
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007 437

An Ensemble-Based Incremental Learning
Approach to Data Fusion

Devi Parikh and Robi Polikar, Member, IEEE

Abstract—This paper introduces Learn++, an ensemble of
classifiers based algorithm originally developed for incremental
learning, and now adapted for information/data fusion applica-
tions. Recognizing the conceptual similarity between incremental
learning and data fusion, Learn++ follows an alternative approach
to data fusion, i.e., sequentially generating an ensemble of clas-
sifiers that specifically seek the most discriminating information
from each data set. It was observed that Learn++ based data fusion
consistently outperforms a similarly configured ensemble classifier
trained on any of the individual data sources across several appli-
cations. Furthermore, even if the classifiers trained on individual
data sources are fine tuned for the given problem, Learn++ can
still achieve a statistically significant improvement by combining
them, if the additional data sets carry complementary information.
The algorithm can also identify—albeit indirectly—those data
sets that do not carry such additional information. Finally, it
was shown that the algorithm can consecutively learn both the
supplementary novel information coming from additional data of
the same source, and the complementary information coming from
new data sources without requiring access to any of the previously
seen data.

Index Terms—Data fusion, incremental learning, Learn++,
multiple classifier/ensemble systems.

I. INTRODUCTION

A. Incremental Learning and Data Fusion

C LASSIFICATION algorithms usually require an adequate
and representative set of training data to generate an

appropriate decision boundary among different classes. This
requirement still holds even for ensemble (of classifiers)-based
approaches that resample and reuse the training data. However,
acquisition of such data for real-world applications is often ex-
pensive and time consuming. Hence, it is not uncommon for the
entire data set to gradually become available in small batches
over a period of time. In such settings, an existing classifier
may need to learn the novel—or supplementary—information
content in the new data without forgetting the previously ac-
quired knowledge and without requiring access to previously
seen data. The ability of a classifier to learn under these cir-
cumstances is commonly referred to as “incremental learning.”

Manuscript received November 29, 2005; revised May 9, 2006 and
July 24, 2006. This material is based upon work supported by the National
Science Foundation under Grant ECS-0239090. This paper was recommended
by Associate Editor N. Chawla.

D. Parikh was with the Electrical and Computer Engineering, Rowan Univer-
sity, Glassboro, NJ 08028 USA. She is now with the Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA.

R. Polikar is with the Electrical and Computer Engineering, Rowan Univer-
sity, Glassboro, NJ 08028 USA (e-mail: polikar@rowan.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2006.883873

On the other hand, in many applications that call for au-
tomated decision making, it is not unusual to receive data
obtained from different sources that may provide complemen-
tary information. A suitable combination of such information
is known as “data” or “information” fusion, and can lead to
improved accuracy of the classification decision compared to
a decision based on any of the individual data sources alone.
Consequently, both incremental learning and data fusion in-
volve learning from different sets of data. If the consecutive
data sets that later become available are obtained from different
sources and/or consist of different features, the incremental
learning problem turns into a data fusion problem. Recognizing
this conceptual similarity, we propose an approach based on an
ensemble of classifiers—originally developed for incremental
learning—as an alternative and surprisingly well-performing
approach to data fusion.

B. Ensemble Approaches and Data Fusion

An ensemble of classifiers based system combines several,
and preferably diverse, classifiers. The diversity in the clas-
sifiers is typically achieved by using a different training data
set for each classifier, which then allows each classifier to
generate different decision boundaries. The expectation is that
each classifier will make a different error, and strategically
combining these classifiers can reduce the total error. Since its
humble beginnings with such seminal works including, but not
limited to [1]–[7], research in multiple classifier systems has ex-
panded rapidly and has become an important research topic [8].
Over the last decade, ensemble systems appeared in the lit-
erature under many creative names, such as combination of
multiple classifiers [9]–[12], dynamic classifier selection [12],
classifier fusion [13]–[15], mixture of experts [4], [16], commit-
tees of neural networks [17], stacked generalization [5], or com-
posite classifier systems [1], among others. These approaches
differ from each other in terms of the procedure by which
individual classifiers are generated, the procedure by which the
classifiers are combined, or both.

There are generally two types of combination, namely, clas-
sifier selection and classifier fusion [8], [12], [13]. In classifier
selection, each classifier is trained to become an expert in
some local area of the entire feature space. The combination
of classifiers is then based on the given data instance: the
classifier trained with data closest to the vicinity of this in-
stance is given the highest credit. One or more local experts
can be nominated to make the decision [4], [12], [18], [19].
In classifier fusion—not to be confused with data fusion—all
classifiers are trained over the entire feature space. The

1083-4419/$25.00 © 2007 IEEE

438 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

classifier combination process then involves merging the indi-
vidual (weaker) classifiers to obtain a single (stronger) expert
of superior performance, such as in bagging [20], or boosting-
based approaches [3], [21].

The combination may operate on classification labels, rank
ordering of labels, or continuous valued outputs of the individ-
ual classifiers [7], [9], [13]. In the latter case, classifier outputs
are normalized to the [0, 1] interval, typically using the softmax
rule [22], [23], which can then be interpreted as the support
given by the classifier to each class, or even as class-conditional
posterior probabilities [8], [13], [24].

Several combination rules are available, such as ranking,
voting, sum, product, or some combination of posterior prob-
abilities [6], [7], [15], [23], [25], fuzzy integral [26], [27],
Dempster–Shafer (DS) based combination [10], [28], and, more
recently, decision templates [13], [14]. Comparison and theoret-
ical analyses of these rules are discussed in [7], [15], and [29]–
[31]. A sample of the immense literature on ensemble systems
can be found in [8] and elsewhere.1

We must mention that the word “fusion,” which appears often
in the aforementioned references, usually refers to the “combi-
nation” of classifiers for improving classifier performance using
a single training data set and not necessarily to “data fusion”
(combining information coming from different data sources).
Commonly used methods for “data fusion” are generally based
on Bayesian theory [32], [33], state estimation with Kalman
or particle filtering [34]–[39], evidence theory (DS) [40], [41]
and its variations [10], [42]–[45], information theoretic frame-
work [46], neural networks [47], and evolutionary algorithms
[48], [49]. The traditional application area for data fusion has
long been target detection and tracking [38], [39], [50]–[54].
However, the aforementioned approaches, with their many vari-
ations and combinations, are becoming increasingly popular
for emerging areas, such as remote sensing [36], [45], [55],
[56], biometrics [57], [58], nondestructive evaluation (NDE)
[59], [60], electroencephalographic data analysis [61], speech
processing [62], [63], information retrieval [49], [64], and many
others. Excellent review articles on various data fusion methods
can be found in [50] and [65]–[67].

Using the ensemble approach for data fusion applications
(i.e., combining complementary knowledge from different data
sources), while addressed in some studies [9], [10], [23], [30],
including our preliminary efforts [68], [69], has, in general,
been less explored, particularly—if ever—in the context of
incremental learning. Hence, our goal is to investigate the
feasibility and properties of such an approach for data fusion
applications, including such cases that may consecutively call
for both incremental learning of supplementary information and
data fusion of complementary information.

Specifically, we evaluate our proposed approach, i.e., the
modified Learn++ algorithm, under three settings.

