
Localization and Segmentation of A 2D High Capacity Color Barcode

Devi Parikh Gavin Jancke
dparikh@cmu.edu gavinj@microsoft.com

Carnegie Mellon University Microsoft Research
Pittsburgh, PA 15213 Redmond, WA 98052

Abstract

A 2D color barcode can hold much more information than a
binary barcode. Barcodes are often intended for consumer
use, such as, a consumer can take an image with her cell-
phone camera of a barcode on a product, and retrieve rel-
evant information about the product. The barcode must be
read using computer vision techniques. While a color bar-
code can hold more information, it makes this vision task
unusually challenging because of the varying color balanc-
ing in different cameras, poor quality of images taken with
current cellphone cameras and webcams, varying lighting
conditions, arbitrary rotation and even perspective trans-
forms of the barcodes in images. We present our approach
to the localization and segmentation of a 2D color barcode
in such challenging scenarios, along with its evaluation
on a diverse collection of images containing Microsoft’s
recently launched High Capacity Color Barcode (HCCB).
The problem of reading barcodes has a special trait com-
pared to other computer vision localization problems - the
results are verifiable in that the decoder can give the vision
algorithm feedback of whether the barcode was successfully
decoded or not. We exploit this trait in an interesting way
and develop a progressive strategy to achieve a fine balance
between the requirement of the algorithm to be effective in
drastically varying scenarios as well as computationally in-
expensive.

1 Introduction

With the proliferation of inexpensive cameras such as in
cellphones or webcams, the consumer use of barcodes is be-
coming popular. A consumer can take an image of the back
of a product with the barcode printed on it with his cell-
phone camera or webcam. A computer vision algorithm lo-
calizes and segments the barcode, and the bits extracted are
passed on to the appropriate decoder, and once the product
is identified, the information pertaining to the product can
be retrieved.

Most traditional barcodes are binary barcodes, be it lin-
ear barcodes such as the popular UPC (Universal Product

(a) (b) (c) (d)

Figure 1: (a) UPC code (b) QR code (c) Datamatrix (d) Mi-
crosoft’s High Capacity Color Barcode (HCCB) (Viewed better
in color).

Code) barcode shown in Figure 1(a), or 2D barcodes such
as the QR code shown in Figure 1(b), or Datamatrix shown
in Figure 1(c). These barcodes often contain distinct visual
cues, albeit at the cost of expensive estate, such as the three
square patterns on three corners of the QR code as seen in
Figure 1(b), which hold no information. On the other hand
consider 2D color barcodes with minimal visual cues. Not
only do they have added aesthetic value, they hold much
more information in the same physical size of the code.

However, these added benefits (like with most tradeoffs
in design!) come with an added cost. Reading these color
barcodes with minimal visual cues in a consumer setting
as described above portrays a significant computer vision
challenge as compared to reading binary barcodes. This is
because of several factors. The color balancing in differ-
ent cellphone cameras and webcams is drastically different.
Since we are dealing with images taken by consumers, the
location of the barcode in the image, the orientation of the
barcode, etc. are mostly unconstrained. In the case of 2D
barcodes, possible perspective transforms can distort the ge-
ometry of the barcode. For different products, the densities
and sizes of the barcodes may vary. The lighting conditions
under which the images are taken can vary drastically, and
given the state of current cellphone cameras, the images can
be quite blurred and of poor quality.

In this paper we present an approach to localize and seg-
ment a 2D high capacity color barcode that is invariant or
robust to these variations. We work with Microsoft’s re-
cently introduced 2D color barcode called the High Capac-
ity Color Barcode (HCCB) [1, 2]. The barcode as it is de-
signed is shown in the top-left corner of Figure 1(d). Ex-

1



Figure 2: Example images of the Microsoft High Capacity Bar-
code (Viewed better in color).

amples of the real images to be dealt with are shown in
Figure 2 which demonstrate some of the variations we men-
tioned that the vision algorithm developed for localizing and
segmenting HCCB has to be invariant or robust to. Also,
since these are consumer applications, the approach should
be computationally light. Most existing barcode reading
algorithms are proprietary information and hence there is
minimal literature publicly available on them.

While Microsoft’s HCCB may be used for a variety of
applications, the most immediate application for HCCB
is for uniquely identifying commercial audiovisual works
such as motion pictures, video games, broadcasts, digital
video recordings and other media and Microsoft has re-
cently joined hands with ISAN-IA (International Standard
Audiovisual Number International Agency) [3].

