
CLASSIFICATION-ERROR COST MINIMIZATION STRATEGY: DCMS

Devi Parikh and Tsuhan Chen

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA, USA
{dparikh,tsuhan}@cmu.edu

ABSTRACT

Several classification applications such as intrusion detection,
biometric recognition, etc. have different costs associated
with different classification errors. In such scenarios, the goal
is to minimize the cost incurred, and not the classification
error rate itself. This paper proposes a Cost Minimization
Strategy, dCMS, which when applied to classifiers, provides
a boost in the performance by reducing the cost incurred due
to classification errors. dCMS is classifier-type independent,
however it exploits the statistical properties of the trained clas-
sifier. It does not require classifiers to be retrained, which is
particularly advantageous in scenarios where the costs vary
dynamically. Convincing results are provided which indicate
the statistically significant reduction in cost incurred by ap-
plying dCMS, in a diverse set of classification scenarios with
datasets and classifiers of varying complexities.

Index Terms— cost minimization, dCMS, intrusion de-
tection, volatile organic compounds, optical character recog-
nition, Learn++, combining classifiers

1. INTRODUCTION

Several applications such as biometric recognition, intrusion
detection, etc. require striking a balance in the trade-off be-
tween, for example, user convenience and integrity of the sys-
tem. Due to this, different classification errors incur differ-
ent costs. For example, in a high-security federal facility, the
cost of permitting an imposter is much higher than the cost of
denying access to someone genuine. On the other hand, con-
sider the fingerprint recognizer on a consumer laptop which
is at most used by a few people. In this case, there is a higher
cost for the user’s inconvenience due to false rejects. In such
scenarios it is crucial to develop classification systems that
minimize the cost incurred due to classification errors, and
not the classification error rate itself.

Most often, unprincipled ad hoc techniques are used to
deal with these costs. Slightly more principled techniques
include using the Receiver Operating Characteristic (ROC)
curves or precision-recall curves and choose a desired oper-
ating point. However, this works only for two class problems

p(x|ω1) p(x|ω2)

τcerr
x

(a)

x

2p(x|ω1)

p(x|ω2)

τcost

(b)

Fig. 1. Depiction of bayes rule based optimum strategy for
classification for two class problem, with known underly-
ing class conditional distributions with (a) same (b) different
costs associated with both types of classification errors.

such as verification problems in biometric recognition [1] and
there are no fully developed extensions of ROC curves to mul-
tiple classes [2]. Algorithms such as cost-sensitive Adaboost
[3] have also been proposed, however if the costs involved
vary, they require retraining the entire classification system.

Our proposed cost minimization strategy, dCMS, provides
a principled approach that:

1. Can deal with multiple class problems

2. Is a simple post-training step, and hence does not re-
quire retraining of classifiers if the costs involved vary

3. Is classifier independent, and can be applied to any clas-
sification system that provides a confidence score in its
classification

The rest of the paper is organized as follows. Section 2
describes the dCMS approach, Section 3 discusses the exper-
iments conducted and results obtained and finally Section 4
concludes the paper.

2. APPROACH

To motivate our proposed approach, let us consider a clas-
sification problem with one feature, x, and two classes, ω =
{ω1, ω2}, where the conditional distributions of the two classes,

p(x|ω1), p(x|ω2) are known, as depicted in Fig.1(a). An op-
timum operating point, τcerr, a threshold on the feature value
such that the classification error rate, shaded regions in Fig.1(a),
is minimized, can be determined using the Bayes classifica-
tion rule [4] as depicted.

Suppose the cost of a false positive for ω2 is twice that
of ω1, then the optimum threshold τcost that minimizes the
cost incurred by the classification errors, shaded portion in
Fig.1(b), can be determined using a similar Bayes classifica-
tion rule for costs [4] as depicted in Fig.1(b). From here on,
the optimum threshold will refer to the one which minimizes
the cost incurred, and not the classification error rate itself.

The task is to now apply the above principle to a classifi-
cation problem with different (known) costs associated with
different classification errors with:

1. Unknown underlying class conditional distributions

2. High dimensional data

3. Multiple classes

The following subsections describe our approach in ex-
tending the above principle to each one of these three issues.
While (1) and (2) have been well addressed by the commu-
nity, the contribution of this work is to address (3).

2.1. Unknown distributions

In a one-feature problem, if the underlying class conditional
distributions are not known, one can estimate them with a his-
togram. And using the Bayes classification rule [4] as de-
picted in Fig.1(b), an optimum threshold can be determined.
It should be noted that since the distributions are now repre-
sented non-parametrically, the optimum threshold cannot be
determined analytically. The search process, however, being
just a one-dimensional search, is fairly simple. A set of pos-
sible threshold values (in the range of 0 to 1 for normalized
outputs of classifiers) can be evaluated to determine the opti-
mum threshold. To evaluate each threshold value, the cost of
classification errors by using that threshold for classification
is to be computed. Having computed the class conditional
(cumulative) distributions via histograms and given the cost
matrix indicating the cost of each type of classification error,
computing this overall classification cost for every threshold
is cheap.

