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Abstract

A successful representation of objects in the literature is
as a collection of patches, or parts, with a certain appear-
ance and position. The relative locations of the different
parts of an object are constrained by the geometry of the ob-
ject. Going beyond the patches on a single object, consider
a collection of images of a particular class of scenes con-
taining multiple (recurring) objects. The parts belonging
to different objects are not constrained by such a geometry.
However the objects, arguably due to their semantic rela-
tionships, themselves demonstrate a pattern in their relative
locations, which also propagates to their parts. Analyzing
the interactions between the parts across the collection of
images would reflect these patterns, and the parts can be
grouped accordingly. These groupings are typically hierar-
chical. We introduce hSO: Hierarchical Semantics of Ob-
jects, which is learnt from a collection of images of a par-
ticular scene and captures this hierarchical grouping. We
propose an approach for the unsupervised learning of the
hSO. The hSO simply holds objects, as clusters of patches,
at its nodes, but it goes much beyond that and also cap-
tures interactions between the objects through its structure.
In addition to providing the semantic layout of the scene,
learnt hSOs can have several useful applications such as
providing context for enhanced object detection and com-
pact scene representation for scene category classification.

1. Introduction
Objects that tend to co-occur in scenes of a particular cat-

egory are often semantically related. Hence, they demon-
strate a characteristic grouping behavior according to their
relative positions in the scene. Some groupings are tighter
than others, and thus a hierarchy of these groupings among
these objects can be observed in a collection of images of
similar scenes. It is this hierarchy that we refer to as the
Hierarchical Semantics of Objects (hSO). This can be bet-
ter understood with an example, which is shown in Figure 1
along with the corresponding hSO structure. Along with the
structure, the hSO could also store other information such
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Figure 1. Left: Images for “office” scene from Google image
search. There are four commonly occurring objects: chair, phone,
monitor and keyboard. The monitor and keyboard occur at sim-
ilar relative locations across images and hence belong to a com-
mon super-object, computer, at a lower level in the hierarchy. The
phone is seen within the vicinity of the monitor and keyboard.
However, the chair is randomly placed, and hence belongs to a
common super-object with other objects only at the highest level
in the hierarchy, the entire scene. This pattern in relative locations,
often stemming from semantic relationships among the objects,
provides contextual information about the scene “office” and is
captured by an hSO: hierarchical semantics of objects. A possible
corresponding hSO is shown on the right.

as the relative position of the objects, their co-occurrence
counts, etc. as parameters. However, in this paper we focus
on unsupervised learning of the hSO structure.

Several approaches in text data mining represent the
words in a lower dimensional space where words with sup-
posedly similar semantic meanings collapse into the same
cluster. This representation is based simply on their occur-
rence counts in documents. Probabilistic Latent Semantic
Analysis [1] is one such approach that has also been ap-
plied to images [2–4] for unsupervised clustering of images
based on their topic and identifying the part of the images
that are foreground. Our goal however is a step beyond this
towards a higher level understanding of the scene. Apart
from simply identifying the existence of potential semantic
relationships between the parts (parts, features and patches
are used interchangeably in the paper), we attempt to char-
acterize these semantic relationships among these parts, and

1-4244-1180-7/07/$25.00 ©2007 IEEE



accordingly cluster them into (super) objects at various lev-
els in the hSO.

Using hierarchies or dependencies among parts of ob-
jects for object recognition has been promoted for decades
[5–13]. However we differentiate our work from these, as
our goal is not object recognition, but is to characterize the
scene by modeling the interactions between multiple ob-
jects in a scene. More so, although these works deal with
hierarchies per se, they capture philosophically very differ-
ent phenomena through the hierarchy. For instance, Marr
et al. [8] and Levinshtein et al. [7] capture the shape of
articulated objects such as the human body through a hi-
erarchy whose nodes correspond to different parts of the
object and links can be attachment links or decomposition
links, where as Fidler et al. [6] capture varying levels of
complexity of features at different levels. Bienenstock et al.
[10] and Siskind et al. [14] learn a hierarchical structure
among different parts/regions of an image. This hierarchy
is based on rules similar to those that govern the grammar
or syntax of language. Siskind et al. [14] encode abso-
lute locations of these regions in the images as opposed to
the relative interactions among the regions. These various
notions of hierarchies are strikingly different from the inter-
object, potentially semantic, relationships we wish to cap-
ture through a hierarchical structure. We define dependen-
cies based on location as opposed to co-occurrence. Also,
several of these approaches [5, 14] cannot effectively deal
with background clutter, while we can.

