
2005 7th International Conference on Information Fusion (FUSION)

A Multiple Classifier Approach for Multisensor Data Fusion

Devi Parikh
Electrical and Computer Engineering

Rowan University
Glassboro, NJ, USA.

parikh55@students . rowan. edu

Robi Polikar
Electrical and Computer Engineering

Rowan University
Glassboro, NJ, USA.

polikar@rowan. edu

Abstract - In many applications of pattern recognition and
automated identification, it is not uncommon for data obtained
from different sensors monitoring a physical phenomenon to
provide complimentary information. In such applications, data
fusion - a suitable combination of the complimentary informa-
tion - can offer more insight into the phenomenon than any of
the individual data sources. We have previously introduced
Learn++, an ensemble based approach, as an effective auto-
mated classification algorithm that is capable of learning in-
crementally. Recognizing the conceptual similarity between data
fusion and incremental learning, our approach is then to employ
an ensemble of classifiers generated by using all of the data
sources available, and strategically combine their outputs. We
have observed that the prediction ability ofsuch a system was
significantly and consistently better than that of a decision
based on a single data source across several benchmark and
real world databases.

Keywords: Fusion, combining classifiers, ensemble sys-
tems, incremental learning, Learn'.

1 Introduction

1.1 Incremental learning and data fusion
Classification algorithms usually require availability of an
adequate and representative set of training data to generate
an appropriate decision boundary and provide a satisfac-
tory generalization performance. This is particularly true if
an ensemble approach of classification is used and the
classifiers are combined using trainable rules such as
weighted majority voting, weighted sum rule or weighted
product rule, as opposed to fixed rules such as the simple
sum, product and majority voting rules [1]. However, ac-
quisition of such data is expensive and time consuming,
and consequently it is not uncommon for the entire data to
become available gradually in small batches over a period
of time. Furthermore, the datasets acquired in subsequent
batches may introduce instances of new classes that were
not present in previous datasets. In such settings, it is nec-
essary for an existing classifier to be able to acquire the
newly introduced knowledge without forgetting the previ-
ously learned information. The ability of a classifier to
learn in this fashion is referred to as incremental learning.

It many applications data available from multiple
sources underlying the same physical phenomenon may
contain complementary information. For instance, in non-
destructive evaluation of pipelines, defect information
may be obtained from eddy current, magnetic flux leakage
images, ultrasonic scans, thermal imaging; or diagnostic
information may be obtained from several different medi-
cal tests. Intuitively, if such information from multiple
sources can be appropriately combined, the performance
of a classification system can be improved. A classifica-
tion system, capable of combining information from mul-
tiple sources or from multiple feature sets, is said to be
capable of performing data fusion. Consequently, both in-
cremental learning and data fusion involve learning from
different sets of data. In incremental learning the datasets
may introduce new classes, whereas in data fusion the
datasets may contain different features, indicating a con-
ceptual similarity between incremental learning and data
fusion.

1.2 Ensemble based incremental learning
A multiple classifier system (MCS) combines an en-

semble of generally weak and/or diverse classifiers. The
diversity in the classifiers allows different decision
boundaries to be generated by using slightly different
training parameters, such as random sampling of training
datasets. The intuition is that each classifier will make a
different error, and strategically combining these classifi-
ers can reduce total error. Thus, MCS takes advantage of
the so-called instability of the weak classifier and in turn
generates a strong classifier [2-4]. Ensemble systems have
attracted a great deal of attention over the last decade due
to their reported superiority over single classifier systems
on a variety of applications [5-8].

The ensemble approach has been widely used with a
variety of algorithms to improve the generalization per-
formance of a classification system. However, using this
approach to solve the problem of incremental learning has
been mostly unexplored. Recognizing the potential of this
approach to solve the incremental learning problem, we
have recently developed Learnm, and shown that Learn+

0-7803-9286-8105/$20.00 ©2005 IEEE 453

is indeed capable of incrementally learning from new
data, without forgetting previously acquired knowledge
and without requiring access to previous data, even when
additional datasets introduce new classes [9]. The general
approach in LearnH, much like those in other MCS algo-
rithms, such as AdaBoost [10], is to create an ensemble of
classifiers, where each classifier learns a subset of the
dataset. The classifiers are then combined using weighted
majority voting [11]. Learnv differs from other tech-
niques, however, in the way the data subsets are chosen to
allow incremental learning ofnew data [9, 12].