2.2. High dimensional data

The above approach works for unknown class conditional dis-
tributions of one-dimensional data. However, with high di-
mensional data and unknown class conditional distributions,
there is seldom enough data or resources to estimate these dis-
tributions (hence the need for learning algorithms!). Hence,
a classification system is trained on this high dimensional
data that provides a score that represents the classification

system’s confidence that the instance belongs to each of the
two classes. This score can now be perceived to be the one-
dimensional feature on the basis of which a class is to be
picked. The high-dimensional classification problem has now
been converted to a one-dimensional problem for which the
class conditional distributions can be estimated by histograms
as described in Section 2.1, and the optimum threshold can be
determined. Thus, we have resolved issues (1) and (2).

2.3. Multiple classes

So far we have considered a two-class problem. What if
we have multiple (say C) classes? We would still train a C
class classification system that provides a confidence for an
instance belonging to each of the C classes. This may be
implemented as one classifier with C outputs or as C indi-
vidual classifiers trained to respond to each of the C classes.
From here on we will refer to the C outputs of the classi-
fication system, irrespective of the underlying classification
system layout. If we can determine C optimum thresholds to
be placed on each of the C outputs, the class corresponding to
the output that exceeds its respective threshold can be picked
as the classification decision. If multiple outputs exceed their
thresholds, voting resolution techniques such as weighted ma-
jority voting, etc. [5] can be employed. Although we have
solved this for C = 2 in the previous subsections, applying
the principle in Fig.1(b) given a C × C cost matrix and C
class conditional distributions is not straightforward. We re-
solve this by subdividing the problem into C two-class prob-
lems, and computing C 2 × 2 cost matrices from the C × C
cost matrix. The procedure for this is described next.

Since the classification system has been trained, a confu-
sion matrix (on training or validation data) can be computed
as it would ordinarily be computed in order to evaluate the
performance of the classification system. Let the computed
C × C confusion matrix be

n11 n12 ... n1C

n21 n22 ... n2C

...
nC1 nC2 ... nCC


where nij is the number of instances that belong to Class

i but were classified as Class j. i,j ∈ {1, 2, ..., C}.
Using this confusion matrix, the probability of a misclas-

sified instance classified as Class c actually belonging to Class
i (one of the type of errors contributing to the false positive
rate for Class c), pic can be computed as

pic =
nic

C∑
j=1

njc, j 6= c

(1)

Let the provided C × C cost matrix be


0 s12 ... s1C

s21 0 ... s2C

...
sC1 sC2 ... 0


where sij is the cost of classifying an instance that be-

longs to Class i as Class j. Here, without loss of generality,
the cost of correct classifications, sii, is assumed to be zero
for all classes. i,j ∈ {1, 2, ..., C}.

The expected cost of a false positive for Class c, E[φc]
can be computed using the above cost matrix and equation 2

E[φc] =
C∑

i=1

pic·sic, i 6= c (2)

Similarly the expected cost of a false negative for Class c,
E[νc] can be computed.

Hence, we now have a 2× 2 cost matrix for Class c of the
form [

0 E[νc]
E[φc] 0

]
Doing this for all C classes, we can break the C × C cost

matrix into C 2× 2 cost matrices.
Having done this, theC optimum thresholds for allC out-

puts of the classification system can be determined using the
strategies discussed in Subsections 2.1 and 2.2 based on the
Bayes classification rule for costs [4] depicted in Fig.1(b).

3. EXPERIMENTS AND RESULTS

Experiments were performed to show the statistically signifi-
cant reduction in the cost by applying dCMS, the applicabil-
ity of dCMS for a spectrum of datasets of varying complex-
ities and dimensionality, and the applicability of dCMS for
classifiers and classification systems of different natures and
varying complexities. In order to do so, experiments were
conducted in three scenarios.

1. Synthetic data: dCMS was applied to a single classifier,
a multi-layer perceptron (MLP) neural network, trained
on a simple synthetically generated small dataset.

2. Intrusion detection: dCMS was applied to Learn++ [6],
a complex ensembles of classifiers based classification
system that performs data fusion and was trained on a
large real-world intrusion detection dataset. dCMS was
also applied to other standard classifiers such as a Ma-
halanobis distance based classifier, K-nearest neighbor
along with Learn++ [6], however on a dimensionality
reduced version of this dataset.

3. Other applications: dCMS was applied to Learn++ [6]
on benchmark datasets from the UCI Machine Learning
Repository [8] from a variety of other applications such

−4 −2 0 2 4
−4

−2

0

2

4

Feature 1

F
ea

tu
re

 2

Fig. 2. Distribution of synthetic data points used

as volatile organic compound recognition and optical
character recognition.