1) We first optimize the ensemble system by fine tuning
its parameters so that its performance on each individual

1See also various authors in the Proceedings of International Workshop on
Multiple Classifiers Systems (2000–2005, 2007), Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany.

data source is maximized. We then show that even when
the classifiers are individually optimized for each data
source, their combination using Learn++ still provides
a statistically significant performance improvement. This
indicates that Learn++ is in fact able to learn complemen-
tary information from different sources.

2) We train the classifiers with nonoptimized (but still
meaningful) parameters and combine these classifiers to
illustrate that combining such nonoptimized classifiers
performs reasonably close to individually optimized en-
sembles. Hence, Learn++ can be used to avoid the com-
putationally expensive fine tuning step at a modest cost.

3) We evaluate the algorithm’s ability to learn both incre-
mentally and in a data fusion setting. The algorithm is
first asked to learn complementary information provided
by different data sources but then further learn the sup-
plementary information provided by additional data from
each data source.

The rest of this paper is organized as follows. In Section II,
we describe the Learn++ algorithm in detail. In Section III,
we discuss the experimental setup and the five databases used
for evaluating the algorithm. In Section IV, we tabulate and
interpret the results followed by conclusions and discussions
in Section V.

II. LEARN++ FOR DATA FUSION

Learn++ can incrementally learn novel information from
new data—including from new classes—without forgetting the
previously acquired knowledge and without requiring access to
previous data, hence without suffering from catastrophic for-
getting [70], [71]. Inspired in part by AdaBoost [21], Learn++
achieves incremental learning by generating an ensemble of
classifiers, where each classifier is trained on a strategically
updated distribution of the training data that focus on instances
previously not seen or learned. Unlike AdaBoost, whose goal
is to improve the performance of a classifier on a given data
set, Learn++ specifically targets learning from additional data,
i.e., Learn++ generates an ensemble for each data set that
becomes available, and combines these ensembles to create an
ensemble of ensembles or a meta-ensemble of classifiers. More
importantly, the procedure through which consecutive classi-
fiers are generated is different in Learn++, and is geared toward
incrementally learning the novel and discriminating informa-
tion provided by each data set that has not yet been learned by
the “current ensemble.” Therein lies the conceptual similarity
between incremental learning and data fusion: the latter also
requires learning from additional data, albeit generated from
different sources or composed of heterogeneous sets of features.
It is this incremental learning ability of the algorithm that we
would like to explore within a data fusion setting. The overall
approach is then to generate an ensemble of classifiers for each
data set coming from a different source, and appropriately com-
bine the classifier outputs to take advantage of the additional
information in subsequent data sources.

In the context of data fusion, each source introduces data
with a new feature set denoted as FSk, k = 1, 2, . . . ,K, where
K is the total number of data sources. For each data set

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 439

Fig. 1. Learn++ pseudocode for data fusion.

FSk submitted to Learn++, the inputs to the algorithm are:
1) the training data Sk with mk instances xi along with their
correct labels yi ∈ Ω = {ω1, . . . , ωC}, i = 1, 2, . . . ,mk, for
C number of classes; 2) a supervised classification algorithm
“BaseClassifier” to generate individual classifiers (henceforth,
hypotheses); and 3) an integer Tk, indicating the number of
classifiers (NOCs) to be generated for the kth data set. The
pseudocode of the algorithm and its block diagram are provided
in Figs. 1 and 2, respectively, and described below in detail. The
script k is dropped whenever the meaning is unambiguous to
avoid multiple scripts.

The BaseClassifier can be any supervised classifier whose
“weakness” can be adjusted. This weakness ensures additional
diversity, and can be controlled by adjusting training parameters
[e.g., error goal (EG) of a neural network] with respect to
the complexity of the problem. However, a meaningful min-
imum performance is enforced: the probability of a classifier
to produce the correct labels on any given training data set
must be at least 1/2. If classifier outputs are class-conditionally
independent, then the overall error monotonically decreases as
new classifiers are added. The proof of this argument, originally
known as the Condorcet Jury Theorem (1786), can be found in
[72] and [73]. This condition is necessary and sufficient for a
two-class problem (C = 2), and is sufficient, but not necessary,
for C > 2.

Fig. 2. Learn++ block diagram.

Learn++ generates each classifier of the ensemble sequen-
tially using an iterative process. During the tth iteration,
Learn++ trains the BaseClassifier on a strategically selected
subset of the current training data to generate hypothesis hk

t .
The current training subset TRt is drawn from the training
data according to a distribution Dt, which is obtained by
normalizing a set of weights wt maintained on the training data.
The distribution Dt determines which instances of the training
data are more likely to be selected into the training subset TRt.
Unless a priori information requires otherwise, this distribution
is initially set to be uniform, i.e.,

w1(i) = 1/mk, ∀i = 1, . . . ,mk (1)

giving equal probability for each instance to be selected into
TR1. At each subsequent iteration loop t, the weights previ-
ously adjusted at iteration t − 1 are normalized (in step 1 of the
inner loop in Figs. 1 and 2)

Dt = wt

/mk∑
i=1

wt(i) (2)

to ensure proper distribution. Training subset TRt is drawn
according to Dt (step 2), and the BaseClassifier is trained on
TRt (step 3). A hypothesis hk

t is generated by the tth classifier,
whose error εk

t is computed on the current data set Sk as the

440 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

sum of the distribution weights of the misclassified instances
(step 4), i.e.,

εk
t =

∑
i:hk

t (xi) �=yi

Dt(i) =
mk∑
i=1

Dt(i)
[∣∣hk

t (xi) �= yi

∣∣] (3)

where [| · |] evaluates to 1 if the predicate holds true, and 0
otherwise. As mentioned above, we insist that this error be less
than 1/2. If that is the case, the hypothesis hk

t is accepted, and
its error is normalized to obtain

βk
t = εk

t /
(
1 − εk

t

)
, 0 < βk

t < 1. (4)

If εk
t > 1/2, then the current hk

t is discarded, and a new
training subset is selected by returning to step 2. All hypotheses
generated thus far are then combined using “weighted majority
voting” to obtain the composite hypothesis Hk

t (step 5), for
which each hypothesis hk

t is assigned a weight inversely pro-
portional to its normalized error. Therefore, those hypotheses
with smaller training error are awarded a higher voting weight
and thus have more say in the final classification decision. Hk

t

then represents the current ensemble decision

Hk
t (x) = arg max

y∈Ω

∑
z:hk

z(x)=y

log
(
1/βk

z

)
, z = {1, . . . , t}.