Recognizing the above mentioned conceptual similarity
between incremental learning and data fusion, we have
evaluated Learn+ on a benchmark application requiring
data fusion [13]. New ensembles of classifiers were gen-
erated from datasets comprised of different features,
which were then combined using weighted majority vot-
ing. The versatility ofthe algorithm to perform data fusion
in varying scenarios, and its ability of fuse information
from more than two sources has been demonstrated here.
We describe how LearnH can be used more efficiently as
a general purpose approach for a variety of data fusion ap-
plications along with promising results on two real world
applications as well as a benchmark database.
1.3 Ensemble based approaches for

data fusion
Several approaches have been developed for data fusion,
for which ensemble based approaches constitute a rela-
tively new breed of algorithms. Traditional methods are
generally based on probability theory (Bayes theorem,
Kalman filtering),or decision theory such as the Demp-
ster-Schafer (DS) theory and its many variations.

The majority of these algorithms have been developed
in response to the needs of military applications, most no-
tably target detection and tracking [14-16]. Ensemble of
classifiers based approaches seek to provide a fresh and a
more general solution for a broader spectrum of applica-
tions. Such approaches include simpler combination
schemes such as majority vote, threshold voting, averaged
Bayes classifier, maximum/minimum rules, and linear
combinations of posterior probabilities [17,18]. More
complex data fusion schemes are also widely used, includ-
ing ensemble based variations of DS, template matching,
neural and fuzzy systems, and stacked generalization [19 -
24]. Another related approach to data fusion using classi-
fier combination schemes is input decimation: the use of
different feature subsets in multiple classifiers [25, 26].
Input decimation can be useful in allowing different mo-
dalities, such as Fourier coefficients and pixel averages, to
be naturally grouped together for independent classifiers
[25]. Input decimation can also be used to lower the di-
mensionality of the input space by "weeding out features
that do not carry strong discriminating information" [26].
A useful addition to this list of techniques would be a

more general structure capable of using a variety of differ-
ent classifier architectures and containing the ability to
combine their outputs for (i) a stronger overall classifier,

(ii) incremental leaming, and (iii) multisensor data fusion.
In this paper we demonstrate the potential ofLearn' to of-
fer such an alternative to existing data fusion algorithms.

2 Learn++
The novelty of Learn+ is its incremental learning capabil-
ity. It can learn new information as and when new data
become available, without forgetting the previously ac-
quired knowledge and without requiring access to the pre-
vious data, hence without suffering from catastrophic for-
getting [27]. Specifically, the algorithm generates an en-
semble of relatively weak classifiers for each new data-
base that becomes available, where the outputs of each in-
dividual classifier of the ensemble are combined through
weighted majority voting to obtain the final classification.
Weak or diverse classifiers are trained on a subset of

the training data, randomly selected from a dynamically
updated distribution over the training data instances. This
distribution is biased towards those instances that have not
been properly learned or seen by the previous ensem-
ble(s). A block diagram illustrating the Learn++ algorithm,
as applied to the data fusion problem, is provided in Fig-
ure 1, and is described in detail in the following para-
graphs.

For each database, FSk, k=1,...,K, comprised of a dif-
ferent set of features (obtained from the same particular
application) that is submitted to Learn<, the inputs to the
algorithm are (i) a sequence Sk of mk training data in-
stances xi along with their correct labels yi ; (ii) a super-
vised classification algorithm BaseClassifier, generating
individual classifiers (henceforth, hypotheses); and (iii) an
integer Tk, the number of classifiers to be generated for the
kh database.