For all experiments, the following two classification strate-
gies were tested.

1. Without dCMS: The class corresponding to the maxi-
mum output of the classification system was selected
as the classification decision.

2. With dCMS: The class corresponding to the output that
has the maximum (signed) difference from its respec-
tive optimum threshold as determined by dCMS was
selected as the classification decision.

3.1. Synthetic data

A synthetic dataset of 500 data points were generated from
three 2D gaussian distributions with the following parame-
ters, means µ and covariance matrices σ. The distribution of
the data was as shown in Fig.2.

µ1 =
[
−1 1

]
, σ1 =

[
0.5 0.1
0.1 0.5

]
,

µ2 =
[

1 −1
]
, σ2 =

[
0.5 0
0 0.5

]
,

µ3 =
[

1 1
]
, σ3 =

[
0.4 0.2
0.2 0.5

]
One-third of the points from each class were randomly

picked for training, one-third as validation to determine the
optimum threshold using dCMS and the rest as testing. An
MLP neural network with three output nodes was trained. The
outputs were normalized to lie between 0 and 1. dCMS was
applied to these outputs to determine the optimum threshold
for each output.

The cost matrix assumed was
class1 class2 class3

class1 0 2 4
class2 2 0 3
class3 1 3 0



without dCMS with dCMS
0

0.05

0.1

0.15

0.2

0.25
C

os
t p

er
 in

st
an

ce
0.212 ± 0.013

0.181 ± 0.003

Fig. 3. Results obtained on synthetic data. The cost incurred
drops significantly by applying dCMS

without dCMS with dCMS
0

0.2

0.4

0.6

0.8

1

C
os

t p
er

 in
st

an
ce

Fig. 4. Results obtained on an intrusion detection dataset. The
cost incurred drops significantly by applying dCMS

This experiment was repeated 100 times (data generated
randomly from the same distribution). The results obtained
are summarized in Fig.3. It can be seen that the cost in-
curred after applying dCMS is lower by 17% than that without
dCMS with statistical significance. This shows that even on
a very easy to classify dataset where an MLP achieves close
to Bayesian accuracy, there is room for improvement as far as
cost minimization goes because that was not explicitly mini-
mized by the underlying classifier, while dCMS provides that
added boost.

3.2. Intrusion detection

The MIT-DARPA intrusion detection database [7] is a 41-
feature database with over 5 million data points. The 41 fea-
tures can be grouped into three groups: intrinsic (9), traffic
(13) and content (19) features. There are five classes: four for
different types of networks attacks - DenialOfService (DOS),

Probe, UserToRoot (U2R), RootToLocal (R2L), and one nor-
mal traffic. For each experiment, about 0.3 million were ran-
domly picked for training and validation, and the rest for test-
ing. An ensemble of classifiers based data fusion algorithm,
Learn++ [6], inspired in part by Adaboost, which employs
several different classifier combination rules to produce the
final score, was used. The base classifier used was an MLP
neural network. One such classification system was trained
for each class involved. Thus the overall classification system
has five outputs. dCMS was applied to these five outputs (be-
tween 0 and 1). The cost matrix used, as provided with the
data was

DOS Probe U2R R2L Normal
DOS 0 1 2 2 2
Probe 2 0 2 2 1
U2R 2 2 0 2 3
R2L 2 2 2 0 4

Normal 2 1 2 2 0


For statistically significant results, 1000 experiments were

conducted with random splits for training, validation and test-
ing. The results obtained are summarized in Fig.4. The cost
incurred drops significantly (by 32%) by employing dCMS.

Next, we use PCA to reduce the dimensionality of this
data set to 5 feature per feature set (total of 15 dimensions).
We used three standard classification techniques for this data.
The first was to use the Mahalanobis distance to perform clas-
sification, where the classification score of a test instance for
each class is inversely proportional to the Mahalanobis dis-
tance of that instance from the training data instances from
that class. Second, we used a K nearest-neighbor (KNN)
classifier, where the classification score of a test instance for
each class is the proportion of it’s K training instances neigh-
bors that belong to that class. Third, we used Learn++ [6]
which inherently provides a score for each class. dCMS was
applied to all these classifiers over random splits of the data
into training, validation and testing as described earlier. The
results obtained are shown in Table 1. The reductions in
cost are by 24%, 19% and 28% for the Mahalanobis distance
based, KNN and Learn++ classifiers respectively. This shows
the applicability of dCMS to a variety of classifier types, since
it is classifier-type independent and only relies on the statisti-
cal properties of the classification scores provided by the clas-
sifier.