Scenes may contain several objects of interest, and hand
labeling these objects would be quite tedious. To avoid this,
as well as the bias introduced by the subjectiveness of a
human in identifying the objects of interest in a scene, un-
supervised learning of hSO is preferred that truly captures
the characteristics of the data. The proposed approach, be-
ing entirely unsupervised, can detect the parts of the images
that belong to the foreground objects, cluster these parts to
represent objects, and provide an understanding of the scene
by hierarchically clustering these objects in a semantically
meaningful way to extract the hSO - all from a collection of
unlabeled images of a particular scene category.

It is important to note that, our approach being entirely
unsupervised, the presence of multiple objects as well as
background clutter makes the task of clustering the fore-
ground parts into hierarchial clusters, while still maintain-
ing the integrity of objects and yet capturing the inter-
relationships among them, challenging; and the information
coded in the learnt hSO quite rich. It entails more than a
mere extension of any of the above works for single-objects
to account for multiple objects.

Our approach to unsupervised learning of (the structure)
of hSO is outlined in Figure 2 and described in Section 2.
Section 3 describes several experimental scenarios where
qualitative as well as quantitative results are provided. Sec-
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Figure 2. Flow of the proposed algorithm for unsupervised learn-
ing of hSOs

tion 4 concludes the paper. Although we focus only on
the unsupervised learning of hSOs, before we describe the
details of the learning algorithm, we first motivate hSOs
through a couple of interesting potential areas for their ap-
plication.

At what scale is an object defined? Are the individual
keys on a keyboard objects, or the entire keyboard or is the
entire computer an object? The definition of an object is
blurry, and the hSO exploits this to allow incorporation of
semantic information of the scene layout. The leaves of the
hSO are a collection of parts and represent the objects, while
the various levels in the hSO represent the super-objects at
different levels of abstractness, with the entire scene at the
highest level. Hence hSOs span the spectrum between spe-
cific objects, modeled as a collection of parts, at the lower
level and scene categories at the higher level. This provides
a rich amount of information at various semantic levels that
can be potentially exploited for a variety of applications,
ranging from establishing correspondences between parts
for object matching, providing context for robust object de-
tection to scene category classification.

1.1. Context

Learning the hSO of scene categories could provide con-
textual information about the scene and enhance the accu-
racy of individual detectors. Consider the example shown
in Figure 1. Suppose we have independent detectors for
a monitor and a keyboard. Consider a particular test im-
age in which a keyboard is detected. However there is lit-
tle evidence indicating the presence of a monitor - due to
occlusion, severe pose change, etc. The learnt hSO (with
parameters) for office settings would provide the contextual
information indicating the presence of a monitor and also
an estimate of its likely position in the image. If the ob-
served bit of evidence in that region of the image supports
this hypothesis, a monitor may be detected. However, if the
observed evidence is to the contrary, not only is the monitor
not detected, but the confidence in the detection of the key-



board is reduced as well. The hSO thus allows for propaga-
tion of such information among the independent detectors.

Several works use context for better image understand-
ing. One class of approaches is analyzing individual images
for characteristics of the surroundings of the object such as
geometric consistency of object hypotheses [15], viewpoint
and mean scene depth estimation [16, 17], surface orienta-
tions [18], etc. These provide useful information to enhance
object detection/recognition. However, our goal is not to
extract information about the 3D scene around the object
of interest from a single image. Instead, we aim to learn
a characteristic representation of the scene category and a
more higher level understanding from a collection of im-
ages by capturing the semantic interplay among the objects
in the scene as demonstrated across the images.

The other class of approaches has been along the lines
of modeling dependencies among different parts of an im-
age [19–25] from a collection of images. However, these
approaches require hand annotated or labeled images. Our
approach, is entirely unsupervised - the relevant parts of the
images, and their relationships are automatically discovered
from a corpus of unlabeled images. Also, [19–21, 24] are
interested in pixel labels (image segmentation) and hence do
not deal with the notion of objects. Torralba et al. [26] use
the scene category for context, or learn interactions among
the objects in a scene [27] for context, however their ap-
proach is supervised and the different objects in the images
are annotated.