The only requirement on the BaseClassifier algorithm
is that it can obtain better than 50% correct classification
performance on its own training dataset, so that a mini-
mum reasonable performance can be expected from each
classifier. We note that for a two-class problem, 50% per-
formance is equivalent to random guessing, and that is the
least we can ask from a classifier. BaseClassifier can be
any supervised classifier such as a multilayer perceptron,
radial basis function, or a support vector machine, as their
weaknesses can be controlled by adjusting their size
and/or error goal with respect to the complexity of the
problem. Sufficiently different decision boundaries can
then be generated by these classifiers by training them
with randomly selected training data subsets.

It should be noted that most of the resources in generat-
ing a strong classifier are typically spent in fine-tuning the
decision boundary. Since Learn+ requires only a rough
estimate of the decision boundary from its weak classifi-
ers, the expensive step of fine-tuning is avoided. Using
weak BaseClassifiers, therefore, not only saves computa-
tional time during training, but also helps prevent overfit-
ting ofthe training data.

454

Training subset TR, is drawn according to D, (step 2),
and the weak classifier is trained on TR, in step 3. A hy-
pothesis h, is generated by the th classifier, whose error £,,
is computed on the current database Sk as the sum of the
distribution weights ofthe misclassified instances (step 4)

e, = D,(i)
i:h, (x,) .y,

(1)

As mentioned above, the error, as defined in Equation (1),
is required to be less than 0.5 to ensure that a minimum
reasonable performance can be expected from h,. If this is
the case, the hypothesis h, is accepted and the error is
normalized to obtain the normalized error.

(2)A. = I_',tt0<A, <1

If E,> Y/2, the current hypothesis is discarded, and a new
training subset is selected by returning to step 2. All t hy-
potheses generated thus far are then combined using a vot-
ing scheme to obtain a composite hypothesis H, (step 5).

Ht = argmax E log IC
yeY t:ht (x)=y fit

(3)

The voting scheme used by Learn+ is not democratic:
Each hypothesis is assigned a weight as the logarithm of
the reciprocal of its normalized error. Therefore, those hy-
potheses with smaller training error, indicating better per-
formances, are awarded with a higher voting weight and
thus have more say in the final classification decision. The
error ofthe composite hypothesis H, is then computed in a
similar fashion as the sum of the distribution weights of
the instances that are misclassified by H, (step 6)L E4

Weighted
Majonity Vo~ting

Final Clasification E,= ZD,(i) = ED,(i)[H,(x;) . y i]
i:H, (x,)*y, i=1

Fig. 1. The Learn algorithm for data fusion

Each hypothesis h,, generated during the eh iteration of the
algorithm, is trained on a different subset of the training
data. This is achieved by initializing a set of weights for
the training data, w, and a distribution D, obtained from
w,. According to this distribution a training subset TR, is
drawn from the training data. The distribution D, deter-
mines which instances of the training data are more likely
to be selected into the training subset TR,. Unless a priori
information indicates otherwise, this distribution is ini-
tially set to be uniform, giving equal probability to each
instance to be selected into the first training subset. At
each subsequent iteration t, the weights previously ad-
justed at iteration t-1 are normalized to ensure a legitimate
distribution D, (step 1).

where, * evaluates to 1, if the predicate holds true and 0

otherwise. The normalized composite error B, is

B, = E, 0< B, <1 (5)

which is then used for updating the distribution weights
assigned to individual instances

Bt,Ht(xi) = yi

Wt+l () = wt (i)X

l,otherwise
(6)

455

Inputs at
Intzahized
weltw

t=1
T

I
I for FSk
Tr.ani
Data S4
A-

I.

tIA
4

v9

1.

v

1iv1

+
11

(4)

J

Eq. (6) indicates that the distribution weights of the in-
stances correctly classified by the composite hypothesis H,
are reduced by a factor of B, (O<B,<1). When the distribu-
tion is re-normalized during step 1 of the next iteration,
the weights of the misclassified instances are effectively
increased, making them more likely to be selected to the
training subset of the next iteration. We note that this
weight update rule, based on the performance of the cur-
rent ensemble, facilitates incremental learning. This is be-
cause, when a new dataset is introduced (particularly with
new classes or features), the existing ensemble (H,) is
bound to misclassify the instances that have not yet been
properly learned, and hence the weights of these instances
are increased, forcing the algorithm to focus on learning
novel information introduced by the new data.