3.3. Other applications

We applied dCMS to two other applications. One was volatile
organic compounds (VOC) recognition and the other was op-
tical character recognition (OCR). We applied Learn++ [6] as
the classification system in both cases. We obtained datasets
for these from the UCI Machine Learning Repository [8]. De-
tailed description of the application of Learn++ [6] to these
datasets is given by Parikh and Polikar in [9].

Table 1. Results on intrusion detection

Cost per instance without dCMS with dCMS

Mahalanobis 1.83± 0.02 1.48± 0.01

KNN 1.32± 0.01 1.11± 0.01

Learn++ [6] 1.24± 0.01 0.97± 0.01

Table 2. Results on other applications

Cost per instance without dCMS with dCMS

VOC 0.102± 0.002 0.089± 0.001

OCR 0.269± 0.003 0.201± 0.001

The VOC recognition task entails recognition of 12 com-
pounds such as Acetone, Hexane, Octane, Toluene, Xylene,
Methanol, Ethanol, etc. The dataset has responses from 12
microbalance gas sensors as features. In order to apply Learn++
[6] we randomly split the features into 3 feature sets with 4
features each. The dataset consists of a total of 84 instances,
7 per class, of which we used 2 random instances per class
for training, 2 as validation and 3 for testing. Since there was
no cost matrix associated with this dataset, we generated a
random 12×12 cost matrix, with each off diagonal entry uni-
formly selected from 1 to 5.

The OCR dataset consists of 10 handwritten digit classes.
It consists of a total of 649 features, naturally split into 6
different feature sets corresponding to pixel averages, profile
correlations, Fourier coefficients, KL coefficients, etc. The
dataset consists of 2000 instances, 200 per class of which we
used 30 random instances per class as training, 30 as valida-
tion and 140 for testing. The 10 × 10 cost matrix was gener-
ated in a similar fashion as with the VOC dataset.

The experiments for each dataset were run 100 times with
random samplings for the training, validation and testing splits
of the data. The results obtained are shown in Table 2. We can
see that dCMS reduces the cost with statistical significance
for both applications. For VOC, dCMS reduces the cost per
instance by 15% while for OCR the reduction is 26%. This
shows the applicability of dCMS for a variety of applications
and classification problems.

4. CONCLUSION

We propose dCMS, a strategy that gears the classification sys-
tem towards minimizing the cost incurred due to the classifi-
cation errors instead of the classification error itself. It can
be applied to any classification system that provides a score

for each class. It does not require any re-training of the clas-
sification system, and simply exploits the statistical proper-
ties of the classifier to make classification decisions more in-
tune with these properties and in-light of the costs involved.
Statistically significant results have been provided on a va-
riety of applications, data complexities as well as classifier
types; ranging from a complex ensemble of classifiers based
classification system on a large real-world intrusion detection
dataset, to a single MLP neural network trained on a synthetic
2-feature dataset, and several varieties in between. All results
demonstrate the effectiveness of dCMS in reducing the clas-
sification cost incurred.

Future work involves investigating an iterative form of
dCMS. Applying dCMS once to the trained classification sys-
tem, the classification is performed using the new set of op-
timum thresholds for each class, and a new confusion matrix
is obtained. This can be reused along with the provided cost
matrix to determine a new set of optimum thresholds using
dCMS again. This suggests an iterative formulation. Conver-
gence issues, and the effectiveness of multiple iterations as
compared to the first iteration will be studied.

5. REFERENCES

[1] A. Jain, A. Ross, S. Prabhakar. An introduction to bio-
metric recognition. In IEEE Transactions on Circuits
and Systems for Video Technology, 2004.

[2] N. Lachiche and P. Flach. Improving accuracy and cost
of two-class and multi-class probabilistic classifiers us-
ing ROC curves. In International Conference on Ma-
chine Learning (ICML), 2003.

[3] Y. Ma and X. Ding. Robust real-time face detection
based on cost-sensitive AdaBoost method. In IEEE Pro-
ceedings of International Conference on Multimedia
and Expo (ICME), 2003.

[4] D. Duda, P. Hart and D. Stork. In Pattern Classification,
2/e, Chap. 2, pp. 20-29, New York, NY: Wiley Inter-
science, 2001.

[5] J. Kittler, M. Hatef, R. Duin and J. Matas. On combin-
ing classifiers. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1998.

[6] M. Lewitt and R. Polikar. An ensemble approach for
data fusion with Learn++. In Proceedings of Interna-
tional Workshop on Multiple Classifier Systems (MCS),
2003.

[7] The UCI KDD Archive, Information and Com-
puter Science, University of California, Irvine,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[8] C. Blake and C. Merz. UCI Repository of Ma-
chine Learning Database at Irvine CA, 2005.
http://mlearn.ics.uci.edu/MLRepository.html

[9] D. Parikh and R. Polikar. An Ensemble-Based Incre-
mental Learning Approach to Data Fusion. In IEEE
Transactions on Systems, Man and Cybernetics, 2007.

