
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008 381

Data Fusion and Cost Minimization
for Intrusion Detection

Devi Parikh, Student Member, IEEE, and Tsuhan Chen, Fellow, IEEE

Abstract—Statistical pattern recognition techniques have re-
cently been shown to provide a finer balance between misdetections
and false alarms than the more conventional intrusion detection
approaches, namely misuse detection and anomaly detection. A
variety of classical machine learning and pattern recognition algo-
rithms has been applied to intrusion detection with varying levels
of success. We make two observations about intrusion detection.
One is that intrusion detection is significantly more effective by
using multiple sources of information in an intelligent way, which
is precisely what human experts rely on. Second, different errors
in intrusion detection have different costs associated with them—a
simplified example being that a false alarm may be more expensive
than a misdetection and, hence, the true objective function to
be minimized is the cost of errors and not the error rate itself.
We present a pattern recognition approach that addresses both
of these issues. It utilizes an ensemble of a classifiers approach
to intelligently combine information from multiple sources and
is explicitly tuned toward minimizing the cost of the errors as
opposed to the error rate itself. The information fusion approach
dLEARNIN alone is shown to achieve state-of-the-art perfor-
mances better than those reported in the literature so far, and the
cost minimization strategy dCMS further reduces the cost with a
significant margin.

Index Terms—Cost minimization, data fusion, dCMS,
dLEARNIN, pattern recognition for intrusion detection.

I. INTRODUCTION

W ITH networking technology evolving so rapidly, more
attacks on computer networks are carried out by ex-

ploiting unknown weaknesses or bugs always contained in
system and application software [1]. Hence, computer se-
curity has been receiving a lot of attention in recent years.
Two approaches to intrusion detection are conventionally used
[2]—one is misuse detection and the other is anomaly detection.

Misuse detection is an attack signature-based approach that
utilizes a detailed description of the sequence of actions per-
formed by the attacker. This approach detects a series of actions
as an attack only if it matches a previously seen attack signature
identically. Hence, if a new attack is made, the system fails to

Manuscript received October 12, 2007; revised June 17, 2008. Published Au-
gust 13, 2008 (projected). This work was supported in part by the National Sci-
ence Council, Taiwan, R.O.C., through the International Collaboration on Ad-
vanced Security Technology (iCAST) and in part by a National Science Foun-
dation (NSF) Graduate Research Fellowship. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Lang
Tong.

The authors are with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail: dparikh@cmu.
edu; tsuhan@cmu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2008.928539

recognize it. This is certainly suboptimal since new attacks and
new attack variants are constantly being developed. More gen-
eral signatures would reduce these misdetections but also give
high false alarm rates. Hence, due to the requirement of low false
alarm rates, such signature-based approaches are prevalent.

Anomaly detection is based on modeling the normal activity
of the computer system. In this case, a traffic pattern whose pro-
file deviates from this model is detected as an intrusion (i.e., any
anomalous network activity is classified as an attack). This ap-
proach is general enough to detect new attacks with low false
alarm rates provided that the model accurately represents its
normal working condition, and that any attack and only an attack
against the system involves its abnormal use. Unfortunately, the
acquisition of profiles of normal activity is not an easy task [3].
The audit records used to produce the profiles of normal activity
may contain traces of intrusions leading to misdetections, and
also activities of legitimate users often deviate from their normal
profile as modeled, leading to high false alarm rates.

The aforementioned discussion points out that the two intru-
sion detection approaches are usually formulated in terms of ex-
plicit matching paradigms [3]. All activities not matching the
normal profiles are classified as an attack by anomaly detec-
tion approaches and only those activities matching one of the
attack signatures are classified as attacks by misuse detection
approaches. While such matching is effective when the patterns
being classified exhibit a regular and repeatable structure, this
is not the case for network traffic. Moreover, for most current
intrusion detection systems, the development of matching rules
for anomaly and misuse detection relies on the experience and
intuition of human experts [4] which is highly subjective. As a
consequence, such rules can hardly adapt to the high variability
of normal activities or to the number of novel attacks constantly
being developed.

These difficulties in conventional intrusion detection sys-
tems lead researchers to apply statistical pattern recognition
approaches [5], where statistical models for normal traffic and
attack traffic are automatically built, simultaneously with the
appropriate matching rules. The main motivation for using pat-
tern recognition approaches for the development of advanced
intrusion detection systems is their generalization capability,
which can support the recognition of intrusions that have not
been seen previously and have no previously described pattern
[2]. This formulation of the intrusion detection problem com-
bines the advantages of a signature-based and anomaly-based
intrusion detection system. A technical report on intrusion
detection technology, where commercial and research products
are briefly reviewed, provides a discussion on the challenges
to develop effective intrusion detection systems [4]. In partic-
ular, it has been pointed out that advanced research issues on

1556-6013/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

382 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

intrusion detection systems should involve the use of pattern
recognition approaches for the following three main reasons:
1) generalization from a representative set of examples allows
detecting new types of intrusion; 2) attack signatures can be
extracted automatically from labeled traffic data, thus allowing
us to overcome the subjectivity of human interpretation of
intrusive behavior, the latter being employed in many current
intrusion detection systems; the intrusion detection system can
adapt to new threats.

The problem formulation of intrusion detection in a pattern
recognition framework has been provided in [2]. There are two
observations we make about intrusion detection from a pattern
recognition perspective.