The design of HCCB can be seen in Figure 1(d). It has
rows of strings of symbols (triangles), and each triangle can
be one of four or eight colors. In this paper we focus on the
four-colored HCCB, the four colors being black, red, green
and yellow. The number of symbols in each row is always
an integral multiple of the number of rows which can vary.
HCCB is designed to have a black boundary around it, fur-
ther surrounded by a thick white band. These patterns are
designed to act as visual landmarks to locate the barcode
in an image. The black boundary at the bottom of HCCB
is thicker than the other three sides, which acts as an ori-
entation landmark to account for the fact that the barcode
may be at an arbitrary orientation in the image. The last
eight symbols on the last row are always in the fixed or-
der of black, red, green and yellow (two symbols per color)
and can be used as a pallet. There is a white line between
consecutive rows.

The rest of the paper is organized as follows. Section 2
briefly introduces our approach to the localization and seg-
mentation of HCCB, followed by detailed descriptions of
these two components in Sections 3 and 4 respectively. We
describe an interesting progressive strategy to address this
problem in Section 5 followed by results in Section 6 and

Thresholding

Orientation prediction

Corner localization

Row localization

Symbol localization

Color assignments

Barcode localization

Barcode segmentation

Figure 3: Flowchart of our approach to the localization and seg-
mentation of 2D color barcode.

conclusions in Section 7.

2 Approach
The vision algorithm needs to locate and segment the
HCCB from a given image, and determine the string of col-
ors of the symbols found in it. Instead of providing a hard
decision for which symbol is which color, we wish to pro-
vide a soft assignment, i.e. for each symbol we wish to
generate a four dimensional vector holding the confidence
for the symbol to be each of the four colors.

We assume that one point in the image that lies within
the barcode is known. This can be the location of the cross
hair when capturing the image. Without this constraint, gen-
eralized localization and segmentation of the barcode with
industry level accuracies, in the challenging scenarios we
describe, is unfeasible.

Our approach is described in the flowchart shown in Fig-
ure 3. We describe each of these components in detail be-
low. Since the approach needs to be computationally inex-
pensive, each of our design choices are simple yet effective.

3 Barcode localization
We first describe our approach to localize the barcode in the
input image i.e. to find the location of the four corners of
the barcode.

3.1 Thresholding
We first threshold the input color image to attempt to re-
tain only the portions of the image that are white. This is
in order to retain the thick white band surrounding the bar-
code and the white lines separating the rows. This thresh-
olded image will be used for predicting the orientation of
the barcode in the image as well as locating the corners

2



Figure 4: Left to Right: The color input image Ic, the computed
greyscale image Ig and the corresponding thresholded image Itw

of the barcode. To account for the varying lighting con-
ditions across images, we wish to normalize the image be-
fore thresholding it. Also, to account for varying lighting
conditions within a single image, we use an adaptive nor-
malization. Specifically, we convert the input color image
into grey scale and normalize the image adaptively by di-
viding it into four equal blocks, and normalizing each block
individually so that the pixels cover the range from 0 to 1.
We then threshold the entire image with a global thresh-
old, which we set to 0.7. An example thresholding result
is shown in Figure 4. Let’s call the input color image Ic,
the greyscale image Ig and the thresholded image that has
the white portions retained Itw. It should be noted that we
provide intermediate results images at every step in the ap-
proach on an intentionally selected good quality image for
clarity. But in reality, most images are certainly not as well
behaved.

3.2 Orientation prediction
The next step is to determine the orientation of the barcode
in the Ic. In order to do this, we rely on the repeated pattern
of the rows found in the barcode. We work with Itw and the
single point known to lie inside the barcode. We extract a
t
4 ×

t
4 patch around this point from Itw, where t is the mini-

mum of the width and height of Itw. We compute the Hough
Transform [5] of this patch. The rows being mostly parallel,
we expect to see a strong response for one of the orientation
values θ, which we determine by summing out the other di-
mension of the hough transform and retaining a 1D profile
corresponding to different values of θ. An example profile
along with the associated patch can be seen in Figure 5. The
orientation of the barcode is determined to be the value of θ

corresponding to the maximum value in this profile. Having
determined the orientation of the barcode in the image, we
rotate Ic, Ig and Itw accordingly so that the barcode is now
upright. From here on, whenever we refer to Ic, Ig or Itw, we
refer to the rotated version where the barcode is upright.

