problem was treated as a two class problem: normal vs attack. 
Hence, C = 2. In the Dlearnin algorithm described above, since C = 2, both ensembles would be 
trained with the identical data and hence only one ensemble was used. The data base consists of 
41 features divided into 3 feature sets: basic features, content features and traffic features. Hence, 
K = 3.  
 
Two MLP neural networks with one hidden layer and 40 hidden layer nodes were used within 
each of the ensembles for each feature set for all classes. Dlearnin was run 30 times with 
different subsets of data used for training, validation and testing. For every run, 1000 normal 
instances and 1000 attack instances were randomly picked for training, 2000 each for validation 
and 2000 each for testing from the available ~97,000 normal instances and ~39,70,000 attack 
instances. For each of these splits, three different error goals were used: 0.3, 0.1 and 0.05. For 
each experiment, the performance of each feature set alone on the test data was noted, and the 
performance of data fusion using Dlearnin was noted. The averages and 95% confidence 
intervals of these were compared for all three different error goals. It was found that the best 
results were obtained (in terms of classification rate) by using the error goal of 0.05. The results 
corresponding to this error goal are provided in Table 1. 
 

Table 1: Comparing classification performance of fusion with the individual feature sets 
 
Performance Basic Content Traffic Fusion 
Mean % 91.05 80.64 93.02 95.94 
95% CI width 0.7175 2.5183 0.25 0.53 
 
It can be see that the data fusion performance is better than the individual feature sets with 
statistical significance at 95% confidence level. This establishes the effectiveness Dlearnin to 
achieve efficient data fusion. 
 
The next set of experiments were conducted using all five classes, C = 5. In order to compare the 
results using the other pattern recognition algorithms, the entire KDD database was used, split 
into training and testing subsets as provided. In order to make fair comparisons, the cost/instance 
(note: cost and cost/instance are used interchangeably) was used as the performance metric 
instead of the classification rate. The cost matrix provided with the KDD database is as shown 
below in Table 2. 
 
Using Dlearnin, the best cost obtained was 0.2440. The cost values obtained by the entries in the 
KDD Cup 1999 contest are shown in Table 3 [9]. It can be seen that the value achieved by 
Dlearnin lies among the top 5 entries. 
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Table 2: Cost matrix as provided for the KDD database 
 

Real/Predicted  normal  Probe  DOS  U2R  R2L 
normal  0  1  2  2  2 
probe  1  0  2  2  2 
DOS  2  1  0  2  2 
U2R  3  2  2  0  2 
R2L  4  2  2  2  0 
 

Table 3: The cost/instance of entries in the KDD Cup 1999 contest 
 

0.2331 0.2443 0.2531 0.2644 0.3854 
0.2356 0.2474 0.2545 0.2684 0.3899 
0.2367 0.2479 0.2552 0.2952 0.5053 
0.2411 0.2523 0.2575 0.3344 0.9414 
0.2414 0.2530 0.2588 0.3767  

 
Some of the other cost values obtained using MLP, a multiple classifier system made of MLP, K-
means and Gaussian are 0.2424 and 0.2254 respectively [1]. Also, modular architectures were 
used to achieve cost values of 0.2074 and 0.1688 [1]. Two different schema for K-means were 
used to achieve cost values of 0.2487 and 0.2635 [10]. Several other algorithms such as Majority 
voting, Bayesian Average, Belief, etc. have been used that gave cost values ranging from 0.192 
to 0.880 [11-14]. 
 
This shows that Dlearnin provides competitive results. However, it should be noted that in order 
to achieve the low cost of 0.2440, thorough classifier selection and several stages of fine tuning 
had to be conducted. 
 
1.6. Future Work 
The data fusion performance has been shown to be superior to the individual sources of 
information with statistical significance. Experiments will be run to compare the Dlearnin 
performance with other contemporary data fusion algorithms and naïve schemes such as 
concatenation of the feature sets.  
 
An approach to be followed to introduce the adaptability capabilities has been identified. The 
Dlearnin algorithm will be modified to incorporate this approach. Testing scenarios to simulate 
changing network conditions will be simulated to test the algorithm. The performance of the 
system would then be tracked as the testing environment evolves and would then be compared to 
the performance of a conventional classification system that does not possess such adaptive 
capabilities. It is anticipated that the performance of the conventional classification system 
would deteriorate where as that of the proposed adaptive system using Dlearnin would be 
consistent even with changing environment conditions.  
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2. Statistical Analysis of the KDD Database 
2.1. Motivation 
While implementing Dlearnin on the KDD database, several inconsistencies were observed. In 
order to determine the reasons for this, statistical analysis of the database was to be conducted. It 
was suspected that the distributions of the training and testing data sets (as provided at the KDD 
Cup 1999) were different, a scenario that renders pattern recognition techniques inappropriate.  
 