(5)

It can be shown that the weight selection of log(1/βk
t) is

optimum for weighted majority voting [8]. The error of the
composite hypothesis Hk

t is then computed in a similar fashion
to that of hk

t (step 6) as

Ek
t =

∑
i:Hk

t (xi) �=yi

Dt(i) =
mk∑
i=1

Dt(i)
[∣∣Hk

t (xi) �= yi

∣∣] . (6)

Since individual hypotheses that make up the composite hy-
pothesis all have individual errors less than 1/2, so too will the
composite error, i.e., 0 ≤ Ek

t < 1/2. The normalized compos-
ite error Bk

t can then be obtained as

Bk
t = Ek

t /
(
1 − Ek

t

)
, 0 < Bk

t < 1 (7)

and is used for updating the distribution weights assigned to
individual instances

wt+1(i) =wt(i) × B
k(1−[|Hk

t (xi) �=yi|])
t

=wt(i) ×
{

Bk
t , if Hk

t (xi) = yi

1, otherwise.
(8)

Equation (8) indicates that the distribution weights of those
instances correctly classified by the composite hypothesis Hk

t

are reduced by a factor of Bk
t , making them less likely to be

selected to the training subset of the next iteration. Readers
familiar with AdaBoost have undoubtedly noticed not only
the overall similarities but also the key difference between the
two algorithms: the weight update rule of Learn++ specifically
targets learning novel information from new data, whereas
AdaBoost specifically targets improving the generalization per-
formance of a weak learner on a single data set. This is

Fig. 3. Schematic representation of the Learn++-based data fusion algorithm.

because AdaBoost updates its weight distribution based on the
decision of previously generated “hypothesis” ht [21], whereas
Learn++ updates its distribution based on the decision of the
current “ensemble” through the composite hypothesis Hk

t . This
procedure forces Learn++ to focus on instances that have not
been properly learned by the “ensemble.” The final hypothesis
Hfinal is obtained by combining all hypotheses that have been
generated thus far from all K data sources.

Fig. 3 conceptually illustrates the system-level organization
of the overall algorithm as structured for data fusion appli-
cations: an ensemble of classifiers is generated as described
above for each of the feature sets, which are then combined
through weighted majority voting. For data fusion applications,
however, performance-based voting weights for each classifier
log(1/βk

t) are further adjusted before final voting based on ex-
pected or observed training performance on each data source: if
prior information is available about reliability of data obtained
from a particular feature set, a higher voting weight can be
assigned to classifiers trained with such data. Alternatively, the
adjustment can be based on the training performance of the
ensemble on its own feature set. If such a strategy is chosen,
the performance-based weight of each classifier log(1/βk

t) is
multiplied by the “reliability factor” of the feature set to which
it belongs. The adjusted weight is then used to obtain the final
hypothesis

Hfinal(x) = arg max
y∈Ω

K∑
k=1

1
αk

 ∑

t:hk
t (x)=y

log
(

1
βk

t

) (9)

where 1/αk is the reliability factor assigned to the ensemble
trained on the kth feature set. In this paper, αk was chosen as
the empirical error, that is, the misclassification ratio of the final
composite hypothesis on Sk

αk =

(
mk∑
i=1

[∣∣Hk
T (xi) �= yi

∣∣])/mk (10)

where Hk
T indicates the final composite hypothesis generated

from the kth training data Sk of feature set FSk.

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 441

To summarize, Learn++ employs two sets of weights and a
reliability factor when used for data fusion.

• The distribution weights w(i) assigned to each instance xi

of the training data, and used to determine which instances
are more likely to be drawn into the training subset of the
next classifier.

• The voting weights log(1/βk
t) assigned to “each classi-

fier” based on its training performance. The higher is the
training performance of hk

t , the higher is its voting weight
for final classification.

• The data source (feature set) based reliability factor 1/αk

assigned to “all hypotheses in the kth ensemble” to adjust
their training votes. αk is based on prior information (if
available and reliable), or on the performance of the kth
ensemble on its own training data Sk.

A couple of implementation issues should also be mentioned
to prevent rare but pathological conditions. First, classifiers
with infinite voting weight should be avoided: when a classifier
perfectly learns the entire training data (potentially overfitting),
εk
t will be 0, causing βk

t = 0, and log(1/βk
t) = ∞. Then, hk

t

is given the sole power of decision making. This situation can
be avoided either by making classifiers weaker (so that the
training error exceeds zero) or by adding a small adjustment
factor—0.01 usually works well—to βk

t .
Second, unless there is prior information to choose other-

wise, the NOC Tk generated for each data set should be the
same. Tk is usually determined by adding classifiers to the
ensemble until the addition of classifiers no longer improves
performance on a validation data set. However, the performance
may stay mostly constant for a large NOC. A large NOC will
then be retained despite the lack of meaningful performance
gain. Apart from increased computational burden and potential
for overfitting, an unnecessarily large NOC generated with any
of the feature sets also causes a spurious imbalance toward the
data source with more classifiers. This situation can be avoided
by applying regularization to validation, or heuristically picking
the NOC to be the same for each data source.

III. EXPERIMENTAL SETUP

A. Objectives of the Experimental Setup

The experimental setup was designed to empirically demon-
strate and statistically validate the following.

1) Learn++ is a viable data fusion algorithm, that is, its
performance obtained by combining different feature sets
will be higher—with a statistical significance—than that
obtained by a comparable ensemble classifier trained on
any of the feature sets alone.

2) Even if classifier ensembles are optimized to provide the
best possible performance on an individual feature set,
their combination using Learn++ will still show a perfor-
mance improvement, over the best performing feature set,
provided that the individual classifier decisions are class
conditionally independent and each feature set provides
at least some complementary information.

3) If classifiers trained on individual feature sets are not
optimized, their combination using Learn++ will pro-

vide an even larger margin of improvement in fusion
performance, possibly comparable to the performance
obtained by fusion of “optimized ensemble of classifiers”
mentioned above. The approach can therefore provide
a meaningful tradeoff for avoiding the expensive fine-
tuning steps.

4) The proposed decision-level fusion approach can be
favorable to feature-concatenation-based feature-level
fusion, even if the latter is used along with another
ensemble approach, such as AdaBoost.

5) The incremental learning ability of Learn++ is preserved
in the data fusion setting as well: if additional data later
become available from new or existing sources (with
or without new features), Learn++ can learn that infor-
mation from the new data without requiring access to
previously seen data.

B. Experimental Procedure

Five databases from diverse application areas, whose details
are provided in Section III-C, were used. For each of the data-
bases, the following experimental procedure was followed.

1) Three databases were randomly partitioned into subsets,
where each partition used only a portion of the features
to simulate a data fusion setting. The remaining data-
bases were naturally in this format, allowing a true real-
world data fusion setting. Independence of features is
assumed.

2) Using multilayer perceptrons (MLPs) as base classifiers,
extensive statistical tests were conducted to determine
optimum and moderate design parameters for error goal
(EG), number of hidden layer nodes (HLNs), and the
number of classifiers (NOC) for each feature set. Op-
timum parameters are those that provide the best sta-
tistically significant ensemble validation performance,
resulting in stronger base classifiers. Moderate parame-
ters are those that yield average performance for each
feature set, resulting in weaker classifiers. Consider an
ensemble whose base classifiers are trained with all
possible combinations of EG = 0.01 to 0.10 in steps
of 0.01, HLN = 5 to 25 in steps of 5, and NOC =
1 to 10. If performances among all combinations were
in the 60%–90% range, those that result in 90% and
75% (average of 60%–90%) were chosen as optimum and
moderate parameters, respectively. Moderate parameters
represent typical values a user may choose, based on
past experience, if determining optimal parameters were
deemed too costly.

