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Abstract

We introduce hSOs: Hierarchical Semantics of Objects.
An hSO is learnt from a collection of images taken from a
particular scene category. The hSO captures the interac-
tions between the objects that tend to co-occur in the scene,
and hence are potentially semantically related. Such rela-
tionships are typically hierarchical. For example, in a col-
lection of images taken in a living room scene, the TV, DVD
player and coffee-table co-occur frequently. The TV and
the DVD player are more closely related to each other than
the coffee table, and this can be learnt from the fact that
the two are located at similar relative locations across im-
ages, while the coffee table is somewhat arbitrarily placed.
The goal of this paper is to learn this hierarchy that char-
acterizes the scene. The proposed approach, being entirely
unsupervised, can detect the parts of the images that be-
long to the foreground objects, cluster these parts to rep-
resent objects, and provide an understanding of the scene
by hierarchically clustering these objects in a semantically
meaningful way - all from a collection of unlabeled images
of a particular scene category. In addition to providing the
semantic layout of the scene, learnt hSOs can have several
useful applications such as compact scene representation
for scene category classification and providing context for
enhanced object detection.

1. Introduction
Objects that tend to co-occur in scenes are often seman-

tically related. Hence, they demonstrate a characteristic
grouping behavior according to their relative positions in
the scene. Some groupings are tighter than others, and thus
an hierarchy of these groupings among these objects can be
observed in a collection of images of similar scenes. It is
this hierarchy that we refer to as the Hierarchical Seman-
tics of Objects (hSO). This can be better understood with
an example, which is shown in Figure 1.

At what scale is an object defined? Are the individual
keys on a keyboard objects, or the entire keyboard, or is the
entire computer an object? The definition of an object is
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Figure 1. Images for “office” scene from Google image search.
There are four commonly occurring objects: chair, phone, moni-
tor and keyboard. The monitor and keyboard occur at similar rela-
tive locations across images and hence belong to a common super-
object, computer, at a lower level in the hierarchy. The phone is
seen within the vicinity of the monitor and keyboard. However, the
chair is randomly placed, and hence belongs to a common super-
object with other objects only at the highest level in the hierarchy,
the entire scene. This pattern in relative locations, often stemming
from semantic relationships among the objects, provides contex-
tual information about the scene “office” and is captured by an
hSO: Hierarchical Semantics of Objects. A possible correspond-
ing hSO is shown on the right.

blurry, and the hSO exploits this to allow incorporation of
semantic information of the scene layout. The leaves of the
hSO are a collection of parts and represent the objects, while
the various levels in the hSO represent the super-objects at
different levels of abstractness, with the entire scene at the
highest level. Hence hSOs span the spectrum between spe-
cific objects, modeled as a collection of parts, at the lower
level and scene categories at the higher level. This provides
a rich amount of information at various semantic levels that
can be potentially exploited for a variety of applications,
ranging from establishing correspondences between parts
for object matching, providing context for robust object de-
tection to scene category classification.

Several approaches in text data mining represent the
words in a lower dimensional space where words with sup-
posedly similar semantic meanings collapse into the same
cluster. This representation is based simply on their occur-
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rence counts in documents. Probabilistic Latent Semantic
Analysis [1] is one such approach that has also been ap-
plied to images [2–4] for unsupervised clustering of images
based on their topic and identifying the part of the images
that are foreground. Our goal however is a step beyond this
towards a higher level understanding of the scene. Apart
from simply identifying the existence of potential semantic
relationship between the parts, we attempt to characterize
these semantic relationships among these parts, and accord-
ingly cluster them into (super) objects at various levels in
the hSO. We define dependencies based on relative location
as opposed to co-occurrence.