At any point, a final hypothesis Hfina, can be obtained
by combining all hypotheses generated thus far.

Specifically for the data fusion applications, an ensem-
ble of classifiers is generated as described above for each
of the dataset (that uses a different set of features), but
also an additional set of weights are introduced for each
ensemble. These weights can be assigned based on former
experience, if reliable prior information is available about
the individual feature set (e.g., for the application of non
destructive testing and evaluation of pipelines to identify
defects in them, we may know that ultrasonic testing is
usually more reliable then magnetic flux leakage data, and
we may therefore choose to give a higher weight to the
classifiers trained with ultrasound data), or they can be
based on the performance of the ensemble trained on the
particular feature set on its own training data. If such a
weight assignment strategy is chosen, the weight of each
classifier would be multiplied by the weight assigned to
the ensemble to which it belongs. This adjusted weight of
each classifier is then used during the weighted majority
voting for the final hypothesis Hfinal

K

Hf,.a(x)=argmaxy E log 1 (7)
SYy k=l t:kh(x)=y AErk

where, Erk is the optional weight assigned to the ensemble
trained using a dataset from FSk (and can assume of a
value of I if this additional weight is not assigned). For
the data fusion application discussed in this paper, Erk was
chosen to be the ratio of the number of instances misclas-
sified by the composite hypothesis of the ks" ensemble to
the total number of instances in its training dataset Sk.
Learn+ used in the data fusion setting is shown in Fig. 2.

To summarize, there are three sets of weights employed
by the algorithm when used in the data fusion mode. The
first two are common for using the algorithm in the in-
cremental learning or data fusion mode, whereas the last
one is specific to using the algorithm in the data fusion
mode only. These weights are as follows:

* The weights assigned to the instances in the training
data, used in determining which instances are more likely
to be drawn into the training subset for the next classifier.

Feature specific ensembles , w
A S

ent }>= E >Deci
feature SI-on

sets

Fig. 2. Schematic representation ofalgorithm

* The weights assigned to each classifier based on its
performance on its training data. These weights are used in
weighted majority voting. The higher the training per-
fornance of the classifier, the higher voting weight and
the more say it has in the final classification.

* The (optional) weight assigned to the entire ensemble
of classifiers trained on data sourcing from a particular set
of features. They also play a role in weighted majority vot-
ing in the final hypothesis. These weights may be assigned
based on prior information or based on the performance of
the ensemble on its training data (similar to weight as-
signed to the individual classifiers as explained above).

Simulation results of Learn+m on incremental learning
using several datasets, as well as comparisons to the other
methods of incremental learning such as Fuzzy ARTMAP
can be found in [9] and references within. The simulation
results of Learn+m on data fusion are presented below.

3 Results
While Learn'- was originally developed as an incremental
learning algorithm, its ensemble structure allows it to be
used in data fusion applications as well. This is because
the algorithm can accept a new dataset even if it contains
completely different features as compared to the data the
algorithm has previously seen. When used in data fusion
mode, Learn++ seeks to incrementally learn novel informa-
tion content from datasets that come from the same appli-
cation but are composed ofdifferent features.
Implementing data fusion using Learn~+ with the en-

semble approach was tested on three databases, two real
world applications and a benchmark database from the
UCI Repository ofMachine Learning.

3.1 Nondestructive evaluation (NDE) of
pipelines database

Nondestructive evaluation is primarily concerned with de-
tection and identification of flaws in various types of ma-
terials. Data fusion methods that specifically target NDE
data have been developed, which usually that take advan

456

MFL Ilnages UT Scans Type of Defect

No Defect

mI s = 1 Pitting

Crack

Mechanical Damage

Weld

Fig. 3. Sample MFL and UT images of defect types

tage of one or more of the methods mentioned above [28,
29]. Two datasets containing different features were fused.
The first was a set of Magnetic Flux Leakage (MFL) im-
ages, and the second was a set of Ultrasonic Testing (UT)
images. Both modalities can be used to detect and identify
defects in pipes. Illustrations of these images along with
the type of defect they represent are shown in Fig. 3.