3) Discarding all classifiers generated thus far, a new set of
ensembles of classifiers was trained using the optimized
parameters on each feature. These ensembles were then
combined for data fusion using Learn++. The procedure
was repeated by randomly drawing new training and
test data sets (50–200 times), keeping a constant class
distribution. Mean and confidence intervals (CIs) of the
generalization performances on individual feature sets
and on data fusion were compared. The entire proce-
dure was then repeated using moderate parameters. The

442 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

TABLE I
PROPERTIES OF DATABASES

effect of the order of addition of feature sets was also
tested.

4) Learn++ was then compared to a single strong classifier
and to an AdaBoost-based ensemble of classifiers, for
both of which the feature-level data fusion was obtained
through feature concatenation.

5) Learn++ performance was also tested in a combined
incremental learning and data fusion setting, that is, learn-
ing from “additional” data of “new” feature sets without
access to previously seen data.

C. Databases

Table I provides detailed information on the experimental
setup for the three databases obtained from the UCI repository
[74] and the two real-world applications. The first column
provides the database name and the number of classes. The total
number of features available, the physical nature of the feature
sets, and the number of features in each set are given in the

second column. For instance, the optical character recognition
(OCR) database has a total of 649 features, which were already
grouped into six heterogeneous feature sets, such as pixel aver-
ages, Fourier coefficients, etc., and feature set 1 (FS1) has 216
features. The volatile organic compound (VOC) database, how-
ever, had 12 features, representing outputs of different polymer-
coated chemical sensors. Sensors were randomly partitioned
into three feature sets; FS1, for example, receiving sensors 1,
9, 2, and 8. The total number of instances in the database,
the class distribution, and the size of training and test data
are provided in the third column. The last column indicates
the training parameters that were evaluated. For instance, the
OCR database was evaluated on all possible combinations of
six EGs (0.01–0.06 in steps of 0.01), 10–25 HLNs in steps of
5, and 1–35 classifiers in steps of 1: a total of 840 possible
combinations of parameters. The experiments were repeated
using a different partitioning of training and test data, again
separated randomly but maintaining the same class distribution.
Thus, a total of 1680 ensembles were generated for each of the

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 443

TABLE II
OPTIMUM AND MODERATE TRAINING PARAMETERS FOR EACH DATABASE AND FEATURE SET

six feature sets of OCR data, resulting in 10 080 simulations on
which statistical analysis was performed to pick the optimum
and moderate parameters for the OCR data.

The values of the chosen parameters are provided in Table II
for each data set and feature set. For parameters not spelled out
separately for each feature set, including the NOC, the given
common value was used for all feature sets in a given database.
The EG had the most, and the number of HLNs (in the tested
range) had the least influence on the performance of the system.

Classifier ensembles using the parameters in Table II were
generated and combined using Learn++. In order to obtain CIs,
all fusion experiments were repeated 50–200 times (depending
on the size of the database) using a different random parti-
tioning of training and test subsets while observing the data
distributions in column 3 of Table I. Learn++ performances
for fusing different feature sets are provided first followed
by results on combined incremental learning and data fusion
experiments.

IV. RESULTS

A. Results on OCR Database

Fig. 4 summarizes the simulation results on the OCR data-
base using optimum parameters. The values next to the bars
are the percent generalization performances. The first six are
performances obtained by individual feature sets: Feature set 2
performed the worst, followed by FS4, FS5, FS6, and FS3, with
FS1 providing the best performance. The remaining bars are
the performances of combined feature sets, fused by Learn++,
where additional feature sets are added in ascending (left)
and descending (right) order of their individual performances.
FS245, for example, denotes fusion of features sets FS2, FS4,
and FS5 in this order. The CIs are obtained from 50 repetitions
of resampling training and test data sets.

The following observations can be made from Fig. 4. The
generalization performance obtained by every combination of
the feature sets is better than any of the individual feature sets
fused, and the improvement is statistically significant at 95%,
as indicated by nonoverlapping CIs. While fusing the feature
sets in ascending order, we note that the performance levels off
after fusing the first four sets and does not increase significantly

Fig. 4. Data fusion results on the OCR database using optimum parameters.

with the addition of the last two (highest performing) sets. That
is, despite their higher performance, feature sets 3 and 1 do not
provide any new information beyond what is already provided
by feature sets 2, 4, 5, and 6. Hence, the need to find the best
feature set(s) may be eliminated simply by combining available
feature sets. On the other hand, while fusing the feature sets
in descending order, most of the increase is realized when
the first two (best) feature sets are combined (as expected),
with subsequent sets adding slight but consistent improvements.
Furthermore, the final performance combining all six sets re-
mains the same irrespective of the order in which they are
combined. This is expected as Learn++ uses a linear combi-
nation scheme, and thus is independent of the order in which
the classifiers are combined.

Similar analysis was performed using a moderate set of
parameters, the results of which are shown in Fig. 5. When
fused in ascending order of performance, there is now a steady
and a more significant increase in performance with each added
feature set. Performance does not seem to level off as fast as it
did with the optimum parameters. This observation also makes
sense: with weaker classifiers using nonoptimized parameters,
there is more novel information to be acquired from each
feature set.

Finally, one additional observation: the average individual
performance on six data sets is 84% using optimum parameters
and 66% using moderate parameters, a difference of 18%.

444 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

Fig. 5. Data fusion results on the OCR database using moderate parameters.

Fig. 6. Data fusion results on the wine recognition database.

After data fusion, this difference is only 4.6% (96.6% versus
92.0%). Hence, the performance difference between optimized
and nonoptimized classifiers is significantly reduced by the
fusion since the fusion of nonoptimized classifiers performed
reasonably close to that of optimized classifiers. Then, at a
relatively modest cost (4.6% in this case), the expensive step
(10 080 evaluations) of fine tuning can be avoided by fusing
nonoptimized classifiers.

B. Results on Wine Recognition Database

Fig. 6 summarizes the simulation results on the Wine data-
base using optimum (left) and moderate parameters (right).
With fewer number of feature sets (three), all possible com-
binations of feature sets were fused (FS1 and FS2, FS1 and
FS3, FS2 and FS3, and FS1 and FS2 and FS3). The CIs are
determined through 200 repetitions of random resampling of
training and test data sets. Once again, we observe that each
of the performances involving fusion of any two feature sets is
better than the performance on the individual feature sets. Also,
the fusion of all three sets (FS123) is better yet than any of the
individual three, or any two feature set combination, all with
statistical significance. Similar trends of increase in average
performance, bigger margin of improvement with moderate
parameters, etc., are also observed with this database.

C. Results on Water Treatment Plant Database

Fig. 7 summarizes the simulation results on the somewhat
more challenging water treatment plant database using opti-
mum (left) and moderate parameters (right). CIs are determined

Fig. 7. Data fusion results on the water treatment plant database.

Fig. 8. Data fusion results on the VOC database.

through 200 random resampling of training and test data sets,
as before. Previously mentioned trends can also be seen in
the performances on this database, such as data fusion outper-
forming any of the ensembles trained on individual data sets,
larger improvements in fusing classifiers with nonoptimized
parameters, etc. We note that while FS123 provides signifi-
cantly better performance than FS13 or FS23, the addition of
FS3 to FS12 provides only a small increase in performance, not
statistically significant (CI overlap), neither with optimized nor
with moderate parameters. This may indicate that FS3 is not
as discriminating and adds very little, if any, new information
in addition to that provided by FS1 and FS2 combined. Such
knowledge can be used to identify features that contain no
discriminatory information.