Using hierarchies or dependencies among parts of ob-
jects for object recognition has been promoted for decades
[5–13]. However we differentiate our work from these, as
our goal is not object recognition, but is to characterize the
scene by modeling the interactions between multiple ob-
jects in a scene. More so, although these works deal with
hierarchies per say, they capture philosophically very differ-
ent phenomena through the hierarchy. For instance, Marr et
al. [8] and Levinshtein et al. [7] capture the shape of artic-
ulated objects such as the human body through a hierarchy,
where as Fidler et al. [6] capture varying levels of complex-
ity of features at different levels. Bienenstock et al. [10]
and Siskind et al. [14] learn a hierarchical structure among
different parts/regions of an image based on rules on abso-
lute locations of the regions in the images, similar to those
that govern the grammar or syntax of language. These var-
ious notions of hierarchies are strikingly different from the
inter-object, potentially semantic, relationships we wish to
capture through a hierarchical structure.

Scenes may contain several objects of interest, and hand
labeling these objects would be quite tedious. To avoid this,
as well as the bias introduced by the subjectiveness of a hu-
man in identifying the objects of interest in a scene, unsu-
pervised learning of hSO is preferred that truly captures the
characteristics of the data. It is important to note that, our
approach being entirely unsupervised, the presence of mul-
tiple objects as well as background clutter makes the task
of clustering the foreground parts into hierarchial clusters,
while still maintaining the integrity of objects and yet cap-
turing the inter-relationships among them, challenging; and
the information coded in the learnt hSO quite rich. It entails
more than a mere extension of any of the above works for
single-objects to account for multiple objects.

Before we describe the details of the learning algorithm,
we first motivate hSOs through a couple of interesting po-
tential areas for their application.

1.1. Context

Learning the hSO of scene categories could provide con-
textual information about the scene and enhance the accu-
racy of individual detectors by providing a prior over the

likely position of an object, given the position of another
object in the scene.

Several works use context for better image understand-
ing. One class of approaches is analyzing individual images
for characteristics of the surroundings of the object such as
geometric consistency of object hypotheses [15], viewpoint
and mean scene depth estimation [16, 17], surface orienta-
tions [18], etc. These provide useful information to enhance
object detection/recognition. However, our goal is not to ex-
tract information about the surroundings of the object of in-
terest from a single image. Instead, we aim to learn a char-
acteristic representation of the scene category and a more
higher level understanding from a collection of images by
capturing the semantic interplay among the objects in the
scene as demonstrated across the images.

The other class of approaches models dependencies
among different parts of an image [19–25] from a collection
of images. However, these approaches require hand anno-
tated or labeled images. Also, [19–21, 24] are interested
in pixel labels (image segmentation) and hence do not deal
with the notion of objects. Torralba et al. [26] use the global
statistics of the image to predict the type of scene which pro-
vides context for the location of the object, however their
approach is also supervised. Torralba et al. [27] learn in-
teractions among the objects in a scene for context however
again, their approach is supervised and the different objects
in the images are annotated. Marszałek et al. [28] also learn
relationships among multiple classes of objects, however in-
directly through a lexical model learnt on the labels given to
images, and hence is a supervised approach. Our approach,
is entirely unsupervised - the relevant parts of the images,
and their relationships are automatically discovered from a
corpus of unlabeled images.

1.2. Compact scene category representation

hSOs provide a compact representation that character-
izes the scene category of the images that it has been learnt
from. Hence, hSOs can be used for scene category classi-
fication. Singhal et al. [29] learn a set of relationships be-
tween different regions in a large collection of images with a
goal to characterize the scene category. However, these im-
ages are hand segmented, and a set of possible relationships
between the different regions are predefined (above, below,
etc.). Other works [30, 31] also categorize scenes but re-
quire extensive human labeling. Fei-Fei et al. [3] group the
low-level features into themes and themes into scene cat-
egories. However, the themes need not corresponding to
semantically meaningful entities. Also, they do not include
any location information, and hence cannot capture the in-
teractions between different parts of the image. They are
able to learn an hierarchy that relates the different scenes
according to their similarity, however, our goal is to learn an
hierarchy for a particular scene that characterizes the inter-
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Figure 2. Flow of the proposed algorithm for unsupervised learn-
ing of hSOs

actions among the entities in the scene, arguably according
to the underlying semantics.