1.2. Compact scene category representation

hSOs provide a compact representation that character-
izes the scene category of the images that it has been learnt
from. Hence, hSOs can be used for scene category classi-
fication e.g. office, home, beach, etc. Having learnt hSOs
for several scene categories, given a collection of images
from an unknown scene category, the category correspond-
ing to the hSO, among the learnt hSOs, that fits the pro-
vided collection best can be identified as the unknown cat-
egory. Singhal et al. [28] learn a set of relationships be-
tween different regions in a large collection of images with
a goal to characterize the scene category. However, these
images are hand segmented, and a set of possible relation-
ships between the different regions are predefined (above,
below, etc.). Other works also categorize scenes but based
on global statistics (texture like) of the scene [26, 29] and
require extensive human labelling [30]. Fei-Fei et al. [3]
group the low-level features into themes and themes into
scene categories. However, the themes need not correspond-
ing to semantically meaningful entities. Also, they do not
include any location information, and hence cannot capture
the interactions between different parts of the image. They
are able to learn a hierarchy that relates the different scenes
according to their similarity, however, our goal is to learn an

hierarchy for a particular scene that characterizes the inter-
actions among the entities in the scene, arguably according
to the underlying semantics.

2. Unsupervised learning of hSOs
The approach we employ for unsupervised learning of

hSOs is outlined in Figure 2. Each of the stages are ex-
plained in detail below. The input to the algorithm is a col-
lection of images taken from a particular scene category,
and the desired output is a learnt hSO. In this paper we fo-
cus on learning the structure of the hSO and not on learn-
ing its parameters that store additional information such as
the relative location of objects with respect to each other
or their co-occurrence counts. The underlying intuition be-
hind the approach is that if two parts always lie at the same
location with respect to each other, they probably belong
to the same rigid object and hence should share the same
leaf on the hSO. However if the position of the two parts
with respect to each other varies significantly across the in-
put images, they lie on two objects that are found at un-
predictable relative locations, and are hence unrelated and
should belong to a common super-object only higher up in
the hSO. Other part-part, and hence object-object, relation-
ships should lie in a spectrum in between these two extreme
conditions. Since object transformations such as scale and
rotation could cause even two parts of the same object to
seem at different relative locations across images, we incor-
porate a notion of geometric consistency that ensures that
two parts that are found at geometrically consistent (invari-
ant to scale and rotation) locations across images are as-
signed to the same cluster/object.

2.1. Feature extraction

Given the collection of images taken from a par-
ticular scene category, local features describing interest
points/parts are extracted in all the images. These features
may be appearance based features such as SIFT [31], shape
based features such as shape context [32], geometric blur
[33], or any such discriminative local descriptors as may be
suitable for the objects under consideration. In our current
implementation, we use the Derivative of Gaussian interest
point detector, and SIFT features as our local descriptors.

2.2. Correspondences

Having extracted features from all images, correspon-
dences between these local parts are to be identified across
images. For a given pair of images, potential correspon-
dences are identified by finding k nearest neighbors of each
feature point from one image in the other image according
to an appropriate distance metric. We use Euclidean dis-
tance between the SIFT descriptors to determine the nearest
neighbors. The geometric consistency between every pair
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Figure 3. An illustration of the geometric consistency metric used
to retain good correspondences.

of correspondences is computed to build a geometric con-
sistent adjacency matrix.

Suppose we wish to compute the geometric consistency
between a pair of correspondences shown in Figure 3 in-
volving interest regions a and b in image1 and A and B in
image2. All interest regions have a scale and orientation
associated with them. Let φa be the similarity transform
that transforms a to A. βA is the transformed ba, the relative
location of b with respect to a in image1, using φa. β is
thus the estimated location of B in the image2 based on φa.
If a and A, as well as b and B are geometrically consistent
under rotation and scale, d(B, β) would be small. A score
that decreases exponentially with increasing d(B, β) is used
to quantify the geometric consistency of the pair of corre-
spondences. To make the score symmetric, a is similarly
mapped to α using the transform φb that maps b to B, and
the score is based on max(d(B, β), d(A,α)). This metric
provides us with invariance to scale and rotation, however
does not allow for affine transforms, but the assumption is
that the distortion due to affine transform in realistic scenar-
ios is minimal among local features that are closely located
on the same object.

Having computed the geometric consistency score be-
tween all possible pairs of correspondences, a spectral tech-
nique is applied to the geometric consistency adjacency ma-
trix to retain only the geometrically consistent correspon-
dences [34]. This helps eliminate most of the background
clutter. This also enables us to deal with incorrect low-level
correspondences among the SIFT features that can not be
reliably matched, for instance at various corners and edges
found in an office setting. To deal with multiple objects in
the scene, an iterative form of [34] is used.