D. Results on VOC Database

The VOC database is obtained from a real-world problem,
where the task is to recognize one of 12 VOCs from the
responses of 12 gas sensors. Fig. 8 summarizes the simulation
results using optimum parameters (left) and moderate parame-
ters (right). CIs are determined through 100 repetitions of ran-
dom resampling of training and test data sets. Similar general
trends observed earlier are also observed here. However, while
the fusion performance of any two feature sets was always
higher (with significance) than that of the individual feature
sets, the performance improvement on the fusion of all three
sets was not statistically significant compared to a combination
of two feature sets. This finding again indicates that the third

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 445

Fig. 9. Data fusion results on the NDE database.

set offers no additional information once the system is trained
on the first two sets.

E. Results on NDE of Pipelines Database

Fig. 9 illustrates the results on a real-world NDE database
that naturally fits into a data fusion setting. The data sources
are two different imaging modalities that use different physical
phenomena for locating and identifying various types of de-
fects in materials: ultrasonic scans that use mechanical waves,
and magnetic flux leakage that use electromagnetic waves
[75], [76]. Hence, similar to the OCR database, no artificial
splitting of feature sets was required. Since there are only two
feature sets, combining the feature sets in different orders was
also not relevant. As with other databases, data fusion was
performed using Learn++ by training the base classifiers with
optimum and moderate parameters, as indicated in Table II.
The results demonstrate the true effectiveness of the algorithm,
perhaps more so than it did with databases where the feature
sets were randomly split to simulate a data fusion environment.
This is probably because the two sets of features do in fact
carry considerable complementary information due to different
physical nature of the data sources. In either case of using op-
timum or moderate parameters, Learn++ provided a substantial
(and statistically very significant) improvement by fusing the
information from two data sets.

F. Summary and Analysis of Data Fusion Performances

Table III summarizes all results, comparing the mean perfor-
mance and CI widths of the following:

• the average of all feature sets, indicating the expected
average ensemble performance that can be obtained with a
single data set, had we randomly picked one;

• the ensemble with the best individual feature set, indicat-
ing the expected average performance of the best feature
set, if we had the luxury of evaluating each of them to find
the best feature set;

• Learn++ based fusion, indicating the expected perfor-
mance of simply fusing all feature sets with Learn++
without individually evaluating them.

We observe that the data fusion performance is consistently
better than the performance of classifiers trained with even
the best of the individual feature sets, and as expected, the
performance improvement in ensembles trained with moderate

parameters is more prominent. The difference between the
mean data fusion performance and the performance of best
ensembles trained on individual feature sets is also provided.
We note that the CI widths are always lower for data fusion, a
natural benefit of combining a large number of classifiers.

Finally, we also compare the performances obtained through
Learn++ based data fusion with those obtained by simple con-
catenation of features. Concatenation of features is a commonly
used pragmatic approach to data fusion, particularly when the
individual feature sets are independent of each other. Such a
comparison is provided for all databases in Table IV, except
for the NDE database, where the concatenation of features does
not make any physical sense. The comparison is specifically
made among: 1) a single MLP trained on the concatenation
of all feature sets; 2) the performance of an ensemble trained
on the concatenation of all features (AdaBoost-based ensemble
using similar training parameters, such as NOC, HLN, etc., for
fair comparison); and 3) the data fusion performance obtained
through Learn++. We observe from the relatively poor perfor-
mance of a single MLP that such a concatenation scheme, while
useful for certain applications (such as VOC2), is not necessar-
ily an optimal approach. In fact, it may cause deterioration of
performance if additional feature sets are irrelevant, or if the
feature sets are completely heterogeneous, such as the OCR
(or NDE) database. The addition of irrelevant features would
have less of an impact on Learn++ due to performances of
larger number of classifiers being averaged.

Regular (AdaBoost) ensembles trained with concatenated
features do outperform the single MLP, empirical evidence
of previously cited works that combining classifiers can be
effectively used for data fusion. However, regular ensemble per-
formances fall short those of Learn++, leading us to believe that
improved performances are due not only to using an ensemble
but also to the incremental learning strategy of Learn++.

G. Data Fusion From Additional Data in an
Incremental Learning Setting

We also look at the ability of the algorithm to handle both
data fusion and incremental learning consecutively, a distinct
property of Learn++ that distinguishes it from other data fusion
algorithms. To test this property, the following setup was used.
The algorithm is first asked to learn “complementary informa-
tion” that become available from different sources in a data
fusion setting as described above. The algorithm is then asked
to further learn any “supplementary information” that may be
present in additional data obtained from each of the data sources
seen earlier. At no point in time was the algorithm allowed to
revisit any of the data sets that it had seen before once training
on that data set was complete. Once again, we test the algorithm
separately on optimum and moderate parameters, as discussed
above. For brevity, we present the results on two databases,

2We note that feature concatenation on a VOC data set outperforms Learn++
based classifier fusion. This could be due to the random splitting of the 12
features to simulate the data fusion setting for Learn++: the random split might
have separated features that provide a better discriminative power when used
together. Such a scenario should not occur in real-world applications where no
random and artificial splitting of feature sets take place.

446 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

TABLE III
SUMMARY OF RESULTS ON ALL FOUR DATABASES

TABLE IV
LEARN++ BASED DATA FUSION VERSUS FEATURE CONCATENATION-BASED DATA FUSION

namely, the OCR and the VOC databases. The results for all
other databases exhibited similar trends to those presented for
OCR and VOC.

Fig. 10 summarizes the results on the OCR data using
optimum (left) and moderate (right) parameters. All results are
averages of 100 independent trials. The 300 training instances
(see Table I for details), 30 per class, were partitioned into two
subsets to be presented to the algorithm in separate sessions.
That is, the algorithm was first presented with the first 150
training instances, 15 per class, constituting data set 1 (DS1).

With optimum parameters, ten classifiers were generated per
feature set, five with each data subset DS1 and DS2. Three
classifiers were generated with the moderate parameters, two
with the first data set and one with the second, per feature set.
The performance on each feature set using the first half of the
training data is shown as the first six bars in Fig. 10. The fusion
of these feature sets is indicated as FS123456_DS1. Similar
to previous results, the fusion performance is better than any
of the individual sets. Note that the data fusion performance
using half of the data (96.2%) is just a bit under that of the

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 447

Fig. 10. Incremental learning and data fusion performance on OCR data.

earlier trial that used all training data with optimum parameters
(96.6%). The large number of repetitions do indicate that this
difference is statistically significant—albeit barely. A plausible
interpretation for this observation is that virtually all of the
discriminatory information that is available in the entire training
data is in fact also available in the subset data that use only half
the number of instances. As expected for moderate parameters,
the difference is larger, i.e., 89.3% when trained on half of the
data versus 92% with the entire training data.