Our approach to unsupervised learning of (the structure)
of hSO is outlined in Figure 2 and described in Section 2.
Section 3 presents experiments and results on the unsuper-
vised learning of hSO as well as using an hSO to provide
context for robust object detection. Section 4 concludes the
paper.

2. Unsupervised learning of hSOs
The approach we employ for unsupervised learning of

hSOs is outlined in Figure 2. Each of the stages are ex-
plained in detail below. The underlying intuition behind
the approach is that if two parts always lie at the same
location with respect to each other, they probably belong
to the same rigid object and hence should share the same
leaf on the hSO. However if the position of the two parts
with respect to each other varies significantly across the in-
put images, they lie on two objects that are found at un-
predictable relative locations, and are hence unrelated and
should belong to a common super-object only higher up in
the hSO. Other part-part, and hence object-object, relation-
ships should lie in a spectrum in between these two extreme
conditions. Since object transformations such as scale and
rotation could cause even two parts of the same object to
seem at different relative locations across images, we incor-
porate a notion of geometric consistency that ensures that
two parts that are found at geometrically consistent (invari-
ant to scale and rotation) locations across images are as-
signed to the same cluster/object.

2.1. Feature extraction

Given the collection of images taken from a par-
ticular scene category, local features describing interest
points/parts are extracted in all the images. These features
may be appearance based features such as SIFT [32], shape
based features such as shape context [33], geometric blur
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Figure 3. An illustration of the geometric consistency metric used
to retain good correspondences.

[34], or any such discriminative local descriptors as may be
suitable for the objects under consideration. In our current
implementation, we use the Derivative of Gaussian interest
point detector, and SIFT features as our local descriptors.

2.2. Correspondences

Having extracted features from all images, correspon-
dences between these local parts are to be identified across
images. For a given pair of images, potential correspon-
dences are identified by finding k nearest neighbors of each
feature point from one image in the other image according
to an appropriate distance metric. We use Euclidean dis-
tance between the SIFT descriptors to determine the nearest
neighbors. The geometric consistency between every pair
of correspondences is computed to build a geometric con-
sistent adjacency matrix, MG. This is done as follows.

Suppose we wish to compute the geometric consistency
between a pair of correspondences shown in Figure 3 in-
volving interest regions a and b in image1 and A and B in
image2. All interest regions have a scale and orientation
associated with them. Let φa be the similarity transform
that transforms a to A. βA is the transformed ba, the relative
location of b with respect to a in image1, using φa. β is
thus the estimated location of B in the image2 based on φa.
If a and A, as well as b and B are geometrically consistent
under rotation and scale, d(B, β) would be small. A score
that decreases exponentially with increasing d(B, β) is used
to quantify the geometric consistency of the pair of corre-
spondences. To make the score symmetric, a is similarly
mapped to α using the transform φb that maps b to B, and
the score is based on max(d(B, β), d(A,α)). This metric
provides us with invariance to scale and rotation, however
does not allow for affine transforms, but the assumption is
that the distortion due to affine transform in realistic scenar-
ios is minimal among local features that are closely located
on the same object.

Having computed the geometric consistency score be-
tween all possible pairs of correspondences, a spectral tech-
nique is applied to the geometric consistency adjacency ma-
trix to retain only the geometrically consistent correspon-
dences [35]. This helps eliminate most of the background
clutter. This also enables us to deal with incorrect low-level
correspondences among the SIFT features that can not be
reliably matched, for instance at various corners and edges



found in an office setting. To deal with multiple objects in
the scene, an iterative form of [35] is used.