2.2. Goal and Anticipated Advantages 
The goal was to use statistical tools to determine if the training and testing distributions of the 
KDD database were the same or not. This would enable us to pre-process the data, if required, 
and reduce the variability and inconsistencies in the results obtained. Also, the irrelevant features 
would be identified, elimination of which would reduce the dimensionality of the problem and 
hence facilitate learning. 
 
2.3. Background 
The analysis of variance (ANOVA) is a test that can be used to determine if the means of 
different populations are different with statistical significance, where the populations being 
compared differ from each other by some factor. ANOVA tests use the chi-squared distribution 
of the F parameter, where F is a measure of the ratio of inter-group variance to intra-group 
variance. The higher the value of F, the less likely the means are to be statistically the same. A 
tolerance parameter is to be specified for ANOVA testing, which specifies the probability of the 
means of the populations under comparison being the same. It determines how high the value of 
F should be to reject the null hypothesis that the means being compared are in fact the same. If 
this parameter is chosen to be 0.05, the conclusions drawn are statistically significant with 95% 
confidence. 
 
The Fisher Ratio is defined as the ratio of inter-class scatter to intra-class scatter. Hence the 
higher the Fisher Ratio, the more relevant the feature is. For a two class problem the Fisher Ratio 
is given as 
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where m1 is the mean of class 1, m2 is the mean of class 2, v1 is the variance of class 1 and v2 is 
the variance of class 2. For a multi-class problem, the Fisher ratio is calculated as the average of 
the Fisher Ratios between all possible combinations of two classes. 
 
2.4. Approach:  
The features were assumed to be independent. Based on the domain knowledge of the features, 
this assumption is valid. ANOVA test and the Fisher ratio were the two statistical tools that were 
used.  
 
Now, the following are the two conditions that need to be satisfied in order to use pattern 
recognition tools effectively: 

a) The distribution of the features should be statistically different for different classes 
b) The distributions of the features for the training and testing data should be the same 
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ANOVA testing was used to identify the features that violated any of these two conditions. 
Central limit theorem makes the use of ANOVA testing valid. 95% confidence level was used to 
determine if the means of the training and testing data were statistically the same for every 
feature and every class. If there is less than 5% chance that the means are the same, it can be said 
with statistical significance that the training and testing data sets come from different statistical 
distributions for that feature, and thus violate condition (b). However, this can be fixed by 
reshuffling the data and separating them randomly into training and testing instead of using the 
provided split. Similarly, the means of the data coming from different classes (combined training 
and testing data) were compared for all feature sets using a 95% confidence level. If there is 
more than a 5% chance that the means are statistically the same, it can be said that the 
distributions of the classes are not statistically different for that feature. This violates condition 
(a). This indicates that the feature may be irrelevant.  
 
The features were sorted in ascending order of their Fisher Ratio values. In order to determine 
which features should be eliminated, a threshold can be used. This threshold can be determined 
by generating an artificial feature with random values, and computing the fisher ratio for this 
artificial feature. All feature values with a fisher ratio less than this threshold can be identified to 
be irrelevant (since they are worse than random) and can thus be eliminated. 
 
2.5. Results and Discussion 
The results obtained are presented in Table 4. Column 1 shows the different features. Features 1 
to 9 belong to feature set 1: basic features, features 10 to 22 belong to feature set 2: content 
features and features 23 to 41 belong to feature set 3: traffic features. The second column 
indicates the values for the Fisher Ratio. The higher the fisher ratio, the more relevant the feature 
is. The third column shows the rank of the features in ascending order of the fisher ratio value. 
Again, the higher the rank, the more relevant the feature is. The fourth column: #vb indicates 
how many of the five classes violate condition (b) for that feature. The fifth column #~va 
indicates how many of the five classes satisfy the condition (a) for that feature. The last column 
indicates how many of the five classes satisfy both conditions (a) and (b) for the particular 
feature.  
 

Table 4: Results obtained for the statistical analysis of the KDD database 
 

feat Fisher Ratio FR Rank #vb #~va #~va+ #~vb 
1 0.0092 14 5 3 0 
2 0.3831 26 3 2 0 
3 0.4809 28 3 3 1 
4 0.6114 29 4 3 1 
5 0.0069 12 4 0 0 
6 0.0066 11 4 0 0 
7 0 2 0 1 1 
8 0.0022 9 1 0 0 
9 0.0015 7 1 1 1 
10 0.0278 17 5 0 0 
11 0.0171 16 0 1 1 
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12 0.7799 35 4 2 1 
13 0.0014 6 3 0 0 
14 0.0141 15 1 3 1 
15 0.0001 3 0 0 0 
16 0.0006 5 2 0 0 
17 0.0073 13 2 3 1 
18 0.0033 10 2 1 0 
19 0.0018 8 3 1 0 
20 0 1 0 0 0 
21 0.0005 4 1 0 0 
22 0.0347 18 2 2 0 
23 1.4599 41 5 3 0 
24 0.9176 37 5 3 0 
25 0.1019 22 5 0 0 
26 0.0779 19 5 2 0 
27 0.698 33 4 3 2 
28 0.6213 30 4 3 2 
29 0.7077 34 4 5 2 
30 0.8432 36 3 1 1 
31 0.1624 24 5 3 0 
32 0.2321 25 3 5 3 
33 1.3317 39 4 3 1 
34 0.9412 38 5 5 1 
35 1.3357 40 4 3 0 
36 0.4152 27 4 5 1 
37 0.1424 23 3 3 1 
38 0.0987 21 5 0 0 
39 0.0781 20 5 0 0 
40 0.6745 32 5 3 2 
41 0.629 31 4 3 2 