2.3. Feature selection

Only the feature points that find geometrically consis-
tent corresponding points in most other images are retained.
This post processing step helps to eliminate the remaining
background features. Since we do not require a feature to
be observed in all the images in order to be retained, occlu-
sions, severe view point changes, even missing objects in
some images can be handled. Also, this enables us to deal
with different number of objects in the scene across images
- the assumption being that the objects that are present in
most images are the objects of interest (foreground), while

Features discarded as no geometrically consistent 
correspondences in any image (background)
Features discarded as geometrically consistent correspondences 
not across enough images (occlusion, etc.)
Features retained

Figure 4. An illustration of the correspondences and features re-
tained during learning of hSOs. The images contain four fore-
ground objects, and some background. This example is only an
illustration and not a real output.

those that are present in a few images are part of the back-
ground clutter. This proportion can be varied to suit the
scenario at hand.

We now have a reliable set of foreground feature points
and a set of correspondences among all images. An illustra-
tion can be seen in Figure 4 where the only a subset of the
detected features and their correspondences are retained.

It should be noted that the approach being unsupervised,
there is no notion of an object yet. We only have a cloud
of patches in each image and correspondences among them.
The goal is to now separate these patches into different clus-
ters (each cluster corresponding to a foreground object in
the image), and also learn the hierarchy among these objects
that will be represented as an hSO that will characterize the
entire collection of images and hence the scene.

2.4. Interaction between pairs of features

In order to separate the cloud of retained feature points
into clusters, a graph is built over the feature points, where
the weights on the edge between the nodes represents the
interaction between the pair of features across the images.
The metric used to capture the interaction between the pairs
of features is what we loosely refer to as the correlation of
the location of the two feature points across the input im-
ages. Let us assume, for simplicity of notation, that the
same number of features have been retained in all input im-
ages. We have the correspondences among these features
between every pair of images. Let F be the number of fea-



tures retained in each of the N input images. Suppose M
is the F × F correlation adjacency matrix, then Mij holds
the interaction between the ith and jth features as

Mij = R(xixj) + R(yiyj), (1)

where, R(xixj) = C(xixj)√
C(xixi)C(xjxj)

, where, C(xixj) is

the covariance between xi and xj across the input images,
and xi = {xin}, yi = {yin}, (xin, yin) is the location of
the ith feature point in the nth image, i, j = 1, . . . , F ,
n = 1, . . . , N . In addition to R(xixj) and R(yiyj) in
Equation 1, R(xiyj) and R(yixj) could also be included.
Using correlation to model the interaction between pairs of
features implicitly assumes a Gaussian distribution of the
location of one features conditioned on the other, similar to
those made by traditional constellation models [35].

If the correlation between the location of two feature
points from Equation 1 is high, they appear at similar rela-
tive locations across images. On the other hand, if the cor-
relation between the location of two feature points is low,
they occur at unpredictable locations with respect to each
other across the images. An illustration of the correlation
adjacency matrix can be seen in Figure 5. Again, there is
no concept of an object yet. The features in Figure 5 are ar-
ranged in an order that correspond to the objects, and each
object is shown to have only two features (consistent with
example in Figure 4), only for illustration purposes.

2.5. Split and merge clustering

Having built the graph capturing the interaction between
all pairs of features across images, recursive clustering is
performed on this graph. At each step, the graph is clustered
into two clusters. The properties of each cluster is analyzed,
and one or both of the clusters are further separated into two
clusters, and so on. If the variance in the correlation adja-
cency matrix corresponding to a certain cluster (subgraph)
is very low but with a high mean, it is assumed to contain
parts from a single object, and is hence not divided further.
Every stage in this recursive clustering adds to the structure
of the hSO being learnt. It can be verified for the example
shown in Figure 5, where the hSO learnt would be the one
shown in Figure 1. Since the statistics of each of the clus-
ters formed are analyzed to determine if it should be further
clustered or not, the number of foreground objects need not
be known a priori. We use normalized cuts [36] to perform
the clustering. The code provided at [37] was used. This is
the splitting step.