1) Intrusion detection has much to gain from combining in-
formation from multiple sources, which is what human ex-
perts rely on, however, in an intelligent way. The most
common categories of information are [6]: 1) intrinsic fea-
tures that include general information about the connec-
tion, such as the duration, type, protocol, flag, etc.; 2) traffic
features that encapsulate statistics related to past connec-
tions similar to the current one (e.g., number of connec-
tions with the same destination host); and 3) content fea-
tures which contain information about the data content of
packets, such as errors reported by the operating system or
root-access attempts.

2) Different errors in classifying network traffic have different
costs associated with them; for instance, the cost of a false
alarm may be much higher than false detection, or more
specifically, the cost of mistaking a certain attack type as
normal traffic may be more than mistaking another attack
type as normal.

In this paper, an approach to intrusion detection in computer
networks that addresses both of these characteristics is pre-
sented. We present dLEARNIN, which utilizes an ensemble of
classifiers approach that combines information from different
sources of information. Also, we utilize a cost minimization
strategy dCMS, to gear the final classification decision toward
minimizing the cost of the errors, the true objective function,
and not the error rate itself.

The rest of this paper is organized as follows. In Section II,
we discuss some related work in the literature on using pattern
recognition approaches for intrusion detection. We also specifi-
cally discuss the use of multiple classifier approaches for intru-
sion detection as well as the cost considerations made so far in
intrusion detection literature. We also contrast our proposed ap-
proaches dLEARNIN and dCMS to other existing algorithms in
pattern recognition literature for both tasks. Sections III and IV
present the proposed algorithms dLEARNIN and dCMS, and re-
sults on a publicly available data set are provided in Section V.
Section VI surveys some potential areas for future work, fol-
lowed by conclusions in Section VII.

II. RELATED WORK

A. Pattern Recognition Approaches to Intrusion Detection

The use of pattern recognition approaches to intrusion de-
tection have been considered ever since the early years of in-

trusion detection system development. In particular, the appli-
cation of neural networks for intrusion detection systems has
been investigated by a number of researchers. Neural networks
for intrusion detection have first been introduced as an alterna-
tive to the techniques in the intrusion detection expert system
to model user behavior [7]. In particular, the typical sequence
of commands executed by each user is learned. An approach
to anomaly detection based on neural networks is proposed in
[8]. A neural-network model designed to perform both anomaly
and misuse detection has been proposed in [9]. The training set
is made up of strings of events captured by the base security
module that is a part of many operating systems. If the training
set is made up of strings related to normal behavior, neural net-
works act as an anomaly detector. On the other hand, if strings
captured during an attack session are included in the training
set, the network model can be modified to act as a misuse de-
tection system. Instead of audit data, traffic statistics are also
used as features for misuse detection [10]. Traffic features at
different levels of abstraction have been used, from packet data
[11] to very high level features, such as the security level of
the source and destination machines, occurrences of suspicious
strings, etc. [12]. This shows that pattern recognition techniques
based on neural networks are apt to provide a solution to some
open issues in intrusion detection system development (e.g., the
automatic extraction of normal and attack signatures from data
and the ability to detect attacks not known at training time).

In addition, the extensive evaluation of pattern classification
techniques carried out on a sample data set of network traffic
performed during the KDD’99 [13] conference points out the
feasibility of a pattern recognition approach to intrusion detec-
tion [12]. This dataset is a version of the standard set of data
to be audited, as collected through the 1998 DARPA Intrusion
Detection Evaluation Program at the MIT Lincoln Labs [14],
whose objective was to survey and evaluate research in intru-
sion detection. The data set includes a wide variety of intru-
sions simulated in a military network environment. A review
of the performance values of several pattern recognition algo-
rithms on this data set has been provided in [15]. Apart from
neural networks, the algorithms applied include Gaussian classi-
fier, K-means clustering, nearest cluster algorithm, incremental
radial basis functions, fuzzy ARTMAP, decision trees, etc. [15].

B. Multiple Classifiers Approaches

In most pattern recognition approaches applied to intrusion
detection, classification is performed in the feature space made
up of all the features available to detect the considered attack
classes. It is easy to see that classifiers working in such a mono-
lithic feature space can suffer from the curse of dimensionality,
due to the large number of features necessary for effective in-
trusion detection and to the limited amount of training data that
can be collected, especially for attack classes. It is important
to realize that features with very different meanings, related to
different characteristics of network traffic, are used in intrusion
detection. It is well known that it can be very difficult for an in-
dividual classifier to effectively process features that have very
different semantic meanings. We do need these diverse sources
of information for effective intrusion detection, as is used by

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

PARIKH AND CHEN: DATA FUSION AND COST MINIMIZATION FOR INTRUSION DETECTION 383

human experts, however, combining them all in a high-dimen-
sional feature space is not the answer. Instead, we should con-
sider subsets of features that come from a common source, train
classifiers on these subsets independently, and combine them
in a meaningful fashion. Most methods for combining classifier
outputs are based on the assumption that the outputs of different
classifiers are independent. This assumption cannot be verified
in practice, though in many real cases, it may reasonably hold.
In particular, it may reasonably hold for the problem at hand,
since the three types of features described earlier are related to
independent connection characteristics.