3.3 Corner localization
Now we wish to find the four corners of the barcode that en-
close the symbols, but exclude the surrounding white band.
We do this by first estimating rough locations for each of

orientation orientation o

di
st

an
ce

-90 900

Figure 5: Left to Right: The patch extracted from thresholded
image, the Hough transform of the patch, and the 1D orientation
profile, obtained by summing the Hough transform along one di-
mension, where the peak corresponding to the orientation of the
barcode is evident.

Figure 6: Left to Right: The thresholded image Itw based on
whiteness, the output of texture classifier, the final mask obtained
by combining the two.

the four corners, and then locally refining them. In order
to find the rough estimate of the corners, we work with Itw.
The strategy is to start from the point known to lie inside the
barcode, and grow a rectangle around it till it lies entirely
inside the thick white bands. However, the yellow color in-
side the barcode is often classified as white in Itw due to
poor image quality. These false positives prove to be signif-
icant distractions for the corner localization approach. To
remove them, we exploit the fact that the white bands that
we are interested in are textureless, where as the inside of
the barcode where these yellow regions are found is highly
textured.

3.3.1 Texture classifier

We build a simple binary texture classifier which separates
the textured regions from the non-textured regions. We
compute the output of a Harris corner detector [6] on Ig.
And the regions with a response lower than 0.01 are classi-
fied to be textureless, and rest are considered to be textured.
We combine this map with Itw to obtain a new binary mask
for the image. Examples of these images are shown in Fig-
ure 6. It can be seen that the texture classifier cleans up
the thresholded image significantly. Let’s call this cleaner
binary image Itwt , which is on for white and textureless re-
gions only.

3.3.2 Rough corner localization

In order to find the rough corners, we start with a t
10 ×

t
10

square in Itwt surrounding the point known to lie inside the

3



Figure 7: Left to Right: Starting with a small square around the
point known to lie inside the barcode, we swipe each edge till it is
mostly white. This gives us the initial rough corner estimates.

barcode. We start with the right edge of this square and
swipe outwards in Itwt till the average values of the pixels
that lie on this edge is above a certain threshold. We set this
threshold to τw (value will be made clear in later sections).
We do this for the left, bottom and top edges. The four
edges are now in the thick white band, which gives us a
rough estimate of the corners. An example of this is shown
in Figure 7.

3.3.3 Gradient based refined corner localization

In order to further process the barcode, we need very accu-
rate estimate of the corners. So we refine each of the four
corners locally. We extract square 50 × 50 patches from
Ig around the estimated rough corner location. We com-
pute the gradient of the patch. We know that the true corner
should have a high gradient value.

Exploiting expected gradient directions: Because of the
design of the barcode, we know the directions of the gradi-
ents near each of the four corners. For instance, the top-left
corner of the barcode should have a dark portion on its right
and bottom, and a bright portion on it’s left and top. So
the point we are interested in is one where the magnitude
of the gradient is high, but respecting these expected direc-
tions of change. The magnitude of the gradient respecting
this direction is computed at each point in the patch. Let
this gradient patch be m.

Estimating blur: m is often noisy, so we filter it with a
median filter. In our experiments we found that the size of
this filter is crucial and is dependent on the blur of the patch.
We use M = max(m) to estimate the blur of the patch. The
sharper the patch, the higher the contrast between the white
band and the black border will be and the higher the value
of M. We empirically determined a mapping of M to the
appropriate filter size, and filter m, which we call m f .

Down weighing background: m f is weighted by a Gaus-
sian fallof so that the center of the patch has a higher weight
than the periphery. This is to avoid any high gradient in-
formation that may be present towards the outside of the
patch due to background clutter that may have been picked
up. The refined location of the corner is the location of

Figure 8: Left to Right: Patch extracted around estimated corner,
gradient of the patch m respecting expected gradient directions,
filtered gradient m f , m f weighted by a gaussian, refined location
of corner.

Figure 9: Left to Right: Patch extracted around estimated corner,
strongest horizontal and vertical lines localized, refined location
of corner at intersection of two localized lines. (The location of
the estimated corner is taken to be the same as the result of the
rough corner estimation instead of that refined using the gradient
for illustration purposes).

max(m f ). This is repeated for the remaining three corners.
An illustration of how this works is shown in Figure 8.