2.3. Feature selection

Only the feature points that find geometrically consistent
corresponding points in most other images, and not just a
pair of images, are retained. This post processing step helps
to eliminate the remaining background features. Since we
do not require a feature to be observed in all the images in
order to be retained, occlusions, severe view point changes,
even missing objects, etc. can be handled. Using multiple
images gives us the ability to fully take advantage of the
fact that erroneous matches are random, while true matches
are mostly consistent. We now have a reliable set of fore-
ground feature points and a set of correspondences among
all images. It should be noted that the approach being unsu-
pervised, there is no notion of an object yet. We only have a
cloud of patches in each image and correspondences among
them. The goal is to now separate these patches into dif-
ferent clusters (each cluster corresponding to a foreground
object in the image), and also learn the hierarchy among
these objects that will be represented as an hSO that will
characterize the entire collection of images and hence the
scene.

2.4. Interaction between pairs of features

In order to separate the cloud of retained feature points
into clusters, a graph is built over the feature points, where
the weights on the edge between the nodes represents the
interaction between the pair of features across the images.
The metric used to capture the interaction between the pairs
of features is what we loosely refer to as the correlation of
the location of the two feature points across the input im-
ages. Let us assume, for simplicity of notation, that the
same number of features have been retained in all input im-
ages. We have the correspondences among these features
between every pair of images. Let F be the number of fea-
tures retained in each of the N input images. Suppose MR

is the F × F correlation adjacency matrix we wish to fill,
then MR(i, j) holds the interaction between the ith and jth

features as

MR(i, j) = R(xixj) + R(yiyj), (1)

where, R(xixj) = C(xixj)√
C(xixi)C(xjxj)

, where, C(xixj) is

the covariance between xi and xj across the input images,
and xi = {xin}, yi = {yin}, (xin, yin) is the location of
the ith feature point in the nth image, i, j = 1, . . . , F ,
n = 1, . . . , N . In addition to R(xixj) and R(yiyj) in Equa-
tion 1, R(xiyj) and R(yixj) could also be included. Using
correlation to model the interaction between pairs of fea-
tures implicitly assumes a gaussian distribution of the lo-
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Figure 4. Illustration of the split and merge clustering algorithm

cation of one features conditioned on the other, similar to
traditional constellation models [36].

2.5. Split and merge clustering

Having built the graph capturing the interaction between
all pairs of features across images, recursive clustering is
performed on this graph represented via MR. At each step,
the graph is clustered into two clusters. The properties of
each cluster are analyzed, and one or both of the clusters
are further separated into two clusters, and so on. If the
variance in the correlation adjacency matrix corresponding
to a certain cluster (subgraph) is very low but with a high
mean, it is assumed to contain parts from a single object,
and is hence not divided further. Every stage in this recur-
sive clustering adds to the structure of the hSO being learnt.
Since the statistics of each of the clusters formed are ana-
lyzed to determine if it should be further clustered or not,
the number of foreground objects need not be known a pri-
ori. We use normalized cuts [37] to perform the clustering.
The code provided at [38] was used. This is the splitting
step.

As stated earlier, transformations of objects in the scene
could lead the correlation values for a pair of features to
be small, even if the corresponding objects are the same
or are at similar locations in images (but only under differ-
ent transformations). If the transformations are significant,
such as rotation of a relatively large object, the correlation
among the parts of the object that are further apart may seem
lower than the correlation among parts that lie on two dif-
ferent objects however are at similar locations across im-
ages. This is illustrated in Figure 4. Thus, early on in the
above splitting stage (at higher levels in the hSO), a single
object may have been broken down into multiple clusters,
even before two different objects in the scene are separated
in subsequent steps, and these can not be recombined. To
rectify this, the geometric consistency score computed in
Section 2.2 MG is now reconsidered. The score is aver-
aged across all images containing these selected foreground
features. Due to this accumulation of statistics across im-
ages, the noise is significantly suppressed than while con-
sidering only a pair of images as was done in Section 2.2.
All pairs of clusters formed at the end of the splitting stage
are examined and those that are in fact geometrically con-
sistent according to these accumulated statistics, are merged
together, since they are likely to lie on the same object. This



Figure 5. A subset of images provided as input to learn the corre-
sponding hSO.