Several multiple classifier approaches have been applied
to intrusion detection. In some works, classifiers trained on
different network services (such as ftp, mail, etc.) [16] or
trained to detect different types of attacks [17] were combined.
However, these do not address the issue of operating in a space
of high dimensionality with features with different semantic
meanings concatenated. Other works attempt to combine classi-
fiers trained on different features divided based on hierarchical
abstraction levels [11] or the type of information contained
[3]. Our proposed approach is similar and combines classifiers
trained on different sources of information. Most previous
works, however, employ fairly straightforward fusion schemes
to combine classifiers. Our proposed ensemble of a classi-
fiers-based approach, on the other hand, uses a more advanced
learning algorithm called dLEARNIN, inspired strongly by
Learn++ [18], [20] which, in turn, has been shown to perform
more effective data fusion than standard approaches.

Several approaches in pattern recognition have been devel-
oped for data fusion, for which ensemble-based approaches
constitute a relatively new breed of algorithms. Traditional
methods are generally based on probability theory (Bayes
theorem, Kalman filtering), or decision theory such as the
Dempster–Schafer (DS) theory and its many variations. The
majority of these algorithms has been developed in response
to the needs of military applications, most notably, target
detection and tracking [21]–[23]. Ensemble of classifiers-based
approaches seek to provide a fresh and more general solution
for a broader spectrum of applications. Such approaches in-
clude simpler combination schemes, such as majority vote,
threshold voting, averaged Bayes classifier, maximum/min-
imum rules, and linear combinations of posterior probabilities
[24], [25]. More complex data-fusion schemes are also widely
used, including ensemble-based variations of DS, template
matching, neural and fuzzy systems, and stacked generaliza-
tion [26]–[33]. Another related approach to data fusion using
classifier combination schemes is input decimation: the use
of different feature subsets in multiple classifiers [32], [33].
Input decimation can be useful in allowing different modalities,
such as Fourier coefficients and pixel averages, to be naturally
grouped together for independent classifiers [32]. Input dec-
imation can also be used to lower the dimensionality of the
input space by weeding out features that do not carry strong
discriminating information [33].

Learn++ has been shown to be a useful addition to this list
of techniques [18], [20] and provides a more general structure
capable of using a variety of different classifier architectures,
and has the ability to combine their outputs for the following:

1) a stronger overall classifier;
2) incremental learning;
3) multisensor data fusion.
In this paper, we demonstrate the use of dLEARNIN, a ver-

sion of Learn++ modified for intrusion detection, as a strong
classifier, and more important, to achieve effective data fusion
for intrusion detection; however, it could be applied for adaptive
incremental learning as well, which is very relevant to a network
traffic scenario.

C. Cost Minimization Approaches

Different costs are associated with different errors in intru-
sion detection. However, most of the pattern recognition and
machine-learning algorithms applied to intrusion detection
have not been geared toward minimizing the cost of the errors.
Ad-hoc methods are often used to pick classifiers or algorithm
parameters until low cost is achieved; however, the algorithms
do not explicitly employ any strategies to directly minimize the
cost.

Apart from intrusion detection, several other applications,
such as biometric recognition, etc. have different costs associ-
ated with different errors. However, most often, unprincipled
ad-hoc techniques are used to deal with these costs. Slightly
more principled techniques include using the receiver oper-
ating characteristic (ROC) curves or precision-recall curves
and choosing a desired operating point. However, this works
only for two class problems, such as verification problems in
biometric recognition [34] and there are no fully developed
extensions of ROC curves to multiple classes [35]. Algorithms,
such as cost-sensitive Adaboost [36], have also been proposed;
however, if the involved costs vary, they require retraining the
entire classification system.

Our proposed cost minimization strategy dCMS, briefly in-
troduced in [37], provides a principled approach that

1) can deal with multiple class problems;
2) is a simple post-training step and, hence, does not require

retraining of classifiers if the costs involved vary;
3) is classifier independent and can be applied to any classifi-

cation system that provides a confidence score in its clas-
sification.

In this paper, we demonstrate the use of dCMS to minimize
the true object function for intrusion detection scenarios, the
classification error costs, as opposed to the error rate itself.

III. DATA FUSION: DLEARNIN

As stated before, intrusion detection naturally lends itself into
a data-fusion scenario where it is beneficial to combine infor-
mation from multiple sources. Our proposed algorithm to do so,
dLEARNIN, is inspired by Learn++ [18]. Learn++ trains a mul-
ticlass ensemble of classifiers for each source of information,
and further combines these ensembles of classifiers to achieve
data fusion. dLEARNIN uses a slightly different approach. It
uses a hierarchical ensemble of a classifiers-based algorithm, as
shown in Fig. 1. We train a binary classification system for each

class—where one of the classes may be the normal traffic,
and other classes may be the different types of attacks. Each
classification system combines information from the multiple
sources of information in a similar fashion as Learn++, and

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

384 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

Fig. 1. Layout of the proposed classification system dLEARNIN: a hierarchical
ensemble of classifiers.

these classification systems are further combined. The details
are explained next. More differences between dLEARNIN and
Learn++ will be pointed out as we proceed.

A. Learning

We will explain the learning algorithm in detail for the clas-
sification system corresponding to one class, which is repeated
for all classes. Let the different sources of information (feature
sets) available be denoted as , where is
the total number of data sources. An ensemble of classifiers is
trained for each individual feature set and then combined. This
is because the ensemble of classifiers has been shown to provide
higher classification accuracies than single classifiers [19]. The
learning algorithm adds a new classifier to the ensemble at each
iteration. The following algorithm is the one to learn these en-
semble of classifiers corresponding to each feature set, which is
repeated for all feature sets.