 
It can be seen that most features either violate condition (a) or condition (b) for most of the 
classes. This information is summarized in Table 5. Also, it can be seen that in general, feature 
set 3 (features 23 to 41) have higher Fisher ratios. 
 

Table 5: Summary of results of statistical analysis of KDD database 
 

#~va+ #~vb # features 
0 22 
1 13 
2 5 
3 1 

 
It can be seen that of the 41 features, 22 features violate condition (a) or (b) for all five classes. 
13 features violate one of the two conditions for 4 classes, 5 features violate either of the 
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conditions for 3 classes and 1 feature violates one of the two conditions for 2 classes. There is no 
feature that satisfies both conditions for all five classes, or even four out of the five classes. 
 
Table 6 provides more insights into the inappropriateness of the database for pattern recognition 
(given the particular split into training and testing). 
 

Table 6: Further analysis of results of statistical analysis of KDD database 
 

 Metric 1 Metric 2  Corr Coef Ideal 
FR rank #vb 0.6573 -1 
FR rank #~va 0.6744 1 
Fisher Ratio #vb 0.462 -1 
Fisher Ratio #~va 0.5584 1 
#vb #~va 0.343 -1 
Fisher Ratio # sep + con 0.3037 1 
FR rank # sep + con 0.4103 1 

 
As stated earlier, ideally we would want features to satisfy both conditions (a) and (b). Hence, 
we would want features with high Fisher Ratios (or high #~va) to have low #vb. Ideally, we 
would want the correlation coefficient between the Fisher ratio and #vb to be -1. However, given 
the split of training and testing, it is seen that the higher the fisher ratio of a feature, the higher 
the #vb with a correlation coefficient of 0.65. Several such observations have been made in 
Table 6. It should be noted that Fisher Ratio and #~va are inherently similar properties of the 
features, and hence are highly correlated due to their basic definitions.  
 
As stated earlier, by reshuffling the data and randomly splitting it into training and testing data 
subsets, the violations of condition (b) can be fixed. In order to make a quick assessment of how 
the classification performance improves just by reshuffling the data and using only relevant 
features, the following experiment was conducted.  
 
The data was reshuffled and training and testing subsets were created randomly. Also, only 
feature set 3 was considered since based on the above analysis, feature set 3 was the most 
relevant. Classification was then performed using a simple classification technique of using the 
Mahanalobis distance. When a test instance is presented, the Mahanalobis distance of the 
instance from each of the C classes is computed, and the instance is assigned to the class with the 
least Mahanalobis distance. The Mahanalobis distance rc of the test instance from class c is 
computed using the following equation: 
 

)()'( 12
cccc xxr µµ −Σ−= −          (14) 

 
where x is the test instance, µc is the mean of class c and Σc is the covariance matrix of class c.  
 
The cost/instance was noted. A similar test was conducted using the training and testing split as 
provided. It was found that the cost/instance using feature set 3, the provided split into training 
and testing, and Mahanalobis distance was 0.4838. When the data was reshuffled and randomly 
split into training and testing, under the same testing conditions, the cost/instance was found to 
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be 0.15271 which is significantly lower. Also, it should be noted that this low cost/instance was 
achieved using a very simple classification technique, without any fine tuning or extensive 
classifier selection which is in drastic contrast with the sophisticated Dlearnin algorithm 
described in Section 1.4, and the intense classifier selection conducted to achieve a cost/instance 
of 0.2440. This shows that the given split of data into training and testing was indeed 
inappropriate, and much is to be gained by reshuffling the data and performing feature selection.  
 
2.6. Future Work 
The ANOVA tests will be conducted again on a random split of data to ensure that the training 
and testing data are representatives of each other and come from the same statistical 
distributions. This will also help justify the use of the statistical tools used above. Fisher Ratios 
need not be computed again because they are independent of the data split into training and 
testing. Also, the probe method described in the approach will be used to eliminate features and 
the performance of the classification system without these features will be compared to the 
performance using all the features. Also, one feature will be eliminated at a time (in ascending 
order of their Fisher ratios) and this will be continued till the performance of the classification 
system deteriorates. Physical interpretation of the features that are identified as irrelevant will be 
attempted to tie the statistical results to the domain knowledge.  
 