SCENE

Figure 6. Results of the hSO learning algorithm. Left: The cloud
of features clustered into groups. Each group corresponds to an
object in the foreground. Right: The corresponding learnt hSO
which captures meaningful relationships between the objects.

is repeated till no two clusters are geometrically consistent.
For every merge, among the levels at which these individual
clusters were placed in the hSO before merging, the merged
cluster is placed at the lowest level (since correlation was
under-estimated), and redundant states are removed. This is
illustrated in Figure 4. This gives us the final hSO structure.
The merging step attempts to ensure that the final clusters of
features do in-fact correspond to objects in the scene. This
split and merge approach to clustering is similar in philoso-
phy to that used in the image segmentation literature.

3. Experimental results
It should be noted that the goal of this work is not im-

proved object recognition through better feature extraction
or matching. We focus our efforts at learning the hSO that
codes the different interactions among objects in the scene
by using well matched parts of objects. In our experiments
we use specific objects with SIFT features to demonstrate
our proposed algorithm, however SIFT is not an integral
part of our approach. It can be replaced with patches, shape
features, etc. with relevant matching techniques as may be
appropriate for the scenario at hand - specific objects or ob-
ject categories. Recent advances in object recognition in-
dicate the feasibility to learn hSO even among objects cat-
egories. Future work includes experiments in such varied
scenarios. Several different experimental scenarios were
used to learn the hSOs. Due to lack of standard datasets
where interactions between multiple objects can be mod-
eled, we use our own collection of images.

3.1. Scene semantic analysis

Consider a surveillance type scenario where a camera is
monitoring, say an office desk. The camera takes a picture

of the desk every few hours. The hSO characterizing this
desk, learnt from this collection of images could be used
for robust object detection in this scene, in the presence of
occlusion due to the person present, or other extraneous ob-
jects on the desk. Also, if the objects on the desk are later
found in an arrangement that cannot be explained by the
hSO, it can be detected as an anomaly. Thirty images simu-
lating such a scenario were taken. Examples of these can be
seen in Figure 5. Note the occlusions, background clutter,
change in scale and viewpoint, etc. The corresponding hSO
as learnt from these images is depicted in Figure 6.

Several different interesting observations can be made.
First, the background features are mostly eliminated. The
features on the right-side of the bag next to the CPU are re-
tained while the rest of the bag is not. This is because due
to several occlusions in the images, most of the bag is oc-
cluded in images. However, the right-side of the bag resting
on the CPU is present in most images, and hence is inter-
preted to be foreground. The monitor, keyboard, CPU and
mug are selected to be the objects of interest (although the
mug is absent in some images). The hSO indicates that the
mug is found at most unpredictable locations in the image,
while the monitor and the keyboard are clustered together
till the very last stage in the hSO. This matches our seman-
tic understanding of the scene. Also, since the photo frame,
the right-side of the bag and the CPU are always found at
the same location with respect to each other across images
(they are stationary), they are clustered together as the same
object. Ours being an unsupervised approach, this artifact is
expected, and natural even, since there is in fact no evidence
indicating these entities to be separate objects.

3.2. Photo grouping

We consider an example application where the goal is to
learn the semantic hierarchy among photographs. This ex-
periment is to demonstrate the capability of the proposed
algorithm to truly capture the semantic relationships, by
bringing users in the loop, since semantic relationships are
not a very tangible notion. We present users with 6 pho-
tos: 3 outdoor (2 beaches, 1 garden) and 3 indoor (2 with
a person in an office, 1 empty office). These photos can be
seen in Figure 7. The users were instructed to group these
photos such that the ones that are similar are close by. The
number of groups to be formed was not specified. Some
users made two groups (indoor vs. outdoor), while some
made four groups by further separating these two groups
into two each. We took pictures that capture 20 such ar-
rangements. Example images are shown in Figure 8. We
use these images to learn the hSO. The results obtained are
shown in Figure 9. We can see that the hSO can capture
the semantic relationships among the images, including the
general (indoor vs. outdoor) as well as more specific ones
(beaches vs. garden) through the hierarchical structure. It
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Figure 7. The six photos that users arranged.