As stated earlier, transformations of objects in the scene
could lead the correlation values for a pair of features to be
small, even if the corresponding objects are the same or are
at similar locations in images (except under different trans-
formations). This could lead us to cluster a cloud of features
corresponding to the same object into multiple clusters dur-

M

K

P

C

M K P C

M = Monitor

K = Keyboard

P = Phone

C = Chair

Figure 5. An illustration of the correlation adjacency matrix of the
graph that would be built for the illustration in Figure 4 in a sce-
nario depicted in Figure 1.

ing the splitting step. If the transformations are significant,
such as rotation of a relatively large object, the correlation
among the parts of the object that are far may seem lower
than the correlation among parts that lie on two different
objects that are at similar locations across images. Thus,
early on in the above splitting stage (at higher levels in the
hSO), a single object may have been broken down into mul-
tiple clusters, even before two different objects in the scene
have been separated. Although in the subsequent stages in
splitting, the parts on different objects would be separated
into different clusters, the different clusters formed from
the same object early on can not be re-combined. To rec-
tify this, the geometric consistency score computed in Sec-
tion 2.2 (averaged across all images containing these fea-
tures) is now re-considered. All pairs of clusters formed at
the end of the splitting stage are examined and those that are
in fact geometrically consistent are merged together, since
they are likely to lie on the same object. This is repeated
till no two clusters are geometrically consistent. For every
merge, among the levels at which these individual clusters
were placed in the hSO before merging, the merged cluster
is placed at the lowest level, since correlation was under-
estimated, and redundant nodes are removed. This gives us
the final hSO structure. The merging step attempts to en-
sure that the final clusters of features do in-fact correspond
to objects in the scene. This split and merge approach to
clustering is similar in philosophy to that used in the image
segmentation literature.

3. Experimental results
It should be noted that the goal of this work is not im-

proved object recognition in the sense of better feature ex-
traction or matching. We focus our efforts at learning the
hSO that codes the different interactions among objects in
the scene by using well matched parts of objects, and not on
the actual matching of parts. This work is complementary
to the recent advances in object recognition that enable us
to deal with object categories and not just specific objects.
These advances indicate the feasibility to learn hSO even
among objects categories. However, in our experiments we
use specific objects with SIFT features to demonstrate our
proposed algorithm. However SIFT is not an integral part



Figure 6. A subset of images provided as input to learn the corre-
sponding hSO.

SCENE

Figure 7. Results of the hSO learning algorithm. Left: The cloud
of features clustered into groups. Each group corresponds to an
object in the foreground. Right: The corresponding learnt hSO
which captures meaningful relationships between the objects.

of our approach. This can easily be replaced with patches,
shape features, etc. with appropriate matching techniques
as may be appropriate for the scenario at hand - specific ob-
jects or object categories. Future work includes experiments
in such varied scenarios.

Several different experimental scenarios were used to
learn the hSOs. Due to lack of standard datasets where in-
teractions between multiple objects can be modeled, we use
our own collection of images.

3.1. Scene semantic analysis

Consider a surveillance type scenario where a camera is
monitoring, say an office desk. The camera takes a picture
of the desk every few hours. The hSO characterizing this
desk, learnt from this collection of images could be used
for robust object detection in this scene, in the presence of
occlusion due to the person present, or other extraneous ob-
jects on the desk. Also, if the objects on the desk are later
found in an arrangement that cannot be explained by the
hSO, it can be detected as an anomaly. Thirty images sim-
ulating such a scenario were taken. Examples of these can
be seen in Figure 6. Note the occlusions, presence of back-
ground clutter, change in scale and viewpoint, etc. The cor-
responding hSO as learnt from these images is depicted in
Figure 7.

Several different interesting observations can be made.
First, the background features are mostly eliminated. The
features on the right-side of the bag next to the CPU are re-
tained while the rest of the bag is not. This is because due
to several occlusions in the images, most of the bag is oc-
cluded in images. However, the right-side of the bag resting
on the CPU is present in most images (not all), and hence is
interpreted to be foreground. The monitor, keyboard, CPU
and mug are selected to be the objects of interest (although
the mug is absent in some images). The hSO indicates that
the mug is found at most unpredictable locations in the im-
age, while the monitor and the CPU are clustered together
till the very last stage in the hSO. This matches our seman-
tic understanding of the scene. Also, since the photo frame,
the right-side of the bag and the CPU are always found at
the same location with respect to each other across images
(they are stationary), they are clustered together as the same
object. Ours being an unsupervised approach, this artifact
is expected as there is no way for the algorithm to segment
these into separate objects.