The inputs to the algorithm are 1) the training data com-
prised of instances along with their correct labels

or , where is the number
of features in the feature set ; 2) the validation data com-
prised of instances along with their correct labels

; 3) a supervised classification algorithm BaseClas-
sifier, generating individual classifiers (henceforth, hypotheses);
and 4) an integer , the number of classifiers to be gener-
ated in the ensemble corresponding to . The suffix will
be dropped here on unless ambiguous. The BaseClassifier can
be any supervised classifier, such as an MLP, a support vector
machine, or a decision tree; the only restriction is that it should
provide higher than 50% accuracy on the validation data (better
than random). MLPs were used here. In general, as increases,
the performance increases and then flattens out. On rare occa-
sions, due to overfitting artifacts, the performance may decrease
if increases beyond a certain range. However, this is not char-
acteristic of boosting algorithms, such as Adaboost, Learn++,
and dLEARNIN, especially due to several modifications made
to Learn++ incorporated in dLEARNIN. The value of can be
picked using cross-validation.

During the th iteration, the BaseClassifier is trained on a se-
lected subset of the training data to generate hypothesis . This

training subset is drawn from the training data according to
a distribution , which itself is obtained by normalizing a set of
weights maintained on the training data. The distribution
determines which instances of the training data are more likely
to be selected into the training subset . Unless a priori in-
formation indicates otherwise, this distribution is initially set to
be uniform, by initializing ,
giving equal probability to each instance to be selected into the
first training subset. At each subsequent iteration , the weights
previously adjusted at iteration are normalized to ensure a
legitimate probability distribution

(1)

Training subset is drawn according to , and the Base-
Classifier is then trained on . A hypothesis is generated
by the classifier, whose error is computed on the entire val-
idation data as the proportion of the misclassified instances

(2)

where evaluates to 1 if the predicate holds true, and 0,
otherwise. This measure is different from that used by Learn++
where the error is computed on the training data instead of
the separate validation set . This may be necessary in scenarios
where sufficient data are not available; however, this is certainly
not the case for our application. Moreover, Learn++ uses the
sum of the weights assigned by to the misclassified instances
as the error measure. This is not desirable because, as we will
see later, the instances with a higher weight are those that have
not been learned yet (not picked in the training subset), or
those that are difficult to learn. So the error measure, which will,
in turn, be used to quantify the strength of the classifier, should
not be higher for misclassifying these instances (if anything, it
should be lower). Since we use a validation set to compute
a more representative error measure, we do not have access to
the values of for these data points. Hence, we simply use the
proportion of misclassified instances in as the error measure,
which we found gives better results than the measure employed
by Learn++. As mentioned before, we insist that this error be
less than 0.5. If this is the case, the hypothesis is accepted
and the error is normalized to obtain

(3)

If , then the current hypothesis is discarded, and a
new training subset is selected to train a new hypothesis. All
hypotheses generated thus far are then combined using the
weighted sum rule [25] to obtain the composite hypothesis .
Let the outputs of the individual classifiers generated this far be

and , where is the positive score that can be interpreted
as the th classifier’s confidence that the instance is positive,
and is the respective negative score. and are normalized
to sum to 1. The weighted sum rule gives us

(4)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

PARIKH AND CHEN: DATA FUSION AND COST MINIMIZATION FOR INTRUSION DETECTION 385

(5)

The composite hypothesis thus becomes

(6)

where now represents the ensemble decision, and classifies
an instance as positive if . The weighted sum rule
used is an undemocratic but useful combination procedure: each
hypothesis is assigned a weight as the logarithm of the recip-
rocal of its normalized error. Therefore, those hypotheses with
smaller validation error are awarded a higher voting weight and,
thus, have more say in the final classification decision. The log-
arithm function is used to map a wide range of values
to a smaller and more meaningful interval. This combination
rule is different than that used by Learn++, which employs a
weighted majority voting scheme. A classifier combination rule
that incorporates the confidence of the classifiers for the dif-
ferent classes instead of just their vote for a class clearly incor-
porates more information. Kittler et al. [25] present a theoretical
analysis to demonstrate that sum rules are more effective when
the classifiers to be combined have noisy outputs, while the
product rules are more effective when combining strong classi-
fiers. Hence, at this stage in the algorithm, we use the weighted
sum rule to combine the weak classifiers. At later stages in the
algorithm, when combining stronger classification systems, we
use a weighted product rule. Moreover, we found empirically
that these weighted sum and product rules perform better than
the weighted majority voting scheme, more so since each clas-
sifier is a binary classifier.

The error of the composite hypothesis is then computed as
the sum of the distribution weights of the training data instances
in that are misclassified by the ensemble decision

(7)

If , then the current hypothesis is discarded, and a
new training subset is selected to train a new hypothesis. If this
is not the case, the composite error is normalized to obtain

(8)

and is used for updating the distribution weights assigned to
individual instances

(9)

Equation (9) indicates that the distribution weights of the in-
stances correctly classified by the composite hypothesis are
reduced by a factor of . Effectively, this in-
creases the weights of the misclassified instances making them
more likely to be selected in the training subset of the next iter-
ation.

It should be noted that (7) is computed on the training data
and not the validation data as in (2) because the value of
is used to determine which instances in the training data should
be more likely to be picked in the next iteration. So the higher

the weight of the instances misclassified (i.e., the harder the in-
stances or the more neglected the instances so far), the higher
their likelihood is to be picked in the next iteration. Due to this,

must be computed based on the training data and not a vali-
dation dataset. And since is not used to quantify the strength
of a classifier in any way, this is appropriate.