3.3.4 Line based refined corner localization

The above refining method gives us accurate estimate of the
corners most of the time. However, to meet industry level
accuracies, we wish to eliminate as many errors as possible.
So we employ one further local refinement step. We con-
sider another 30× 30 local patch from Ig around the esti-
mated corner positions. We use hough transform to find the
strongest horizontal and vertical lines in this patch. The lo-
cation of the refined corner is the intersection of these lines.
An illustration of this is shown in Figure 9.

4 Barcode segmentation

Having determined accurate locations of the four corners,
we have successfully identified the portion of Ic (and Ig)
that contains the barcode and only the barcode. Lets call
this region of interest B

′
. The barcode could be perspec-

tively transformed, and so B
′

is an arbitrary quadrangle. If
we can transform B to be a rectangle, the rest of the pro-
cessing would be much more straightforward. Before we
can transform B

′
, we need to determine a meaningful as-

pect ratio r for the rectangle. We compute this as follows.
Let s1 be the length of the left side of the quadrangle, and
s2, s3 and s4 be the lengths of the other sides in clock-size
order. Let sl be the average of s1 and s3, sw of s2 and s4.
Then r

′
is sw

sl
and r is the integer closest to r

′
.

4



Figure 10: Left to Right: Input image, region of the input image
lying within the corners localized, barcode extracted and trans-
formed to a canonical rectangle.

Summation

Figure 11: Left to Right: Grayscale extracted barcode summed
along one dimension to get the intensity profile seen in the middle.
The peaks located in this intensity profile are color black in the
barcode to identify the location of the row separators localized.

We don’t use this aspect ratio for any geometric reason-
ing, so this approximation is good enough for our purposes
to simply transform the localized barcode to a meaningful
rectangle size. Having determined r, we determine the per-
spective transform T required to transform B

′
to a rectangle

of size 200×200r. We use T to transform B
′
from Ig as well

as Ic to obtain Bg and Bc respectively. We now wish to iden-
tify the string of colors of the symbols in Bc. Illustrations of
these regions is shown in Figure 10

4.1 Row localization

We first try to identify the location of the white lines that
act as rows separators. In order to do this, we work with Bg,
which we know has the rows all in horizontal orientation.
We sum Bg along the horizontal dimension and get a 1D
profile such as that illustrated in Figure 11. The peaks cor-
responding to the white row separators are evident. Given
this 1D profile we determine an approximation of the width
W of the rows using FFT. We use non-local maxima sup-
pression to determine the exact location of the peaks, using
a window size that is about W

2 . The locations of the row
separators is also shown in Figure 11.

4.2 Symbol localization

Having localized the row separators, we now analyze each
row to determine the location of the symbols (triangles) in
each row. In order to do this, we need to determine the num-
ber of triangles per row. Given the design of the barcode, it
turns out that the number of triangles per row is (r+1)R and
r is the aspect ratio computed earlier and R is the number of
rows in the barcode. Having determined the number of tri-

S E

Figure 12: Top to bottom: The row being currently analyzed, the
clusters assigned to each of the pixels in the row, the quality mea-
sure to evaluate each sample placed and the search performed over
different values of S and E between which samples are placed uni-
formly. The score associated with a certain value of S and E is the
sum of the quality measure shown at each of the sample points.

angles per row, we can sample each row uniformly (respect-
ing the geometry of every other triangle being inverted) and
those would be the locations of the triangles. However, due
to slight errors in corner localization, which may further get
amplified while computing the perspective transform T , this
does not work accurately enough. For a single row, the start
(left) and end (right) locations of the sampling, S and E re-
spectively, are the main degrees of freedom. So we search
over multiple values of S and E. For every pair (S,E), we
compute a quality score. This score is computed as the sum
of the quality scores of each sample that would be obtained
if we were to sample uniformly within the range between S
and E. To compute the quality of samples, we first perform
clustering on the pixels in the row into four clusters using
Meanshift clustering [7]. The quality of a sample at a point
is the proportion of height of the row at that point assigned
to the majority color in that height. So if a sample is located
at the center of a triangle, most of the height of the row at
that point will be of one color, and the quality of the sam-
ple will be high. Figure 12 illustrates these ideas. Having
computed scores for all (practical) values of (S,E), we pick
(S,E) with the highest score and uniformly sample the row
in this range. This is the best global strategy for all the sam-
ples in the row, but there is room for improvement locally.
So given these uniformly placed samples, we search a small
neighborhood (5 pixels wide) around each sample, and shift
the sample to the local optimum in terms of the quality mea-
sure. These are the final locations for the symbols. This is
repeated for every row.