Two-dimensional discrete Fourier transform based fea-
tures were extracted from each imaging modality with 15
features for MFL and 72 features for the UT. The database
consisted of 21 images from to a total of 5 classes: (i) No
defect: 4 images; (ii) Pitting: 9 images; (iii) Crack: 4 im-
ages; (iv) Mechanical Damage: 4 images; (v) Weld: 4 im-
ages. Ten images (2 from each class) were randomly se-
lected for training and the remaining 11 were used for
validation. This distribution was kept constant for all data-
sets while the data were shuffled for different random se-
lections ofthe training set for cross validation purposes.

The algorithm was evaluated using a single hidden
layer MLP as the base classifier with every possible com-
bination of the following parameters: error goal ranging
from 0.05 to 0.08 in steps of 0.01, number of hidden layer
nodes ranging from 5 to 45 in steps of 5 and the number
of classifiers ranging from 10 to 60 in steps of 10. The
simulations results obtained by using these parameters are
shown in Table 1.

The second column of Table 1 indicates the percent-
ages of different comparisons between the data fusion per-
formance and the individual MFL and UT performances,
out of the 216 experiments. For example, in 72.22% to
88.89% of the simulations (156 to 192 out of 216 simula-
tions) - varying depending on the number of classifiers -
the data fusion performance was better than either of the
individual MFL or UT performance. Similarly, 5.56% to
27.78% of the times (12 to 60 out of 216 simulations), the
data fusion performance was the same as the higher of the
MFL or UT performances, and so on. We note that the
undesirable cases (where the data fusion performance is
the lower ofMEL and UT, i.e. row 5, or lower than both,

Table 1: Comparing the data fusion performance to the
individual nerformance ofMFL (MFLn) and UT (UTn)

Data fusion performance
combining two feature sets is Proportions %*

Greater than max (MFLp, UTp) 72.22 to 88.89
Equal to max (MFLp, UTp) 5.56 to 27.78
Equal to both MFLp and UTp 0 to 2.78
In between min (MFLp, UTp) 0 to 5.56

and max (MFLp, UTp)
Equal to min (MFLp, UTp) 0
Less than min (MFLp, UTp) 0

* vary with number of classifiers

i.e., row 6) never occur. The results indicate that the algo-
rithm is indeed able to extract additional information
when the two databases are fused.
We have also picked the optimal combination of pa-

rameters and performed cross validation with respect to
different partitioning of the available data into training
and test data. The optimal values, as determined by statis-
tical analysis were found to be 0.05 error goal, 30 hidden
layer nodes and 30 classifiers trained with each dataset.

For cross validation, we randomly picked 2 instances
from each of the 5 classes. The 10 instances thus picked
were used as the training data, and the remaining 11 in-
stances were used as the validation data. This was re-
peated 40 times to obtain 40 different partitions of data to
train and validate the algorithm. The cross validation re-
sults are summarized in Table 2. These numbers suggest
that the data fusion performance is significantly better
than either of the individual MFL and UT performances,
even when the classifier parameters are optimized for each
feature set.

Table 2: Generalization performances - 95% CI
Dataset Average generalization performance
MFL 81.60 + 3.62 %

UT 79.87 + 2.69 %
Fused 95.02 + 2.00 %

3.2 Multiple features database
The multiple features database was obtained form the UCI
Machine Learning Repository. It consisted of features of
handwritten numerals ('0'-'9') extracted from a collection
of Dutch utility maps. It had 200 instances from each of
the 10 classes. There were 6 feature sets as listed below
with a total of649 features:

Feature Set 1: Profile correlations - 216 features
Feature Set 2: Fourier coefficients - 76 features
Feature Set 3: Karhunen Loeve coef. - 64 features
Feature Set 4: Pixel averages - 240 features
Feature Set 5: Zernike moments - 47 features
Feature Set 6: Morphological features - 6 features
Three hundred out ofthe available 2000 instances were

used for training, and the rest were used for validation.

457

The algorithm was evaluated on this database for every
possible combination of the following range ofparameters
for each of the feature sets over 2 different partitions of
the available data: error goal ranging from 0.01 to 0.06 in
steps of 0.01, number of hidden layer nodes ranging from
10 to 25 in steps of 5 and number of classifiers ranging
from I to 35 in steps of 1.