Learn++ was then asked to generate additional ensembles
using the remaining half of the training data, again one feature
set at a time. FSi_DS12 indicates the performance of the
algorithm on feature set i, i = 1, . . . , 6, when the ensembles
created during training sessions 1 and 2 are combined. We note
in each case that the performance on that feature set increases
after training with the additional data. Hence, the algorithm
does extract additional novel information from new data for
each feature set. FS123456_DS12 then indicates combining
all classifiers for all feature sets (data fusion) and in both
training sessions (incremental learning). This performance is
97.3%, which is better than all feature sets performing alone
even after the incremental learning from the second half of
the training data. With moderate parameters, the final data fu-
sion/incremental learning performance is 94.3%, a much larger
gain compared to the best feature set, as expected.

Furthermore, in both cases (optimum and moderate parame-
ters), the performance is actually higher after the incremental
learning of two halves of the data than the performance when
all the training data were shown to the algorithm at once
(97.3% versus 96.6 with optimum, and 94.3% versus 92% with
moderate parameters). While these are statistically significant
gains, the improvement of incremental learning over seeing
all the data at once (per feature set) is application and data
dependent and, hence, is not a general characteristic of the
algorithm. Furthermore, while it may seem natural to compare
incremental and nonincremental learning results (they are both
presented in this paper), this comparison is in fact an unfair one.

Fig. 11. Incremental learning and data fusion performance on VOC data.

This is because, in practice, incremental learning is only used as
a result of a necessity presented by the availability of additional
data. We merely point to: 1) the ability of the algorithm to learn
from additional data of the same source in an incremental learn-
ing setting; 2) its ability to learn from additional data sources
in a data fusion setting; and finally 3) its ability to combine
both, if and when such data become available. Again, we
emphasize that no previously used data set is later made
available to the algorithm once the algorithm is trained with
that data set. This illustrates the ability of the algorithm to
incrementally learn “novel information” from new data and
“complementary information” from additional data sources.

Finally, Fig. 11 illustrates the data fusion and incremental
learning performance of the algorithm on the VOC database.
A similar setup is used for the VOC database as the OCR
database, that is, half the data for each feature set were shown
to the algorithm during the first training session, whose data
fusion performance is indicated as FS123_DS1. We observe, for
each feature set, that the incremental learning performance after
training with the second half of the training data is significantly
higher than the performance after training with only the first
half of the data. Furthermore, the data fusion plus incremental
learning performance is higher than the performance of any
other individual data source before or after the second training

448 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

TABLE V
LEARN++ UNDER UNBALANCED CONDITIONS OF NUMBER OF INSTANCES VERSUS NUMBER OF FEATURES

session. Similar results can be observed for both optimum and
moderate parameters.

H. Number of Instances Versus Number of Features

Whether the behavior of the algorithm changes as the number
of instances grows with respect to available number of features,
or vice versa, may also be of interest for certain applications.
To get a sense of the algorithm’s behavior under such cases,
the following two experiments were designed using the OCR
database (as this data set has more features and instances than
others).

In the first scenario, we chose FS3, one of the best performing
sets in the OCR data, and randomly split its 64 features into
three feature subsets containing 20, 20, and 24 features each.
150 instances per class were used for training. Compared to
the experiments reported earlier on the same database, the
number of features (as compared to the number of instances)
is now significantly smaller. Data fusion was performed using
Learn++ and was compared to an AdaBoost-based ensemble
approach on the concatenated features. In the second scenario,
all six feature sets were combined; however, only ten instances
were used for training from each class, while 190 were used
for testing. With a total of 649 features (see Table I), the
number of features is now significantly larger with respect to the
number of training data points (only 10). Again, Learn++ based
data fusion was performed, and the results were compared
to an AdaBoost-based ensemble strategy on the concatenated
features. Results for both scenarios are summarized in Table V.

In spite of a significant imbalance between the number of
examples and features, Learn++ provides efficient data fusion.
In both cases, data fusion performance is higher than any
of the individual feature sets with statistical significance, and
Learn++ performs better than the standard ensemble approach
on concatenated features. We should note that the emphasis in
these experiments is not the specific performance numbers (as

favorable as they may be) but rather the algorithm’s behavioral
trends under each scenario.

V. DISCUSSIONS AND CONCLUSION

Recognizing the conceptual similarities between incremental
learning and data fusion, the Learn++ algorithm—originally
developed for incremental learning—has been adapted for and
evaluated in a data fusion setting. The algorithm incrementally
and sequentially learns from data that consist of heterogeneous
features by generating an ensemble of classifiers for each data
set and then combining them through modified weighted ma-
jority voting. Individual classifier outputs and the feature sets
are assumed to be class conditionally independent, a common
assumption in most ensemble and fusion algorithms. These
assumptions may not always be strictly met. In fact, it is likely
that the feature sets assumed independent in our experiments
were not strictly so. Yet, the algorithm seems to be tolerant
to possible mild violations. Of course, time series data would
severely violate this assumption and hence should not be used
with this algorithm.

Simulation results indicate that Learn++ outperforms, with
statistical significance, similarly configured ensemble classi-
fiers trained with data from any of the individual sources.
Several other desirable properties of the algorithm are also
observed: 1) Learn++ can identify (albeit indirectly) feature
sets that are redundant and carry no additional information;
2) the feature sets can be combined in any order without
affecting the final performance; and 3) Learn++ based data
fusion often performs significantly better than a classification
system, whether an ensemble or a single classifier, that uses
the pragmatic feature concatenation approach to data fusion.
Furthermore, the incremental learning ability of the algorithm
does carry over to the data fusion setting, that is, the algorithm
can learn both the supplementary novel information coming
from additional data of the same source, and the complementary

PARIKH AND POLIKAR: ENSEMBLE-BASED INCREMENTAL LEARNING APPROACH TO DATA FUSION 449

information coming from new data sources without requiring
repeated access to any of the previously seen data.

Learn++ can be beneficial regardless whether the ensembles
trained on data from individual sources are optimized. Combin-
ing classifiers that are trained with optimized parameters allows
further fine tuning and a performance gain above and beyond
that of the best individual feature set. Combining classifiers
trained with nonoptimized (moderate) parameters, however,
helps avoid the expensive optimization step, and still shows
a very strong data fusion performance—often close to that
obtained by fusing optimized classifiers.

In this paper, we have used the MLP due to its wide pop-
ularity. However, any supervised classifier can be used as the
base classifier. In fact, if there is reason to believe that a certain
classifier will perform better on a particular feature set, different
classifiers can also be fused.

In conclusion, the ability of the algorithm to learn incre-
mentally, as well as to combine complementary information
coming from different data sources, makes Learn++ a versatile
technique. We believe that it is a useful addition to other suc-
cessful ensemble-based algorithms due to its general structure
and emphasis on sequential generation of individual classifiers.
Evaluation of the algorithm on more challenging problems
(such as web mining) and theoretical analysis of the algorithm
constitute future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers’
most thorough review of this paper. Their valuable comments
have greatly benefited this paper.

REFERENCES

[1] B. V. Dasarathy and B. V. Sheela, “Composite classifier system design:
Concepts and methodology,” Proc. IEEE, vol. 67, no. 5, pp. 708–713,
May 1979.

[2] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993–1001, Oct. 1990.

[3] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5,
no. 2, pp. 197–227, 1990.

[4] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Comput., vol. 3, no. 1, pp. 79–87, 1991.

[5] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5, no. 2,
pp. 241–259, 1992.