Once all of the classifiers are generated for this th feature
set, the error of this ensemble of classifiers on its validation
data is computed

(10)

Since the errors of the individual classifiers on the validation
data are less than 0.5, the composite error is also less than 0.5.
The normalized error is calculated as

(11)

which will be used to determine the weight of this th feature
set. Again, as with earlier error measures, these are different
from those employed by Learn++.

The aforementioned procedure is repeated for all feature
sets and, in turn, for all classes.

B. Testing

When a test instance is presented, the scores for this instance
corresponding to each feature set for a particular class are
computed using (4) and (5) using all classifiers trained for
each th feature set. These are combined using the weighted
product rule to obtain an aggregate score for this instance be-
longing to the class as follows:

(12)

(13)

It can be seen that the contribution of each feature set is
weighted inversely as its normalized error on the validation data
and, hence, the stronger sources of information have a bigger
say in the final decision.

Learn++ uses a weighted majority voting scheme at this stage
as well, while we use the weighted product rule, which we found
to be more effective. As stated before, we use the weighted
product rule at this stage instead of the weighted sum rule as in
(4) and (5) because at this stage, the classifiers being combined
are ensemble of classifiers and, hence, are strong while they
were weak individual classifiers in (4) and (5). And as demon-
strated in [25], the weighted sum rule is more robust for weak
classifiers; however, the weighted product rule is more appro-
priate for combining strong classifiers.

It should be noted that if is the number of classifiers
corresponding to the th feature set and th class, then the
number of classifiers through which the test instance is run is

. The complexity of the testing depends on the
complexity of testing the individual base classifiers.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

386 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

If the costs of both errors (false positive and false negative)
for all classes were equal, the instance would be assigned to
class if or since and sum to 1. How-
ever, since there are different costs associated with different er-
rors, this classification rule is not the optimum strategy to make
classification decisions and this threshold needs to be altered in
order to minimize the cost. For instance, if the cost of a false
positive for class is twice that of a false negative, we would
want to assign an instance of class only if we are very confi-
dent that it belongs to class . Otherwise, we would rather err
on the side of a false negative since it has a lower cost. So we
would want to assign an instance to class only if
for instance. A principled understanding of this is provided by
the Bayes classification rule for costs [38]. The goal is to incor-
porate such intelligence in making this final classification deci-
sion, and gearing it toward minimizing the cost of errors instead
of maximizing the classification rate, since cost is the true per-
formance metric.

IV. COST MINIMIZATION: DCMS

In order to minimize the cost, we need to determine op-
timum thresholds for each class to which can be compared.
If we can determine these, the class corresponding to the value
of that exceeds its respective threshold can be picked as the
classification decision. If none or multiple outputs exceed their
thresholds, voting resolution techniques, such as weighted ma-
jority voting, etc. [25] can be employed. We simply pick the
class whose score exceeds its corresponding optimum threshold
the most.

However, the cost matrix provided to us is a cost ma-
trix, and jointly determining the optimum thresholds we are
interested in is not straightforward. We first need to break the

cost matrix down into 2 2 cost matrices. The proce-
dure for this is described next.

Since the classification system has been trained, a confusion
matrix can be computed on validation data using initial values of
thresholds to be 0.5. Let the computed confusion matrix
be

where is the number of instances that belong to Class but
were classified as Class . .

Using this confusion matrix, the probability of a misclassified
instance classified as Class actually belonging to Class (one
type of error contributing to the false positive rate for Class),

can be computed as

(14)

Let the provided cost matrix be

where is the cost of classifying an instance that belongs to
Class as Class . Here, without loss of generality, the cost of
correct classifications is assumed to be zero for all classes

.
The expected cost of a false positive for Class can

be computed using the aforementioned cost matrix and (15)

(15)

Similarly, the expected cost of a false negative for Class
can be computed.

Hence, we now have a 2 2 cost matrix for Class of the
form

Doing this for all classes, we can break the cost
matrix into cost matrices.

Having determined these 2 2 cost matrices, the problem
breaks down to individually finding optimum thresholds for
each score. The following strategy is used to determine each

threshold.
Consider class . The 2 2 cost matrix for class provides

us with the ratio of the expected cost of false positives over the
expected cost of false negatives for this class. Let this ratio be

.
Suppose the histogram of the scores for the instances that

belong to class are and the histogram of for the in-
stances that do not belong to class are . For a given value
of threshold , the number of false positives and the number
of false negatives is given, respectively, by and

.
Hence, the cost incurred for this value of the threshold

is

(16)

The optimum threshold (that minimizes the cost) is then

(17)

Having determined the for all of the classes, the classi-
fication decision for a test instance is then based on these new
optimum thresholds and not 0.5. This produces a new confusion
matrix, and the aforementioned algorithm is repeated iteratively
until a convergence condition is met. In practice, we found that
the very first iteration provides the maximum boost in perfor-
mance, and subsequent iterations are not necessary.

It may be useful to compare our approach to
Neyman–Pearson hypothesis testing. Our proposed ap-
proach relies on the Bayesian criterion for making minimum
risk decisions, and is hence very related to Neyman–Pearson
hypothesis testing. The Neyman–Pearson approach is more
appropriate in scenarios (often binary classification problems)
where the maximum allowable false positive rate is
known, and we wish to maximize the detection rate given this
constraint. For the multiclass intrusion detection problem that
has a cost matrix associated with it, the explicit criterion that

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

PARIKH AND CHEN: DATA FUSION AND COST MINIMIZATION FOR INTRUSION DETECTION 387

should be minimized is the cost per instance, which lends itself
naturally into the Bayesian criterion for making minimum risk
decisions. Determining the parameter for each class is not
intuitive in this setting.