In order to establish the effectiveness of Dlearnin in comparison with other algorithms on a 
different split of training and testing data than the one provided, some of the other algorithms 
may be implemented to simulate identical testing conditions. 
 
Also, a smaller version of the database will be created so that tests can be simulated faster. 
 
3. Cost Minimization 
3.1. Motivation 
As with several applications, the costs of the errors involved are different. A cost matrix 
corresponding to the different errors involved is provided with the KDD database and is shown 
in Table 2. All the classification strategies used so far have been geared towards maximizing the 
classification rate and not minimizing the cost, which is the true performance metric here. 
 
3.2. Goal and Anticipated Advantages 
The goal is to develop strategies to gear the classification system towards minimizing the cost of 
the errors incurred, and not the error rate itself. The anticipated advantages are that the cost 
incurred during final classification will be less than those incurred by systems that are not tuned 
towards cost minimization.  
 
3.3. Background 
For the KDD database in particular, explicit tools to minimize the cost function have not been 
widely explored. 
 
3.4. Approach 
In order to make classification decisions, the outputs of the classification system for a particular 
test instance for every possible class are noted. That is, the PSc and NSc values are noted for c ∈  
1,…,C. If the costs of both errors (false positive and false negative) for all classes were equal, the 
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instance would be assigned to a particular class if PSc > NSc. If this is true for zero or multiple 
classes, the instance is assigned to the class with the highest PSc value. It should be noted that the 
PSc and NSc values are normalized to 1. Hence the following two classification decisions are 
equivalent 
 
If (PSc > NSc) 
 Instance  positive 
Else            (15) 
 Instance  negative 
 
If (PSc > 0.5) 
 Instance  positive 
Else            (16) 
 Instance  negative 
 
Thus it can be seen that the classification decision becomes a thresholding operation on PSc, 
where the threshold is 0.5 if the costs of the two types of errors involved are equal.  
 
However, if there are different costs associated with different errors, this may not be the 
optimum strategy to make classification decisions. For example for a two class problem, 
intuitively, if the cost of false positives is higher than false negatives, an instance should be 
classified as negative more frequently than as positive, in other words, the instance should be 
classified as positive only if the classifier is ‘very confident’ of its decision. If not, the instance 
should be classified as negative to be on the ‘safe side’. Hence, when different costs are involved 
for the two types of errors, it is the threshold (which is 0.5 if cost of different types of errors are 
equal) that needs to be altered in order to minimize the cost. 
 
In order to determine the optimum threshold to minimize the cost of errors, the cost of false 
positive and false negative for all the classes are to be determined. The provided cost matrix is a 
C x C matrix, where C is the number of classes. These need to be converted to C 2 x 2 cost 
matrices. In order to determine this, we need an estimate of what proportion of false negatives 
belonging to class c are assigned to class 1, class 2, … , class C. And then knowing the cost of 
these errors (as provided by the C x C cost matrix), the expected cost of a false negative 
associated with class c can be determined. This information is provided by a confusion matrix. 
An appropriate multiplication of the cost matrix and a normalized version of the confusion 
matrix (based on the validation data using the conventional threshold values of 0.5) would 
provide us with an estimate for the C 2 x 2 cost matrices. This is depicted below: 
 
Suppose the provided C x C cost matrix is given by: 
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where cstij is the cost of classifying an instance that belongs to class i as class j. The cost of a 
correct classification is 0. 
 
Suppose the confusion matrix on the validation data is given by 
 

CnfM = 
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Where cnfij is the number of instances that belonged to class i but were classified as class j. 
 
For class c, in order to determine the expected cost of false positives 
 

Exp(FPcstc) = ∑
=

C

i
icic cstp

1
*          (19) 

Where pic is the probability of an instance belonging to class i being classified as class c. Since 
the cost of a correct classification is zero, it can be included in the summation in equation (19). 
 

pic = 
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C
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           (20) 

 
To reiterate, in order to determine the cost of false positives for all the C classes, the columns of 
the confusion matrix should be normalized to 1. Then this normalized version of the confusion 
matrix is multiplied (element by element) to the cost matrix. The columns of the resultant C x C 
matrix are summed to provide a row vector with C elements. Each of these elements provides the 
expected cost of false positives for the C classes. This is shown below:  
 
Let, 
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where the .* operation indicates element by element multiplication. Then, 
 

[ ] 







= ∑∑∑

===

C

i
iC

C

i
i

C

i
iC fpfpfpFPcstExpFPcstExpFPcstExp

11
2

1
121 ...)(...)()(        (22) 

A similar computation is carried out to determine the expected cost of false negatives for all the 
C classes. This is briefly summarized below: 
 
Let 
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then, 
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The resultant 2x2 cost matrix for class c is  
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           (25) 

 
Having determined these C 2 x 2 cost matrices, the problem breaks down to finding C optimum 
thresholds for each of the C ensembles. The following strategy is used to determine each of the C 
thresholds. 
 