4.3 Color assignments

Even though we computed the four color clusters using
Meanshift, it is not clear which cluster corresponds to which
one of the four colors: black, red, green and yellow. Naive
nearest neighbor assignments of clusters to the colors does
not work because of poor image quality and drastically
varying color balancing in cameras. So we use the pallet
at the bottom of the barcode to assign the colors. We should

5



point out that when the orientation of the barcode was com-
puted, it was mod 180◦. So the barcode could be upside
down at this stage. In order to fix this, we look for the thick
black line at the bottom of the barcode that is part of the de-
sign and acts as the orientation landmark. If the thick black
line is found on top, we flip the barcode vertically before
doing the color assignments.

4.3.1 Local confidence

As stated earlier, we wish to assign a confidence to each
symbol to be assigned to each of the four colors. We incor-
porate a local confidence measure as well as a global con-
fidence measure. In order to compute the local confidence,
we look at a small neighborhood of 5×5 pixels around each
sample and compute the proportion of pixels assigned to
each of the four colors.

4.3.2 Global confidence

Due to poor quality of images, the clustering algorithm of-
ten combines two colors into one cluster. This can be local-
ized by exploiting the fact that the barcodes are designed so
that the colors are as random as possible i.e. the histogram
of the four colors in a barcode is mostly uniform. So if the
clustering algorithm has merged two clusters into one, the
histogram of our predicted colors in the barcode using these
clusters would have one of the colors sharply peaked, and
another color nearly zero. If this is localized, we have a rea-
son to believe that these two colors have been confused by
the clustering algorithm, and this should be reflected in the
confidence values globally. For example, if we believe the
green and black have been merged into one cluster which
has been assigned to black, whenever we see a black symbol
in the barcode, it could have been green with an equal con-
fidence of being black. So among all the local confidence
values for all symbols, we simply copy the local confidence
values for a symbol being black to the symbol being green
(unless the confidence of the symbol being green was as-
signed a higher value than it being black). We now have the
string of colors for the symbols found in the barcode, and
associated confidence values that can now be passed on to
the decoder to be decoded.

5 Progressive strategy
While doing experiments with images of Microsoft’s
HCCB, we found that the percentage of barcodes that could
be correctly decoded given the output of our algorithm was
not satisfactorily high. However, given the correct (hand-
clicked with likely errors of a few pixels) corner loca-
tions for the barcodes, a high percentage of barcodes were
successfully decoded. This indicated that the errors were

mainly on the part of our corner localization approach. An-
alyzing these errors further, we found that no single settings
of parameters throughout the corner localization approach
worked well for all images, however the errors of differ-
ent parameter settings were complementary. Also, barcode
reading is different from most other localization tasks in vi-
sion in the sense that the results are verifiable - the decoder
can provide feedback to the vision algorithm about whether
the barcode was decoded successfully or not. We exploited
the combination of these two factors and developed a pro-
gressive strategy.

For a given input image, we first use one approach to
corner localization, and if the barcode can not be decoded
successfully, we try another approach and so on. Since each
approach individually is computationally inexpensive, this
is much more feasible than attempting to develop a single
strong approach that is effective for the entire diverse col-
lection of images.

The order in which we try the different approaches is
determined to optimize the computational time i.e. the ap-
proach that is shown to be effective for most images is tried
first and so on, so that most barcodes are decoded success-
fully in the shortest time, and very few barcodes take longer.
We design 12 different approaches. The variables we con-
sider are the threshold τw used in Section 3.3.2 (0.2, 0.5
or 0.9) and the strategies to find corners that are employed
i.e. only rough corner estimation or one or both of the local
refinements approaches (gradient based or line based).