V. EXPERIMENTAL RESULTS

The experiments were conducted on the MIT-DARPA intru-
sion detection database [14], also used at the KDD 1999 con-
text [13]. To our knowledge, it is the only publicly available in-
trusion detection dataset. It is a 41-feature database with more
than five million data points. The 41 features can be grouped
into three groups: intrinsic (9), traffic (13), and content (19) fea-
tures. There are five classes: four for different types of networks
attacks—DenialOfService (DOS), Probe, UserToRoot (U2R),
RootToLocal (R2L), and one normal traffic.

Three sets of experiments were conducted:
1) to evaluate the effectiveness of dLEARNIN for data fusion

for intrusion detection;
2) to evaluate the effectiveness dCMS for cost minimization

for intrusion detection;
3) to compare our performance to performances of other pat-

tern recognition approaches to intrusion detection reported
in literature on this dataset.

The dLEARNIN algorithm was used to obtain five trained
classification systems—each of which is designed to recognize
the five classes. Each system was capable of combining infor-
mation from the three sources of information available. For each
source, 15 MLP neural networks were trained. The five classi-
fication systems were combined using dCMS. The cost matrix
used was as provided with the dataset

Probe Normal

Probe

Normal

A. Data Fusion

To demonstrate the effectiveness of data fusion with
dLEARNIN, we compare the cost per instance obtained using
dLEARNIN to the individual feature sets alone. This was
accomplished by using dLEARNIN for each individual feature
set, as if there was only one source of information . We
also compared the performance of data fusion by dLEARNIN
to naive concatenation of features. Again, dLEARNIN was
used on the feature sets concatenated, and treated as a single
source of information. The cost minimization strategy dCMS
was not used in order to demonstrate the data-fusion effects
only.

The dataset was randomly split into 0.3 million data points
for training and validation, and the rest for testing. The experi-
ment was repeated 50 times with random splits of training, val-
idation, and testing data, and the results obtained were summa-
rized in Fig. 2. The average performance as well as the 95%
confidence intervals are shown. It can be seen that data fusion

Fig. 2. Results obtained using our information fusion algorithm. It can be seen
the cost per instance incurred using dLEARNIN is lower than that obtained by
any individual feature set alone, or a naive concatenation of features.

Fig. 3. Results obtained using our proposed cost minimization strategy. The
cost incurred drops significantly by applying dCMS.

with dLEARNIN provides better results than any of the indi-
vidual feature sets and the naive concatenation, with statistical
significance.

B. Cost Minimization

In order to demonstrate the effectiveness of the cost mini-
mization strategy dCMS, we compare the results obtained using
dLEARNIN alone, to that obtained by using dLEARNIN fol-
lowed by dCMS. Again, the dataset was randomly split into 0.3
million data points for training and validation, and the rest for
testing, and the experiment was repeated 50 times. The results
obtained are summarized in Fig. 3. It can be seen that using
dCMS can significantly reduce the costs incurred.

C. Comparison to State of the Art

The MIT-DARPA dataset [14] was used at the KDD’99 [13]
context for a given split of training and testing data, and since
then, several machine-learning algorithms have been applied to

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

388 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

TABLE I
COMPARISON OF OUR RESULTS TO THOSE OF OTHER

ALGORITHMS REPORTED IN LITERATURE

this split. For comparison, we run our proposed algorithm on the
same split, and Table I [15] provides a comparison between the
cost per instance value achieved using our algorithm and some
of the best values reported in the literature. Several other algo-
rithms and approaches have also been applied, however, only
on subsets of the available data and, hence, do not form fair
grounds for comparison here. It can be seen that the proposed
algorithm dLEARNIN provides the best results reported so far,
and with dCMS added on, the results further improve. It can also
be seen that dLEARNIN provides better results that Learn++
using comparable paramters. It should be noted that although we
achieve state-of-the-art results on the KDD dataset, the cost per
instance values are much higher than those shown in Figs. 2 and
3, where the data were split randomly into training and testing.
This indicates that the split of data into training and testing as
provided by the KDD contest has significantly different distri-
butions for training and testing data, which is hard for most sta-
tistical pattern recognition algorithms to learn. Our own initial
analysis indicates this, and this is further confirmed by a more
thorough analysis provided by [39].

VI. FUTURE WORK

There are several avenues for future work that we are pur-
suing. The different classifiers combined at different stages of
dLEARNIN through sum and product rules are trained on dif-
ferent subsets of data and often on different features. Hence,
they are likely to have different statistical properties, and their
outputs are not directly comparable. So a transform that ac-
counts for these differences in statistical properties and gives
us better estimates of posterior probabilities to be used for more
effective classifier combination rules is desirable. Also, other
base classifiers can be used instead of MLPs. A thorough and

formal analysis of the KDD dataset split would provide some in-
sights into the difference in the distributions of the training and
test data as provided. This would give us a better insight into
what statistical pattern recognition paradigms are appropriate
for this dataset, and which ones are not. Finally, the capabilities
of Learn++ and dLEARNIN to learn incrementally and adap-
tively are very relevant to intrusion detection where the proper-
ties of the network traffic change dynamically. This should be
further investigated.