Statistical analysis was performed over these various
combinations ofperformance values (a total of 1680 such
combinations) and an optimum set of parameters was
picked for each feature set, indicated in Table 3.

Table 3: Op parameters picked for each feature set
Feature Error No. hidden No.

Set goal layer nodes classifiers
1 0.01 20 10
2 0.01 10 10
3 0.01 15 10
4 0.01 10 10
5 0.01 25 10
6 0.01 25 10

The LearnH algorithm was evaluated using these parame-
ters over the corresponding feature sets for 50 different
partitions of the data and data fusion was performed. All 6
feature sets were fused. The results obtained are summa-
rized in Table 4.

Table 4: Generalization performances - 95% CI
Feature Set Average generalization

performance
1 93.23 + 0.25 %

2 76.74 + 0.30 %

3 93.46 + 0.20 %

4 93.06 + 0.29 %
5 79.40 + 0.29 %

6 70.93 + 0.33 %

Fusion 96.57 + 0.17 %

Consistent with the non-destructive evaluation of pipelines
database, the classification performance obtained by fus-
ing the feature sets is better than each individual feature
set, with statistical significance at a 95% confidence level
- even when the classifier performances are optimized for
each feature set. We note that such optimization is impor-
tant, because when the parameters are optimized for each
feature set, there is less to be gained from the fusion -
unless the data fusion algorithm is indeed extracting and
merging complimentary information.

3.3 Volatile organic compounds database
This database was produced from responses of twelve
quartz crystal microbalances (12 features) to twelve vola-
tile organic compounds (VOC). The twelve VOCs
(classes) included acetone (AC), acetonitrile (ACN), tolu-

ene (TL), xylene (XL), hexane (HX), octane (OC), metha-
nol (ME), ethanol (ET), methyethylketone (MEK),
tricholoroethylene (TCE), tricholoroethane (TCA), and di-
choloroethane (DCA). There were seven responses for
each VOC, which represent seven different concentration
levels, namely 70, 140, 210, 280, 350, 500, and 700 parts
per million (ppm). There were in all 84 instances (7 from
each class). Four instances were randomly picked from
each class and were used for training while the remaining
36 instances were used for testing. The available 12 fea-
tures were randomly divided into three feature sets (with
four features each) to simulate a data fusion scenario, as
shown below:
0

0

0

Feature Set 1: Features 1, 9, 2, 8
Feature Set 2: Features 10, 12, 7, 4
Feature Set 3: Features 11, 5, 3, 6

The range of parameters used for each feature set was
as follows. Error goals: 0.0005, 0.001, 0.003, 0.005,
0.007, 0.009, 0.01, 0.03, 0.036, 0.043, 0.05; number of
hidden layer nodes ranging from 15 to 45 in steps of 10,
and the number of classifiers ranging from I to 15 in in-
crements of 1. Every possible combination of the above
parameters was simulated over three different partitions of
the database. Statistical analysis was performed over these
1980 combinations of performance values (for each fea-
ture set) and a set of optimum parameters was determined
for each feature set. These are indicated in Table 5.

Table 5: Optimum parameters picked for each feature set
Feature Error No. hidden No.

Set goal layer nodes Classifiers
1 0.0005 15 _ 5
2 0.0005 15 5S5
I3 10.0005 45 5

Cross validation was performed over 100 partitions of
the data to obtain a best estimate of the true fusion per-
formance. All three feature sets were fused. The results are
summarized in Table 6.

Table 6: Generalization performances - 95% CI
Feature Set Average generalizationperformance

1 84.56+1.04%
2 86.06 + 1.32%
3 86.14 + 1.10%

Fusion 91.28 + 0.86%

Consistent with the previous two experiments, the data
fusion performance was better than each of the individual
feature set performance, with statistical significance at a
95% confidence level. It should also be noted, that in all
three databases, the width of the confidence interval for
the fusion performance was narrower, indicating a more
consistent performance as compared to the individual fea-
ture sets.