6 Results
We evaluate our approach on a 1000 images of Microsoft’s
High Capacity Color Barcodes of varying densities and
sizes taken under varying conditions such as those depicted
in Figure 2. The barcodes had anywhere from 10 to 60 rows,
with 20 to 120 symbols per row, making the number of sym-
bols per barcode to range from 200 to 7200. The known
point inside the barcode was assumed to be the center of
the image. The ground truth sequence of colors present in
the barcodes was available. It should be noted that since the
ground truth is as the sequence of colors, and not confidence
measures, we do not have a way to evaluate our confidence
measures. From the confidence values, we assign a symbol
to the color with the highest confidence, and then compare
the string of colors our algorithm produces, with the ground
truth.

Let us first look at the results of the segmentation part of
the approach as a stand alone piece. We hand-clicked cor-
ners of about 500 of the 1000 images and provided these
corner co-ordinates as input to the barcode segmentation
module. We compared our predicted string of colors with
the ground truth, and computed the accuracy per image as
the percentage of symbols correctly identified. Averaging

6



0 100 200 300
0

200

400

600

Distance from ground truth corners

N
um

be
r o

f c
or

ne
rs

Figure 13: Histogram of errors in corner localization using the
approach as described in Section 3.3. While most errors are small
enough, several are too large.

2 4 6 8 10 12
0

20

40

60

80

100

Number of strategies employed

%
 b

ar
co

de
s 

de
co

de
d

Figure 14: Percentage of barcodes successfully decoded as more
approaches are employed as part of the progressive strategy. It
can be seen that while most barcodes can be successfully decoded
using the first few approaches, the subsequent approaches help if
higher accuracies are desired.

across the 500 images, we found that we can correctly iden-
tify the colors of 94% of the symbols. This shows that given
good corner co-ordinates, the segmentation module of the
approach works well.

We now evaluate our entire corner localization approach
as described in Section 3.3 on same 500 images, assuming
the hand-clicked corners to be ground truth. The histogram
of errors of the corners is shown in Figure 13. It can be seen
that while most corners are found accurately, several have
large errors.

We now show the behavior of the progressive strategy. In
order to do so, we need the decoder in the loop to provide
feedback to the vision algorithm. Since the focus of this
paper is on the vision algorithm, we do not discuss the de-
tails of the decoder. However, let us use a simple model for
the decoder. Let’s say if the colors of 85% or higher of the
symbols in a barcode are correctly identified, the barcode
can be successfully decoded (this is a realistic number for
the decoder being used with Microsoft’s HCCB), otherwise
it can not.

Figure 14 shows the percentage of barcodes of the 1000
images that are successfully decoded with each added strat-
egy we employ. We can see that the first strategy can suc-

cessfully decode most barcodes, and as we keep adding
more strategies the number of added successes decreases
significantly, with the curve flattening out at about 97.2%.
We can see that by employing just one of the best strategies
we would have a performance of only about 60%. The com-
putation cost at which these added successes are obtained is
about 6.1 seconds per strategy (the code is unoptimized and
implemented in Matlab and was run on a standard desk-
top computer). For different applications, we would want
to function on different operating points of the tradeoff be-
tween accuracy and computational expense. The progres-
sive strategy employed gives us the freedom to easily ma-
nipulate these operating points.

7 Conclusions
We presented our approach to the localization and segmen-
tation of a 2D high capacity color barcode, under various
challenging scenarios of consumer use. Our approach is
fairly computationally inexpensive, and gave industry level
accuracies on images of Microsoft’s recently launched 2D
High Capacity Color Barcode (HCCB). We exploited the
unique nature of the reading barcodes as compared to other
vision detection tasks, and proposed a progressive strat-
egy that is similar in philosophy to ensemble of classifiers,
where we use multiple simple approaches instead of a single
strong one. This also allows for an explicit design choice to
tradeoff between accuracy and computational time.

Acknowledgments
We would like to thank Larry Zitnick, Andy Wilson and
Zhengyou Zhang for useful discussions over the course of
this work.

References
[1] News article at: http://www.news.com/Microsoft+

gives+bar+codes+a+splash+of+color/2100-1008_
3-6175909.html?tag=cd.lede

[2] News article at: http://seattlepi.nwsource.com/
business/311712_software16.html

[3] International Standard Audiovisual Number, http://www.
isan.org

[4] News release at: http://www.isan.org/portal/page?
_pageid=165,41294&_dad=portal&_schema=PORTAL

[5] Hough transform
[6] Harris corner detector
[7] Meanshift

7