VII. CONCLUSION

Our proposed algorithm addresses two characteristics of an
intrusion detection problem. First, intrusion detection has much
to gain from combining information from multiple sources of
information in a meaningful way; and second, the true objective
function to be minimized in an intrusion detection scenario is
the cost of classification errors, and not the error rate itself. An
ensemble of classifiers approach dLEARNIN was successfully
implemented for intrusion detection to achieve efficient data fu-
sion. The results obtained surpassed the best results reported
thus far using pattern recognition algorithms for intrusion de-
tection. A cost minimization strategy dCMS was applied to the
outputs of the data-fusion algorithm, which reduced the cost per
instance incurred with a statistically significant margin.

REFERENCES

[1] J. McHugh, A. Christie, and J. Allen, “Defending yourself: The role
of intrusion detection systems,” IEEE Softw., vol. 17, no. 5, pp. 42–51,
Sep./Oct. 2000.

[2] G. Giacinto and F. Roli, “Intrusion detection in computer networks
by multiple classifier systems,” in Proc. Int Conf. Pattern Recognition,
2002, pp. 390–393.

[3] L. Didaci, G. Giacinto, and F. Roli, “Ensemble learning for intrusion
detection in computer networks,” presented at the Workshop Machine
Learning Methods Applications, Siena, Italy, Sep. 10–13, 2002.

[4] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Storner,
State of the Practice of Intrusion Detection Technologies Tech. Rep.
CMU/SEI-99-TR-028, 2000.

[5] R. Duda, P. Hart, and D. G. Stork, Pattern Classification. New York:
Wiley, 2001.

[6] W. Lee and S. J. Stolfo, “A framework for constructing features and
models for intrusion detection systems,” ACM Trans. Inf. Syst. Security,
vol. 3, no. 4, 2000.

[7] G. Giacinto, F. Roli, and L. Didaci, “Fusion of multiple classifiers for
intrusion detection in computer networks,” in Pattern Recognit. Lett.,
2003, vol. 24, no. 12, pp. 1795–1803.

[8] S. C. Lee and D. V. Heinbuch, “Training a neural-network based in-
trusion detector to recognize novel attacks,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 31, no. 4, pp. 294–299, Jul. 2001.

[9] A. K. Ghosh and A. Schwartzbard, “A study in using neural networks
for anomaly and misuse detection,” in Proc. USENIX Security Symp.,
1999, p. 12.

[10] J. Cannady, “An adaptive neural network approach to intrusion detec-
tion and response,” Ph.D. dissertation, School Comput. Inform. Sci.,
Nova Southeastern University, Fort Lauderdale, FL, 2000.

[11] J. M. Bonifkio, A. M. Cansian, A. C. P. L. F. de Carvalho, and E.
S. Moreira, “Neural networks applied in intrusion detection systems,”
Proc. IEEE World Congr. Computer Intelligence, pp. 205–210, 1998.

[12] C. Elkan, “Results of the KDD’99 classifier learning,” in ACM Spe-
cial Interest Group on Knowledge Discovery and Data Mining Explo-
rations, 1, 2000.

[13] The UCI KDD Archive, Information and Computer Science, [Online].
Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.,
Univ. California, Irvine.

[14] “MIT Lincoln Laboratory—DARPA Intrusion Detection Evaluation.”
[Online]. Available: http://www.ll.mit.edu/IST/ideval/data/data_index.
html.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

PARIKH AND CHEN: DATA FUSION AND COST MINIMIZATION FOR INTRUSION DETECTION 389

[15] M. Sabhnani and G. Serpen, “Application of machine learning algo-
rithms to KDD intrusion detection dataset within misuse detection con-
text,” in Proc. Int. Conf. Machine Learning, Models, Technologies and
Applications, 2003, pp. 209–215.

[16] G. Giacinto, F. Roli, and L. Didaci, “A modular multiple classifier
system for the detection of intrusions in computer networks,” in Proc.
IEEE Int. Conf. Multiple Classifier Systems, 2003, pp. 346–355.

[17] G. Giacinto, R. Perdisci, and F. Roli, “Network intrusion detection
by combining one class classifiers,” presented at the Int. Conf. Image
Analysis and Processing, Cagliari, Italy, 2005.

[18] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: An in-
cremental learning algorithm for supervised neural networks,” IEEE
Trans. System, Man Cybern, C, Appl. Rev., vol. 31, no. 4, pp. 497–508,
Nov. 2001, Special Issue on Knowledge Management.

[19] Y. Freund and R. Schapire, “A decision theoretic generalization of on-
line learning and an application to boosting,” Comput. Syst. Sci., 1997.

[20] D. Parikh and R. Polikar, “An ensemble based incremental learning
approach to data fusion,” IEEE Trans. Syst., Man, Cybern. A, Syst. Hu-
mans, vol. 37, no. 2, pp. 437–450, Apr. 2007.

[21] D. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proc. IEEE, vol. 85, no. 1, pp. 6–23, Jan. 1997.

[22] , D. Hall and J. Llinas, Eds., Handbook of Multisensor Data Fusion.
Boca Raton, FL: CRC, 2001.

[23] L. A. Klein, Sensor and Data Fusion Concepts and Applications.
Belingham, WA: SPIE, 1999, vol. TT35.