458

4 Conclusions References

Recognizing the conceptual similarities between in-
cremental learning and data fusion, the LearnH algorithm
- originally developed for incremental learning - has been
evaluated in a data fusion setting. The algorithm incre-
mentally and sequentially learns data comprised of differ-
ent sets of features by generating an ensemble of classifi-
ers for each dataset, and then combining them through a
modified weighted majority voting scheme. We have
evaluated the algorithm on two real world data fusion ap-
plications: identifying defect types from UT and MFL im-
ages and identifying the type of a volatile organic com-
pound present in the environment based on gas sensor re-
sponses. We have also evaluated the algorithm on a
benchmark database specifically designed for data fusion
simulations: the multiple features database obtained from
the UCI Repository of Machine Learning. The results in-
dicate that the LearnH algorithm, when used to combine
information contained from two or more datasets, consis-
tently performed significantly better then each of the test-
ing modalities individually. Also, the confidence intervals
of the fusion performance were consistently narrower
compared to those obtained with individual feature sets,
indicating a more robust performance. Therefore, the ad-
vantage of LearnH is that data from different measure-
ment modalities or feature groups can be sequentially
added without having to retrain the entire system, with an
added advantage of improved classification performance.
The ability of the algorithm to learn incrementally as well
as to fuse different datasets to extract additional informa-
tion not available in either dataset makes LearnH a versa-
tile algorithm. Further testing of the algorithm on addi-
tional real world and benchmark databases is currently
underway. Experiments are being conducted to track the
classification performance as feature sets are fused one at
a time. Also, the effects on fusion performance of combin-
ing the feature sets in different orders (ascending or de-
scending order of their performance) are being observed.
Tests are also being conducted to observe the sensitivity
of the data fusion performance to varying parameters (for
instance, using randomly selected moderate parameters
for the individual feature sets, as opposed to optimized pa-
rameters). It is expected that fusing feature sets that have
been optimized yields a smaller margin of increase in per-
formance using data fusion and can be used as a fine tun-
ing step. On the contrary, fusing features that are not op-
timally obtained would provide a larger margin of im-
provement on the fusion performance, and thus can be
used as an alternative for the expensive optimization proc-
ess.

Acknowledgement

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. ECS-0239090,
"CAREER: An Ensemble of Classifiers Approach for In-
cremental Learning."

[1] S. Prabhakar, A. K. Jain, "Decision level fusion in
fingerprint verification," Pattern Recognition, vol. 35,
pp. 861-874, 2001.

[2] L.K. Hansen and P. Salamon, "Neural network en-
sembles," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 10, pp. 993-1001,
1990.

[3] T.G. Dietterich, "An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, boosting and randomization," Machine
Learning, vol. 40, no. 2, pp. 1-19, 2000

[4] L. Breiman, "Bagging predictors," Machine Learning,
vol. 24, no. 2, pp. 123-140, 1996.

[5] T.G. Dietterich, "Ensemble methods in machine
learning," Proc. s' Int. Workshop on Multiple Classi-
fier Systems (MCS 2000), LNCS vol. 1857, pp. 1 - 15,
Springer: New York, NY, 2000.

[6] T. Windeatt and F. Roli (eds), Proc. 3rd Int. Work-
shop on Multiple Classifier Systems (MCS 2002),
LNCS vol. 2364, p. 1-15, Springer: New York, NY,
2002

[7] T. Windeatt and F. Roli (eds), Proc. 4th Int. Workshop
on Multiple Classifier Systems (MCS2003), LNCS,
vol. 2709, Springer: New York, NY, 2003.

[8] L.I. Kuncheva, Combining Pattern Classifiers -
Methods and Algorithms, Hoboken, NJ: Wiley Inter-
science, 2004.

[9] R. Polikar, L. Udpa, S. Udpa, V. Honavar, "Learn++:
an incremental learning algorithm for supervised neu-
ral networks," IEEE Trans Systems, Man and Cyber-
netics, vol.3 1, no.4, pp.497-508, 2001.

[10] Y. Freund and R. Schapire, "A decision theoretic
generalization of online learning and an application
to boosting," Computer and System Sciences, vol.
57, no. 1, pp. 119-139, 1997.