Figure 8. A subset of images of the arrangements of photos that
users provided for which the corresponding hSO was learnt.
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Figure 9. Results of the hSO learning algorithm. Left: The cloud
of features clustered into groups. Each group corresponds to a
photograph. Right: The corresponding learnt hSO which captures
the appropriate semantic relationships among the photos. Each
cluster and photograph is tagged with a number that matches those
shown in Figure 7 for clarity.

should be noted that the content of the images was not uti-
lized to compute the similarity between images and group
them accordingly - this is based purely on the user arrange-
ment. In fact, it may be argued that although this grouping
seems very intuitive to us, it may be very challenging to ob-
tain this grouping through low level features extracted from
the photos. Such an hSO on a larger number of images can
hence be used to empower a content based digital image re-
trieval system with the users semantic knowledge. In such
a case a user-interface, similar to [39], may be provided to
users and merely the position of each image can be noted to
learn the underlying hSO without requiring feature extrac-
tion and image matching. In [39], although user preferences
are incorporated, a hierarchial notion of interactions is not
employed which provides much richer information.

3.3. Quantitative results

In order to better quantify the performance of the pro-
posed learning algorithm, a hierarchy among objects was
staged i.e. the ground truth hSO is known. As shown in the
example images in Figure 10, two candy boxes are placed
mostly next to each other, a post-it-note around them, and
an entry card is tossed randomly. Thirty such images were

Figure 10. A subset of images provided as input to learn the corre-
sponding hSO.
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Figure 11. (a) Results of the hSO learning algorithm. Left: The
cloud of features clustered into groups. Each group corresponds
to an object in the foreground. Right: The corresponding learnt
hSO which matches the ground truth hSO. (b) The accuracy of the
learnt hSO as more input images are provided. Also, the need for
a merging step after the splitting stage in clustering is illustrated.

captured against varying cluttered backgrounds. Note the
rotation and change in view point of the objects, as well
as varying lighting conditions. These were hand-labeled so
that the ground truth assignments of the feature points to
different nodes in the hSO are known and accuracies can
be computed. The corresponding hSO was learnt from the
unlabeled images. The results obtained are as seen in Fig-
ure 11(a). The feature points have been clustered appro-
priately, and the learnt hSO matches the description of the
ground truth hSO above. The clutter in the background has
been successfully eliminated. Quantitative results reporting
the accuracy of the learnt hSO, measured as the proportion
of features assigned to the correct level in the hSO, with
varying number of images used for learning are shown in
Figure 11(b). It can be seen that with significantly few im-
ages a meaningful hSO can be learnt. Also, the accuracy of
the hSO learnt if the merge step as described in Section 2.5
is not incorporated after the splitting stage is reported.

3.4. Context for robust object detection

Consider the hSO learnt for the office scene in Sec-
tion 3.1 as shown in Figure 12. Consider an image of the
same scene (not part of the learning data) as shown in Fig-
ure 13 which has significant occlusions (real on the key-
board, and synthetic on the CPU and mug). We wish to
detect the four foreground objects.

The leaves of the hSO hold the clouds of features (along
with their locations) for the corresponding objects. To de-
tect the objects, these are matched with features in the test
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Figure 12. The information flow used within hSO for context.
Solid bi-directional arrows indicate exchange of context. Dotted
directional arrows indicate flow of (refined) detection information.
The image on the left is shown for reference for what objects the
symbols correspond to.