Consider class c. The 2 x 2 cost matrix for class c provides us with the ratio of the cost of false 
positives over the cost of false negatives i.e. it provides us with an estimate of how much more 
expensive it is to classify an instance as class c when it is not, vs. the cost of classifying an 
instance that is indeed class c, as not class c. Let this ratio be rc 
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)(
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c

c

FNcstExp
FPcstExp

rc =               (26) 

 
This ratio will determine how much the threshold should be deviated from 0.5. If for instance, 
the cost of false positives is greater than the cost of false negatives, i.e. rc > 1, the threshold 
should be made higher. When the threshold is made higher, larger instances are classified as 
negative. This reduces the false positive rate, but it increases the false negative rate. However, if 
the ratio of the increase in false negative and decrease in false negative is less than rc, increasing 
the threshold would still reduce the cost incurred. The threshold should be increased till the ratio 
of the rate of increase in false negative and rate of decrease in false positives exceeds rc. 
Similarly, if rc < 1, the threshold should be reduced till the ratio of increase in false positives to 
the decrease in false negatives exceed 1/rc. 
 
In order to determine this, we need additional information other than just rc. We need 
information about the rate at which the false negatives go up/down and false positives go 
down/up as the threshold is increased/decreased. In order to determine this, the PSc and NSc 
values for all the instances in the validation data were noted. A histogram was plotted of the PSc 
values of instances that belong to class c and of the instances that do not belong to class c. This 
would give us an estimate of how many false negatives increase as the threshold is increased, 
how many false positives increase as the threshold is decreased, and so on. 
 
Suppose the values of the histogram of PSc for the instances that belong to class c are Ninc(th) 
and the values of the histogram of of PSc for the instances that donot belong to class c are 
Noutc(th). Note that the values of the Ninc(th) and Noutc(th) are for discrete values of the 
thresholds, at some small increments ∆th.  
 
For a given value of threshold th = τ, the number of false positives is  
 
∑
>τth

c thNout )(             (27) 

 
And the number of false negatives is  
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Hence the cost incurred for this value of the threshold th = τ is  
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The optimum threshold (that minimizes the cost) is then 
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Having determined the τcopt_cost for all the C classes, the classification decision is then based on 
these new optimum thresholds and not 0.5. The classification decisions for each of the classes 
then become 
 
 
If (PSc > τcopt_cost) 
 Instance  positive 
Else            (31a) 
 Instance  negative 
 
The instance is assigned to the class which satisfies the above condition. If zero or more than one 
class satisfy this condition (31a), the instance is assigned to the class that has the maximum (PSc 
- τcopt_cost) value.           (31b) 
 
To make comparisons, three different classification rules were implemented: 
1) The regular classification rule: where the cost of errors is not considered, and a threshold of 

0.5 is used to make classification decisions.  
 
If (PSc > 0.5) 
 Instance  positive 
Else            (32a) 
 Instance  negative 
 
If condition (32a) is satisfied for zero or more than one class, the instance is assigned to the class 
with the highest (PSc – 0.5) value        (32b) 
 
2) The optimum for classification decision rule: where the cost of errors are still not considered, 

however the threshold for optimum classification is determined and considered while making 
the classification decisions. The threshold for optimum classification is determined by using 
equation (30) with rc = 1 or )()( FNcstExpFPcstExp = . 

 
If (PSc > τcopt_classification) 
 Instance  positive 
Else            (33a) 
 Instance  negative 

 
If condition (33a) is satisfied for zero or more than one class, the instance is assigned to the class 
with the highest (PSc – τcopt_classification) value       (33b) 

 
3) The optimum for cost decision rule: where the cost of errors are now considered and the 

threshold for minimizing the cost of errors is determined using equation (30) and considered 
while making the classification decisions 
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If (PSc > τcopt_cost) 
 Instance  positive 
Else            (34a) 
 Instance  negative 

 
If condition (34a) is satisfied for zero or more than one class, the instance is assigned to the class 
with the highest (PSc – τcopt_cost) value       (34b) 
 
It is anticipated that the classification accuracy of optimum for classification scheme will be 
higher than both regular and optimum for cost, where as the cost of optimum for cost scheme 
will be lower than both regular and optimum for classification.  
 
It should be noted that the above classification strategies are applied to the final stage after 
Dlearnin, when the decisions of the ensembles corresponding to the different classes Hcfinal 
according to equation (12) are to be combined to make a final decision. 
 