[11] N. Littlestone and M. Warmuth, "Weighted majority
algorithm," Information and Computation, vol. 108,
pp. 212-261, 1994.

[12] R. Polikar, J. Byorick, S. Krause, A. Marino, M.
Moreton, "Learn++: A classifier independent incre-
mental learning algorithm for supervised neural net-
works," Proc. ofInt. Joint Conf: on Neural Networks
(IJCNN 2002), vol.2, pp. 1742-1747, Honolulu, HI,
May 2002.

[13] M. Lewitt and R. Polikar, "An ensemble approach
for data fusion with Learn++," Proc. 4th Int. Work-
shop on Multiple Classifier Systems (MCS 2003),
LNCS vol. 2709, pp. 176-185, Springer: New York,
NY, 2003.

[14] D. Hall and J. Llinas, "An introduction to multisensor
data fusion," IEEE Proceedings, vol. 85, no. 1, 1997.

[15] D. Hall and J. Llinas (editors), Handbook ofmultisen-
sor datafusion, CRC Press: Boca Raton, FL, 2001.

[16] L. A. Klein, Sensor and Data Fusion Concepts and
Applications, SPIE Press, vol. TT35: Belingham,
WA, 1999.

459

[17] J. Grim, J. Kittler, P. Pudil, and P. Somol, "Informa-
tion analysis of multiple classifier fusion," Proc. 2nd
Intl Workshop on Multiple Classifier Systems, LNCS
vol. 2096, pp. 168-177, Springer: New York, NY,
2001.

[18] J. Kittler, M. Hatef, R.P. Duin, J. Matas, "On combin-
ing classifiers," IEEE Trans on Pattern Analysis and
Machine Intelligence, vol. 20, no.3, pp. 226-239,
1998.

[19] L.O. Jimenez, A.M. Morales, A. Creus, "Classifica-
tion of hyperdimensional data based on feature and
decision fusion approaches using projection pursuit,
majority voting and neural networks," IEEE Trans
Geoscience and Remote Sensors, vol. 37, no. 3, pp
1360-1366, 1999.

[20] G.J. Briem, J.A. Benediktsson, and J.R. Sveinsson,
"Use of multiple classifiers in classification of data
from multiple data sources," Proc. of IEEE Geo-
science and Remote Sensor Symposium, vol. 2, pp.
882-884, Sydney, Australia, 2001.

[21] F.M. Alkoot, J. Kittler. "Multiple expert system de-
sign by combined feature selection and probability
level fusion," Proc of the 3rd Intl Confon FUSION
2000, vol. 2, pp. 9-16, 2000

[22] D. Wolpert, "Stacked generalization," Neural Net-
works, vol. 2, pp 241-259, 1992.

[23] L.I. Kuncheva, "Switching between selection and fu-
sion in combining classifiers: an experiment," IEEE
Trans. on Sys., Man and Cyber., vol. 32(B), no. 2,
pp. 146-156, 2002.

[24] L.I. Kuncheva, "A theoretical study on six classifier
fusion strategies, " IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 2, pp.
281-286, 2002.

[25] L. Kuncheva and C. Whitaker, "Feature subsets for
classifier combination: an enumerative experiment,"
Proc. 2'd Intl Workshop on Multiple Classifier Sys-
tems, LNCS vol. 2096, pp. 228-237, Springer: New
York NY, 2001.

[26] N. Oza and K. Tumer, "Input decimation ensembles:
decorrelation through dimensionality reduction," 2d
Intl Workshop on Multiple Classifier Systems, LNCS
vol. 2096, pp. 238-247, Springer: New York, NY,
2001.

[27] R. French, "Catastrophic forgetting in connectionist
networks," Trends in Cognitive Sciences, vol. 3,
no.4, 1999.

[28] X. E. Gros, NDTData Fusion, Arnold Publishers,
1997.

[29] T. Baun and E. Blasch, "Multisensor fusion of
Acoustic Wave and Eddy Current Techniques for
Part Inspection," Proceedings ofthe 22th Review of
Progress in Quantitative Nondestructive Evaluation,
Seattle, 2002.

460