[6] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1,
pp. 66–75, Jan. 1994.

[7] J. Kittler, M. Hatef, R. P. W. Duin, and J. Mates, “On combining classi-
fiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
Mar. 1998.

[8] L. I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms.
New York: Wiley, 2005.

[9] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple
classifiers and their applications to handwriting recognition,” IEEE Trans.
Syst., Man, Cybern., vol. 22, no. 3, pp. 418–435, May/Jun. 1992.

[10] G. Rogova, “Combining the results of several neural network classifiers,”
Neural Netw., vol. 7, no. 5, pp. 777–781, 1994.

[11] L. Lam and C. Y. Suen, “Optimal combinations of pattern classifiers,”
Pattern Recognit. Lett., vol. 16, no. 9, pp. 945–954, 1995.

[12] K. Woods, W. P. J. Kegelmeyer, and K. Bowyer, “Combination of multiple
classifiers using local accuracy estimates,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 19, no. 4, pp. 405–410, Apr. 1997.

[13] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, “Decision templates for
multiple classifier fusion: An experimental comparison,” Pattern Recog-
nit., vol. 34, no. 2, pp. 299–314, 2001.

[14] L. I. Kuncheva, “Switching between selection and fusion in combining
classifiers: An experiment,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 32, no. 2, pp. 146–156, Apr. 2002.

[15] ——, “A theoretical study on six classifier fusion strategies,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 281–286, Feb. 2002.

[16] M. J. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
EM algorithm,” Neural Comput., vol. 6, no. 2, pp. 181–214, 1994.

[17] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, “Boost-
ing and other ensemble methods,” Neural Comput., vol. 6, no. 6
pp. 1289–1301, 1994.

[18] E. Alpaydin and M. I. Jordan, “Local linear perceptrons for classification,”
IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 788–792, May 1996.

[19] G. Giacinto and F. Roli, “Approach to the automatic design of multiple
classifier systems,” Pattern Recognit. Lett., vol. 22, no. 1, pp. 25–33,
2001.

[20] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–
140, 1996.

[21] Y. Freund and R. E. Schapire, “Decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[22] R. O. Duda, P. E. Hart, and D. Stork, “Algorithm independent techniques,”
in Pattern Classification, 2nd ed. New York: Wiley, 2001, pp. 453–516.

[23] D. M. J. Tax, M. van Breukelen, R. P. W. Duin, and J. Kittler, “Combining
multiple classifiers by averaging or by multiplying?” Pattern Recognit.,
vol. 33, no. 9, pp. 1475–1485, 2000.

[24] M. Muhlbaier, A. Topalis, and R. Polikar, “Ensemble confidence estimates
posterior probability,” Proc. 6th Int. Workshop Multiple Classifier Syst.,
Lecture Notes in Computer Science, N. Oza et al., Eds., Monterey, CA,
2005, vol. 3541, pp. 326–335.

[25] J. Grim, J. Kittler, P. Pudil, and P. Somol, “Multiple classifier fusion in
probabilistic neural networks,” Pattern Anal. Appl., vol. 5, no. 2, pp. 221–
233, Jun. 2002.

[26] S. B. Cho and J. H. Kim, “Multiple network fusion using fuzzy logic,”
IEEE Trans. Neural Netw., vol. 6, no. 2, pp. 497–501, Mar. 1995.

[27] M. Grabisch and J. M. Nicolas, “Classification by fuzzy integral: Per-
formance and tests,” Fuzzy Sets Syst., vol. 65, no. 2/3, pp. 255–271,
1994.

[28] Y. Lu, “Knowledge integration in a multiple classifier system,” Appl.
Intell., vol. 6, no. 2, pp. 75–86, 1996.

[29] K. Tumer and J. Ghosh, “Analysis of decision boundaries in linearly
combined neural classifiers,” Pattern Recognit., vol. 29, no. 2, pp. 341–
348, 1996.

[30] N. S. V. Rao, “On fusers that perform better than best sensor,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 23, no. 8, pp. 904–909, Aug. 2001.

[31] G. Fumera and F. Roli, “A theoretical and experimental analysis of linear
combiners for multiple classifier systems,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 6, pp. 942–956, Jun. 2005.

[32] C. Biao and P. K. Varshney, “A Bayesian sampling approach to decision
fusion using hierarchical models,” IEEE Trans. Signal Process., vol. 50,
no. 8, pp. 1809–1818, Aug. 2002.

[33] Y. Zhang and Q. Ji, “Active and dynamic information fusion for multisen-
sor systems with dynamic Bayesian networks,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 2, pp. 467–472, Apr. 2006.

[34] R. Lobbia and M. Kent, “Data fusion of decentralized local tracker out-
puts,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 787–799,
Jul. 1994.

[35] K. C. Chou, A. S. Willsky, and A. Benveniste, “Multiscale recursive
estimation, data fusion, and regularization,” IEEE Trans. Autom. Control,
vol. 39, no. 3, pp. 464–478, Mar. 1994.

[36] Q. Honghui and J. B. Moore, “Direct Kalman filtering approach for
GPS/INS integration,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2,
pp. 687–693, Apr. 2002.

[37] Z. Lei, W. Xiaolin, P. Quan, and Z. Hongcai, “Multiresolution modeling
and estimation of multisensor data,” IEEE Trans. Signal Process., vol. 52,
no. 11, pp. 3170–3182, Nov. 2004.

[38] S. R. Maskell, R. G. Everitt, R. Wright, and M. Briers, “Multi-target
out-of-sequence data association: Tracking using graphical models,” Inf.
Fusion, vol. 7, no. 4, pp. 434–447, Dec. 2006.

[39] P. Perez, J. Vermaak, and A. Blake, , “Data fusion for visual tracking with
particles,” Proc. IEEE, vol. 92, no. 3, pp. 495–513, Mar. 2004.

[40] A. P. Dempster, “Upper and lower probabilities induced by multivalued
mappings,” Ann. Math. Stat., vol. 38, no. 2, pp. 325–339, 1967.

[41] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton
Univ. Press, 1976.

[42] D. Fixsen and R. P. S. Mahler, “The modified Dempster–Shafer approach
to classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 27, no. 1, pp. 96–104, Jan. 1997.

450 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

[43] S. Le Hegarat-Mascle, I. Bloch, and D. Vidal-Madjar, “Application of
Dempster–Shafer evidence theory to unsupervised classification in multi-
source remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4,
pp. 1018–1031, Jul. 1997.

[44] R. R. Murphy, “Dempster–Shafer theory for sensor fusion in autonomous
mobile robots,” IEEE Trans. Robot. Autom., vol. 14, no. 2, pp. 197–206,
Apr. 1998.

[45] F. Rottensteiner, J. Trinder, S. Clode, and K. Kubik, “Using the
Dempster–Shafer method for the fusion of LIDAR data and multi-spectral
images for building detection,” Inf. Fusion, vol. 6, no. 4, pp. 283–300,
Dec. 2005.

[46] M. B. Hurley, “An extension of statistical decision theory with information
theoretic cost functions to decision fusion: Part II,” Inf. Fusion, vol. 6,
no. 2, pp. 165–174, Jun. 2005.