3.5. Results and Discussion 
The proposed strategy was first tested on artificial data. Data was generated from three different 
two dimensional Gaussian distributions. A total of about 16000 instances were generated – about 
5333 from each class. Of these, 167 were used for training, 166 for validation and the remaining 
5000 for testing. The data distribution can be seen below: 
 

 
 

Figure 3: Artificial data distribution for a 3 class problem 
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The Dlearnin algorithm was implemented. Here C = 3 and K = 2. Two MLP neural networks 
were generated for each of the ensembles corresponding to each feature set and each class. The 
neural networks had one hidden layer with 2 hidden layer nodes. They were trained with an error 
goal of 0.07.  
 
In order to draw statistically valid conclusions, the experiments were repeated 50 times, every 
time generating different data for training, validation and testing, however using the same 
distributions to generate the data. The results obtained are shown in Table 7. 
 

Table 7: Comparing results obtained using three different thresholds for classification 
 

 regular optimum for classification optimum for cost 
Test Accuracy: Mean 90.25 % 91.68 % 89.97 % 
Test Accuracy: 95% CI width 1.78 % 0.61 % 1.90 % 
Test Cost: Mean 0.21 0.20 0.18 
Test Cost: 95% CI width 0.026 0.020 0.016 
 
It can be seen that as expected, the classification accuracy of optimum for classification is 
highest, while that for optimum for cost is the lowest. However, the cost for optimum for cost is 
lowest while that for optimum for classification is the highest. 
 
3.6. Future Work 
The above approach has been implemented only for an artificial database. This will now be 
implemented on other benchmark databases with arbitrarily chosen cost matrices and also on the 
KDD database where a cost matrix has been provided (Table 2). 
 
In the above described approach, the cost matrix and confusion matrix are used to determine the 
optimum thresholds for minimizing cost. With these new thresholds, the confusion matrix 
changes, and hence a new set of thresholds can be determined using the cost matrix and the new 
confusion matrix. This suggests a recursive strategy to determine the optimum thresholds for 
minimizing the cost. This will be implemented to understand convergence issues. Also, the first 
iteration may be the most significant in terms of improvement, and hence analysis will be 
conducted to see if any significant gain is achieved in subsequent iterations. 
 
4. Estimating the Posterior Probabilities Based on the Outputs of the Neural Networks 
4.1. Motivation 
In determining the optimum threshold using the strategy discussed in Section 3.4, the 2x2 cost 
matrices for all C classes are determined using the confusion matrix determined using the 
validation data. This is data dependent, and hence, a strategy that uses fewer data dependent 
parameters would be preferred.  
 
If the underlying distributions of the different classes are known, Bayes classifier can be used 
and it would provide the optimum classification rate. However, if the cost of different errors are 
different, in order to minimize the expected cost, Bayes classifier would need to be modified. 
Suppose the cost of false positives is r times the cost of false negative. In this case, a given 
instance is classified as positive only if the posterior probability of the instance being positive is 
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r times the posterior probability of the instance being negative. In a multi-class problem, if the 
cost of assigning an instance belonging to class i to class j is rij times more than assigning an 
instance of class j to class i, then an instance is classified as class i only if 
 
pi >= rij*pj, for all j ∈  1,…,C         (35) 
 
Where pn is the posterior probability that the instance belongs to class n, n ∈  1,…,C 
 
If the outputs of the neural networks could be transformed to reflect estimates of the posterior 
probabilities, then a strategy similar to that explained above in equation (35) could be used to 
make classification decisions without explicitly determining the optimum thresholds for all the 
classes, and this would eliminate a portion of the data dependency. 
 
Also, while analyzing the histograms discussed in Section 3.4, it was found that even if the costs 
of the different types of errors involved in the same i.e. )()( FNcstExpFPcstExp = , the optimum 
threshold for classification is in fact not 0.5, and is often biased. In order to use decision rules 
similar to equations (15) and (16), the outputs of the neural networks should be transformed such 
that their optimum threshold for classification (as determined using the histograms discussed in 
Section 3.4) would map to 0.5.  
 
Moreover, as discussed earlier in condition (33b), when zero or more than one class pick an 
instance as positive, the instance is assigned to the class with a higher (PSc - τcopt_classificationt) 
value. However, this may not be the optimum way. The confidence of the classifier in its 
decision may not be linear. This is illustrated with the following example: 
 
Suppose τ1opt_classification = 0.3, and τ2opt_classification = 0.8 and for a particular test instance PS1 = 
0.55 and PS2 = 0.99. Both classes pick the instance as positive. (PS1 - τ1opt_classificationt) = 0.25 and 
(PS2 - τ2opt_classificationt) = 0.19. Using the strategy described earlier, the instance would be 
classified as class 1. However, it is likely that an increase of 0.19 given that the optimum 
threshold was so high may be more significant than an increase in 0.25 for a mediocre threshold. 
A transform is required to understand if this non-linearity exists, and capture it if it does. 
 