3.2. Photo grouping

We consider an example application where the goal is
to obtain the semantic hierarchy among photographs. We
present users with 6 photos of which 3 are outdoor (2
beaches, 1 garden) and 3 indoor (2 of a person in an office,
1 empty office). These photos can be seen in Figure 8. The
users were instructed to group these photos such that the
ones that are similar are close by. The number of groups to
be formed was not specified. Some users made two groups
(indoor vs. outdoor), while some made four groups by fur-
ther separating these two groups into two each. We took im-
ages of 20 such arrangements. Example images are shown
in Figure 9. We use these images to learn the hSO. The re-
sults obtained are shown in Figure 10. We can see that the
hSO can capture the semantic relationships among the im-
ages, including the general (indoor vs. outdoor) as well as
more specific ones (beaches vs. garden) through the hierar-
chical structure. It should be noted that the content of the
images was not utilized to compute the similarity between
images and group them accordingly - this is based purely
on the user arrangement. In fact, it may be argued that al-
though this grouping seems very intuitive to us, it may be
very challenging to obtain this grouping through low level
features extracted from the photos. Such an hSO on a larger
number of images can hence be used to empower a content
based digital image retrieval system with the users semantic
knowledge. In such a case a user-interface, similar to [38],
may be provided to users and merely the position of each
image can be noted to learn the underlying hSO without re-
quiring feature extraction and image matching. In [38], al-
though user preferences are incorporated, a hierarchial no-
tion of interactions is not employed which provides much



1

23

4

5 6

Figure 8. The six photos that users arranged.

Figure 9. A subset of images of the different arrangements of
photos that users provided for which the corresponding hSO was
learnt.
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Figure 10. Results of the hSO learning algorithm. Left: The cloud
of features clustered into groups. Each group corresponds to a
photograph. Right: The corresponding learnt hSO which captures
the appropriate semantic relationships among the photos. Each
cluster and photograph is tagged with a number that matches those
shown in Figure 8 for clarity.

richer information.

3.3. Quantitative results

In order to better quantify the performance of the pro-
posed algorithm, a hierarchy among objects was staged i.e.
the ground truth hSO is known. As shown in the example

Figure 11. A subset of images provided as input to learn the corre-
sponding hSO.

SCENE

Figure 12. Results of the hSO learning algorithm. Left: The cloud
of features clustered into groups. Each group corresponds to an
object in the foreground. Right: The corresponding learnt hSO
which matches the ground truth hSO.
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Figure 13. The accuracy of the learnt hSO as more input images
are provided. Also, the need for a merging step after the splitting
stage in clustering is illustrated.

images in Figure 11, two candy boxes are placed mostly
next to each other, a post-it-note around them, and an entry
card is tossed randomly. Thirty such images were captured
against varying cluttered backgrounds. Note the rotation
and change in view point of the objects, as well as varying
lighting conditions. These were hand-labeled so that the
ground truth assignments of the feature points to different
nodes in the hSO are known and accuracies can be com-
puted. The corresponding hSO was learnt from these (unla-
beled) images. The results obtained are as seen in Figure 12.
The feature points have been clustered appropriately, and
the learnt hSO matches the description of the ground truth



hSO above. The clutter in the background has been success-
fully eliminated. Quantitative results reporting the accuracy
of the learnt hSO, measured as the proportion of features as-
signed to the correct level in the hSO, with varying number
of images used for learning are shown in Figure 13. It can be
seen that with significantly few images a meaningful hSO
can be learnt. Also, the accuracy of the hSO learnt if the
merge step as described in Section 2.5 is not incorporated
after the splitting stage is reported. It should be noted that
this accuracy simply reports the percentage of features de-
tected as foreground that were assigned to the right levels in
the accuracy. While it penalizes background features con-
sidered as foreground, it does not penalize dropping fore-
ground features as background and hence not considering
them in the hSO. Visual quality of results indicate that such
a metric suffices. In less textured objects the accuracy met-
ric would need to be reconsidered.

4. Conclusion
We introduced hSOs: hierarchical semantics of objects

that capture potentially semantic relationships among mul-
tiple objects in a scene as observed by their relative posi-
tions in a collection of images. The underlying entity is
a patch, however the hSO goes beyond patches and repre-
sents the scene at various levels of abstractness - ranging
from patches on individual objects to objects and groups
of objects in a scene. An unsupervised hSO learning algo-
rithm has been proposed. The algorithm can identify the
relevant parts of the images (foreground), and discover the
relationships between these parts and the objects they be-
long to - automatically and entirely unsupervised. Potential
directions of future work include learning the parameters of
the hSO and applying it to provide context for enhancing
the performance of independent object detectors.
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