[47] G. A. Carpenter, S. Martens, and O. J. Ogas, “Self-organizing information
fusion and hierarchical knowledge discovery: A new framework using
ARTMAP neural networks,” Neural Netw., vol. 18, no. 3, pp. 287–295,
Apr. 2005.

[48] I. V. Maslov and I. Gertner, “Multi-sensor fusion: An evolutionary algo-
rithm approach,” Inf. Fusion, vol. 7, no. 3, pp. 304–330, 2006.

[49] W. Fan, M. Gordon, and P. Pathak, “On linear mixture of expert ap-
proaches to information retrieval,” Decis. Support Syst., vol. 42, no. 2,
pp. 975–987, Nov. 2006.

[50] Handbook of Multisensor Data Fusion, D. L. Hall, Ed. Boca Raton, FL:
CRC, 2001.

[51] T. Kirubarajan and Y. Bar-Shalom, “Probabilistic data association tech-
niques for target tracking in clutter,” Proc. IEEE, vol. 92, no. 3, pp. 536–
557, Mar. 2004.

[52] Y. Bar-Shalom and C. Huimin, “IMM estimator with out-of-sequence
measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1,
pp. 90–98, Jan. 2005.

[53] B. Ristic, “Target identification using belief functions and implication
rules,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 3, pp. 1097–1103,
Jul. 2005.

[54] E. Bosse, P. Valin, A. C. Boury-Brisset, and D. Grenier, “Exploitation
of a priori knowledge for information fusion,” Inf. Fusion, vol. 7, no. 2,
pp. 161–175, 2006.

[55] M. Weis, S. Muller, C. E. Liedtke, and M. Pahl, “A framework for GIS
and imagery data fusion in support of cartographic updating,” Inf. Fusion,
vol. 6, no. 4, pp. 311–317, Dec. 2005.

[56] P. Gamba, F. Dell’Acqua, and B. V. Dasarathy, “Urban remote sensing
using multiple data sets: Past, present, and future,” Inf. Fusion, vol. 6,
no. 4, pp. 319–326, Dec. 2005.

[57] M. Faundez-Zanuy, “Data fusion in biometrics,” IEEE Aerosp. Electron.
Syst. Mag., vol. 20, no. 1, pp. 34–38, Jan. 2005.

[58] A. Ross and A. Jain, “Information fusion in biometrics,” Pattern Recognit.
Lett., vol. 24, no. 13, pp. 2115–2125, 2003.

[59] D. Horn and W. R. Mayo, “NDE reliability gains from combining eddy-
current and ultrasonic testing,” NDT E Int., vol. 33, no. 6, pp. 351–362,
Sep. 2000.

[60] V. Kaftandjian, M. Z. Yue, O. Dupuis, and D. Babot, “The combined
use of the evidence theory and fuzzy logic for improving multimodal
nondestructive testing systems,” IEEE Trans. Instrum. Meas., vol. 54,
no. 5, pp. 1968–1977, Oct. 2005.

[61] L. Gupta, C. Beomsu, M. D. Srinath, D. L. Molfese, and K. Hyunseok,
“Multichannel fusion models for the parametric classification of differen-
tial brain activity,” IEEE Trans. Biomed. Eng., vol. 52, no. 11, pp. 1869–
1881, Nov. 2005.

[62] R. P. Ramachandran, K. Farrell, R. Ramachandran, and R. Mammone,
“Speaker recognition-general classifier approaches and data fusion meth-
ods,” Pattern Recognit., vol. 35, no. 12, pp. 2801–2821, 2002.

[63] H. Altincay and M. Demirekler, “Speaker identification by combining
multiple classifiers using Dempster–Shafer theory of evidence,” Speech
Commun., vol. 41, no. 4, pp. 531–547, 2003.

[64] S. Wu and S. McClean, “Performance prediction of data fusion for in-
formation retrieval,” Inf. Process. Manage., vol. 42, no. 4, pp. 899–915,
Jul. 2006.

[65] M. Kam, Z. Xiaoxun, and P. Kalata, “Sensor fusion for mobile robot
navigation,” Proc. IEEE, vol. 85, no. 1, pp. 108–119, Jan. 1997.

[66] J. Z. Sasiadek, “Sensor fusion,” Annu. Rev. Control, vol. 26, no. 2,
pp. 203–228, 2002.

[67] R. P. S. Mahler, “‘Statistics 101’ for multisensor, multitarget data fusion,”
IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp. 53–64, Jan. 2004.

[68] M. Lewitt and R. Polikar, “An ensemble approach for data fusion with
Learn++,” in Proc. 4th Int. Workshop Multiple Classifier Syst., Surrey,
U.K., 2003, Lecture Notes in Computer Science, vol. 2709, pp. 176–185.

[69] D. Parikh, M. T. Kim, J. Oagaro, S. Mandayam, and R. Polikar, “Combin-
ing classifiers for multisensor data fusion,” in Proc. Int. Conf. Syst., Man
and Cybern., The Hague, The Netherlands, 2004, vol. 2, pp. 1232–1237.

[70] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An incremen-
tal learning algorithm for supervised neural networks,” IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497–508, Nov. 2001.

[71] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “An incremental learning
algorithm with confidence estimation for automated identification of NDE
signals,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, no. 8,
pp. 990–1001, Aug. 2004.

[72] P. J. Boland, “Majority system and the Condorcet jury theorem,” Statisti-
cian, vol. 38, no. 3, pp. 181–189, 1989.

[73] D. Berend, and J. Paroush, “When is Condorcet’s jury theorem valid?”
Soc. Choice Welfare, vol. 15, no. 4, pp. 481–488, 1998.

[74] C. L. Blake and C. J. Merz, UCI Repository of Machine Learning Data-
base at Irvine CA, 2005.

[75] X. E. Gros, Applications of NDT Data Fusion. New York: Springer-
Verlag, 2001.

[76] P. E. Mix, Introduction to Nondestructive Testing: A Training Guide,
2nd ed. New York: Wiley, 2005.

Devi Parikh received the B.Sc. degree in electrical
and computer engineering from Rowan University,
Glassboro, NJ, in 2005. She is currently working
toward the Ph.D. degree at Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Her research interests include pattern recognition,
machine learning, and computer vision. Apart from
using an ensemble of classifiers for data fusion, she
has worked on using pattern recognition techniques
for intrusion detection and on feature-based retrieval
for 3-D reassembly.

Ms. Parikh is the recipient of a National Science Foundation Graduate
Research Fellowship.

Robi Polikar (S’93–M’00) received the B.Sc. de-
gree in electronics and communications engineering
from Istanbul Technical University, Istanbul, Turkey,
in 1993, and the M.Sc. and Ph.D. degrees both in
electrical engineering and biomedical engineering
from Iowa State University, Ames, in 1995 and 2000,
respectively.

He is currently an Associate Professor of electri-
cal and computer engineering at Rowan University,
Glassboro, NJ. His current research interests are pat-
tern recognition, ensemble systems, computational

models of learning, incremental learning, and their applications in biomedical
engineering. His current work is funded primarily through NSF’s CAREER
program and NIH’s Collaborative Research in Computational Neuroscience
program.

Dr. Polikar is a member of the American Society for Engineering Education,
Tau Beta Pi, and Eta Kappa Nu.