[24] J. Grim, J. Kittler, P. Pudil, and P. Somol, “Information analysis of
multiple classifier fusion,” presented at the Int. Workshop on Multiple
Classifier Systems, Cambridge, U.K., 2001.

[25] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
Mar. 1998.

[26] L. O. Jimenez, A. M. Morales, and A. Creus, “Classification of hyperdi-
mensional data based on feature and decision fusion approaches using
projection pursuit, majority voting and neural networks,” IEEE Trans.
Geosci. Remote Sensors, vol. 37, no. 3, pp. 1360–1366, May 1999.

[27] G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, “Use of multiple
classifiers in classification of data from multiple data sources,” in Proc.
IEEE Geoscience Remote Sensor Symp., 2001, vol. 2, pp. 882–884.

[28] F. M. Alkoot and J. Kittler, “Multiple expert system design by com-
bined feature selection and probability level fusion,” in Proc. Int. Conf.
FUSION, 2000, vol. 2, no. 10, pp. THC5/9–THC516.

[29] D. Wolpert, “Stacked generalization,” Neural Netw., 1992.
[30] L. I. Kuncheva, “Switching between selection and fusion in combining

classifiers: An experiment,” IEEE Trans. Syst., Man, Cybern. B, Cy-
bern., vol. 32, no. 2, pp. 146–156, Apr. 2002.

[31] L. I. Kuncheva, “A theoretical study on six classifier fusion strategies,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 281–286,
Feb. 2002.

[32] L. Kuncheva and C. Whitaker, “Feature subsets for classifier combina-
tion: An enumerative experiment,” in Proc. Int. Workshop on Multiple
Classifier Systems, 2001.

[33] N. Oza and K. Tumer, “Input decimation ensembles: Decorrelation
hrough dimensionality reduction,” presented at the Int. Workshop on
Multiple Classifier Systems, Cambridge, U.K., 2001.

[34] A. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric
recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no.
1, pp. 4–20, Jan. 2004.

[35] N. Lachiche and P. Flach, “Improving accuracy and cost of two-class
and multi-class probabilistic classifiers using ROC curves,” presented
at the Int. Conf. Machine Learning, Washington, DC, 2003.

[36] Y. Ma and X. Ding, “Robust real-time face detection based on cost-
sensitive adaboost method,” in Proc. IEEE Int. Conf. Multimedia Expo.,
2003, pp. 465–468.

[37] D. Parikh and T. Chen, “Classification-error cost minimization
strategy: dCMS,” in Proc. IEEE Statistical Signal Processing Work-
shop, 2007, pp. 620–624.

[38] D. Duda, P. Hart, and D. Stork, Pattern Classif., ser. 2/e. New York:
Wiley, 2001, ch. 2, pp. 20–29.

[39] M. Sabhnani and G. Serpen, “Why machine learning algorithms fail
in misuse detection on KDD intrusion detection data set,” Intell. Data
Anal., 2004.

Devi Parikh (S’05) received the B.Sc. degree in elec-
trical and computer engineering from Rowan Univer-
sity, Glassboro, NJ, in 2005 and the M.Sc. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 2007, where she
is currently pursuing the Ph.D. degree.

Her research interests include computer vision,
pattern recognition, and machine learning. Apart
from using ensemble of classifiers for data fusion and
cost minimization strategies for intrusion detection,
she has worked on several pattern recognition and

computer vision projects ranging from estimates of posterior probabilities from
classifier outputs, to feature-based retrieval for 3-D reassembly, to unsupervised
learning of relationships among objects in a scene, and studying the role of
contextual information for enhanced image understanding.

Ms. Parikh is a member of the Society of Women Engineers (SWE), the
Golden Key National Honor Society, the Order of Engineers, and the New Jersey
Epsilon Honor Society. She has been awarded the Hazel P. Valiant Student
award in 2002 and the Broome Alumni Undergraduate award in 2003 and 2004.
She has also received the Best Paper Award at the Beyond Patches Workshop at
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition 2007. She is the recipient of the Dean’s Fellowship at Carnegie Mellon
and a National Science Foundation Graduate Research Fellowship.

Tsuhan Chen (F’07) received the B.S. degree
in electrical engineering from National Taiwan
University, Taipei City, Taiwan, R.O.C., in 1987
and the M.S. and Ph.D. degrees in electrical engi-
neering from the California Institute of Technology,
Pasadena, in 1990 and 1993, respectively.

Currently, he is a Professor and Associate De-
partment Head with the Department of Electrical
and Computer Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, PA, where he has been since
1997. From 1993 to 1997, he was with AT&T

Bell Laboratories, Holmdel, NJ. He was the Editor-in-Chief for the IEEE
TRANSACTIONS ON MULTIMEDIA in 2002–2004. He was also on the Editorial
Board of the IEEE Signal Processing Magazine and Associate Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
the IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, and the IEEE TRANSACTIONS ON MULTIMEDIA. He
co-edited a book titled Multimedia Systems, Standards, and Networks.

Dr. Chen received the Charles Wilts Prize from the California Institute of
Technology, Pasadena, in 1993 and was a recipient of the National Science
Foundation CAREER Award from 2000 to 2003. He received the Benjamin
Richard Teare Teaching Award at Carnegie Mellon University in 2006. He was
elected to the Board of Governors, IEEE Signal Processing Society, from 2007
to 2009. He is a member of the Phi Tau Phi Scholastic Honor Society. He is a
Distinguished Lecturer of the Signal Processing Society.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 00:59 from IEEE Xplore. Restrictions apply.