Figure 13. Test image in which the four objects of interest are to
be detected. Significant occlusions are present.

detn context by refined    detn

Figure 14. Left: candidate detections of keyboard, along with the
max score (incorrect) detection. Middle: context prior provided
by detected monitor. Right: detections of keyboard after applying
context from monitor along with the max score (correct) detection.
The centers of the candidate detections are shown.

Figure 15. Detections of the 4 objects without context (left) - 3
of 4 are incorrect due to significant occlusions. Detections with
context (right) - all 4 are correct.

image through geometrically consistent correspondences
similar to that in Section 2.2. Multiple candidate detections
along with their corresponding scores are retained, as seen
in Figure 14 (left). The detection with the highest score
is determined to be the final detection. Due to significant
occlusions, background may find candidate detections with
higher scores and hence the object would be miss-detected,

as seen in Figure 15 (left), where three of the four objects
are incorrectly localized.

Instead we use the context provided by other objects in
the scene for robust detection. The structure of the hSO
indicates that the siblings i.e. the entities (objects or super-
objects) sharing the same parent node in the hSO structure
are the most informative for each other to predict their loca-
tion. Hence, during learning, we learn the parameters of the
relative location of an entity only with respect to its sibling
in the hSO; as compared to learning the interaction among
all objects (a flat network structure instead of hierarchy)
where all possible combinations of objects would need to
be considered entailing learning of a large number of pa-
rameters, which for a large number of objects and limited
training data could be prohibitive. Each entity is treated as
a point with a scale and orientation computed from the dis-
tribution of features or objects that compose it. The relative
locations (normalized for scale and orientation) are mod-
eled as Gaussian distributions that provide the context prior.
Hence, in addition to the cloud of features at the leaves, each
node in the hierarchy holds the mean and variance of the lo-
cation of its sibling relative to its own position.

The flow of information used to incorporate the context
is shown in Figure 12. In the test image, candidate de-
tections of the foreground objects at the lowest level (L0)
in the hSO structure are first determined. The context
prior provided by each of these (two) objects is applied to
the other object and these detections are pruned/refined as
shown in Figure 14. The distribution in Figure 14 (mid-
dle) is strongly peaked because it indicates the relative lo-
cation of the keyboard with respect to the monitor, which
is quite predictable. However, the distribution of the abso-
lute location of the keyboard across the training images as
shown in Figure 5 is significantly less peaked. The hSO al-
lows us to condition on the appropriate objects and obtain
such peaked contextual distributions. This refined detec-
tion information is passed on to the next higher level (L1)
in the hSO, which constitutes the detection information of
the super-object containing these two objects, which in turn
provides context for refining the detection of the other ob-
ject at L1, and so on.

In the presence of occlusion, even if a background match
has a higher score, it will most likely be pruned out by
the context prior. The detection results obtained by using
context is shown in Figure 15 (right) which correctly lo-
calizes all four objects. The objects, although significantly
occluded, are easily recognizable to us. So the context is
not hallucinating the objects entirely, but is amplifying the
available (little) evidence at hand, while enabling us to not
be distracted by the false background matches.

Ongoing work involves a more theoretical treatment of
the hSO, formalizing the independence assumptions made,
avoiding making hard decisions at each level in the hSO to



determine the final detection, as well as iteratively flowing
information from leaves to the root as well as the root to the
leaves of the hSO till convergence.

4. Conclusion
We introduced hSOs: Hierarchical Semantics of Objects

that capture potentially semantic relationships among ob-
jects in a scene as observed by their relative positions in a
collection of images. An unsupervised hSO learning algo-
rithm has been proposed. Given a collection of images of a
scene, the algorithm can identify the foreground parts of the
images, discover the relationships between these parts and
the objects they belong to, learn the appearance models of
these objects as well as relative location models for related
objects and use these to provide context for robust object de-
tection even with significant occlusions in a new test image
- automatically and entirely unsupervised. This, we believe,
takes us a step closer to true image understanding.
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