It should be noted that the strategies proposed in Section 3.4 was implemented at the final 
decision level, where as the transforms proposed in this Section are implemented at the 
individual classifier levels. 
 
4.2. Goal and Anticipated Advantages 
The goal is to develop a transform that converts the outputs of neural networks into estimates of 
the posterior probabilities. Although the motivation of developing such a transform to estimate 
the posterior probabilities based on the outputs of the neural networks lies in minimizing the cost 
of the classification errors, there are several anticipated advantages to this strategy 
1) The classification rate would increase (because the optimum threshold determined using 
validation data is used for classification instead of using 0.5 which was found to be sub optimal) 
2) Classifier combination rules such as the sum rule and product rule would be more effective 
since they require estimates of posterior probabilities 
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3) The cost of the classification errors will be reduced and may be more consistent and reliable 
because fewer data dependent parameters are involved 
 
To reiterate, the goal is not only to increase the classification rate (this may be accomplished by 
several and perhaps simpler methods that consider the optimum threshold for classification). 
However, the goal is also to obtain better estimates of the posterior probabilities in terms of their 
absolute values.  
 
4.3. Background 
Two strategies are commonly used to transform the outputs of multilayer perceptron neural 
networks into estimates of the posterior probabilities 
 
a) Normalization: 
The outputs of the neural networks are normalized to 1, and these are often used as the estimates 
of the posterior probabilities. If the outputs of neural networks are op and on (these are always 
positive for MLP neural networks using sigmoid as the transfer function), estimates of the 
posterior probabilities are 
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=        (36) 

 
b) Softmax: 
If the outputs of neural networks are op and on, estimates of the posterior probabilities are 
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KL Distance: KL (Kullback Leibler) Distance is a measure that can be used to judge how close 
two probability distributions are. KL distance between two discrete distributions p and q is 
defined as: 
 

∑ 







=

i iq
ipipqpKL
)(
)(log)(),( 2         (38) 

 
4.4. Approach 
As stated earlier, upon analysis of the histograms of PSc for instances that belong to class c and 
instances that do not belong to class c, it was found that the optimum threshold for classification 
(even while considering equal cost of errors) is not 0.5. Which means that PSc > NSc does not 
necessarily indicate that the instance has a higher probability of being positive than negative. The 
goal is to thus transform these PSc values to better reflect the posterior probabilities. In order to 
accomplish this, the transform must satisfy the following requirements: 

1) Optimum threshold should be mapped to 0.5: so that PSc > NSc indeed indicates that the 
instances has a higher probability of being positive than negative. 

2) 0 should be mapped to 0 
3) 1 should be mapped to 1 
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It should be noted that throughout this Section, the cost of the different types of errors are 
assumed to be the same and hence the optimum thresholds are the thresholds that maximize the 
classification rate. The only goal (so far) is to obtain better estimates of the posterior 
probabilities – minimizing the cost and establishing that the sum rule, product rule, etc. are more 
effective with the proposed transform are subsequent goals which will be addressed in future 
work. 
 
A transform that satisfies these requirements, that we call the Dtransform is shown below: 
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)5.0log(

),( ττ ooD =           (39) 
 
where o is the raw output of the MLP neural network, and τ is the optimum threshold for 
classification determined using equation (30) with )()( FNcstExpFPcstExp =    
       
The estimates of the posterior probabilities are then given by 
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In order to establish that the proposed Dtransform provides better estimates of the posterior 
probabilities than Normalization and Softmax, the estimates of these three methods were 
compared to the estimates obtained using Bayes (and normalized to 1). Bayes estimates could be 
determined because artificial data was used with known distributions. Three different 
performance measures were used to establish this fact: 
 
1) Classification accuracy 
2) Mean squared difference between the transform and Bayes estimates 
3) KL distance between the distribution provided by the transform and Bayes distribution 
 
It can be argued that the proposed Dtransform would perform better than Normalization and 
Softmax in all there of the above measures simply because it consider the optimum threshold 
values and reduces the classification error closer to the Bayes error, and hence any transform or 
classification decision that considers these optimum thresholds would outperform Normalization 
and Softmax in the above three performance metrics. In order to counter this argument, the 
following transform will be used to make comparisons. We call it THsoftmax – which is a 
modified version of Softmax, except it considers the optimum threshold as well. 
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Hence, comparisons were made between Normalization, Softmax, THsoftmax and Dtransform 
for all three performance metrics specified above. 
 
In terms of classification accuracy, it is expected that the accuracy of Normalization and Softmax 
will be identical since they effectively reflect the same classification rule. However, the accuracy 
of THsoftmax and Dtransform should be greater than Normalization and Softmax. However, the 
accuracy of Dtransform may not be higher than THsoftmax with statistical significance, since 
they both consider the optimal threshold while making classification decisions. Inspite of this, it 
is expected that mean squared difference between Dtransform and Bayes estimate as well as the 
KL distance between Dtransform and Bayes distributions will be lower than Normalization, 
Softmax and even THsoftmax with statistical significance. 
 
4.5. Results and Discussion 
The above approach was implemented for a two class problem. The data was artificially 
generated from two dimensional Gaussian distributions and was distributed as seen below: 
 

 
 

Figure 4: Artificial data distribution for a 2 class problem 
 
Two neural networks were trained – one for each of the two classes. Each had one hidden layer, 
with 2 hidden layer nodes. The networks were trained with an error goal of 0.1. It was realized 
that while making final classification decisions, only the positive score values of the classifiers 
are considered. Hence, it was not evident as to why the Dtransform should map the optimal 
threshold (for classification, as stated earlier, the costs are assumed to be equal for the different 
types of errors) to 0.5, and not any other value between 0 and 1. The only requirement should be 
that the Dtransform should map all the optimal thresholds for different classes to a common 
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value. This adds a parameter to the Dtransform. Let this parameter be called the mapped_to 
value. The Dtransform thus becomes: 
 

)log(
)_log(

),( ττ
tomapped

ooD =           (42) 
 
 
Different mapped_to values were experimented with ranging from 0.1 to 0.9. The performance 
of the four transforms: Normalization, Softmax, THsoftmax and Dtransform were compared for 
each of the mapped_to values. As before, the experiments were repeated 50 times for different 
data sets (same distribution) and the average values are presented here. The results obtained on 
the test data are shown in the plots below in Figures 5, 6 and 7: 
 

 
 

Figure 5: Classification accuracy on test data – comparing four different transforms 
 
As expected, the accuracy for Normalization and Softmax is identical. While the accuracies for 
THsoftmax and Dtransform are similar. However, there is a significant increase in classification 
accuracy when the optimal threshold is considered – hence the accuracies of THsoftmax and 
Dtransform are significantly greater than those for Normalization and Softmax. 
 
It can be seen that for mapped_to values less than about 0.5 the mean squared difference between 
the Dtransform and Bayes estimates as well as the KL distance of the Dtransform from the Bayes 
estimates is less than any of the other three transforms. This establishes that the Dtransform 
provides better estimates of the posterior probabilities than the other three transforms, for 
mapped_to values less than about 0.5.  
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4.6. Future Work 
Detailed analysis is to be conducted to understand the effect of different mapped_to values on 
the performance of Dtransform. Also, similar tests have been run on three and four class 
problems. Also, tests have been run using just one neural network with C output nodes, each of 
which mimic the positive nodes of the C individual classifiers used thus far. The results obtained 
for these are more involved than those obtained for the two class problem, and detailed analysis 
is to be carried out to identify the trends in these results.  

 
Figure 6: Mean squared difference with Bayes – comparing four different transforms 

 

 
Figure 7: KL distance from Bayes – comparing four different transforms 
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Analysis is to be carried out to see if a range of mapped_to values can be identified that work 
well for a wide range of datasets, and theoretical explanations of why these values work well are 
to be investigated. 
 
Decision rules such as those in equation (35) are to be used using the estimates provided by 
Dtransform to see if the cost can be significantly minimized and results obtained in Section 3.5 
can be replicated using the Dtransform. Also, tests are to be run to compare the effectiveness of 
the sum and product rules using the estimates provided by Dtransform as opposed to those 
provided by Normalization, Softmax and THsoftmax. 
 
5. Summary 
To summarize, the overall goal of this work is to use ensemble of classifiers approach to achieve 
efficient intrusion detection what is tuned towards minimizing the cost of the errors and not the 
error rate itself, and that is capable of evolving with changing environment conditions. In order 
to achieve this, several subgoals were identified. First, efficient data fusion strategies were 
established in the Dlearnin algorithm which is inspired in part by Learn++. An approach has 
been identified that will be followed to introduce the adaptability capabilities into the 
classification system. Secondly, statistical analysis of the KDD database, which is widely used to 
establish the effectiveness of pattern recognition tools for intrusion detection, was conducted and 
results indicated that the split of training and testing data as provided are not good 
representatives of each other and come from different statistical distributions. Also several 
irrelevant features were identified. Eliminating the irrelevant features and reshuffling and 
randomly resplititng the data into training and testing subsets provided drastically better results, 
even with very simple classification techniques. Thirdly, strategies to gear the classification 
system towards minimizing the cost instead of the error rate were implemented, and convincing 
results were presented on artificial data. Finally, a transform was proposed to convert the outputs 
of MLP neural networks into estimates of the posterior probabilities and results were presented 
that indicate the superiority of this transform over other conventional methods in terms of 
estimating the posterior probabilities for artificial data. Future work involves further 
investigating, testing and optimizing these different techniques, introducing adaptability, and 
finally - integrating the different components into Dlearnin to achieve efficient intrusion 
detection.  
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