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Abstract
We propose a novel framework for 3D reassembly, the
task of assembling a solid object from its broken pieces.
The primary challenge in this under-explored problem is
to robustly establish compatibility between parts from one
object. Feature-based techniques have shown success in
domains such as 3D similarity search; unfortunately, the
global features typically employed to quantify whole-object
similarity are unsuitable for identifying part-level compat-
ibility. Therefore, we propose the use of local features
which, in conjunction with robust matching, have become
popular for object recognition in 2D images. This paper
demonstrates that an analogous framework can be success-
ful for 3D reassembly. Automating part-level compatibility
enables the construction of an interactive system for 3D re-
assembly, where the user can easily assemble a desired ob-
ject from a large collection of pieces (many of which are ir-
relevant) by iteratively selecting compatible parts. We eval-
uate our approach on a simulated database of broken ob-
jects and show that it scales well in the presence of noise
and extraneous pieces.

1. Introduction
3D reassembly, the problem of assembling a broken solid
object given a collection of its parts, forms an impor-
tant component of several real-world applications includ-
ing molecular biology [21], archeology [14] and spacecraft
post-crash failure-analysis [18]. Despite its broad applica-
bility, computer-aided 3D reassembly has been relatively
under-explored by the computer vision community. Fig-
ure 1 illustrates a typical instance of the problem where,
given a large number of 3D parts, the goal is to identify
those that could be assembled to form a previously un-
known object (the cube). At the lowest level, a valid solu-
tion must ensure that adjacent parts are locally compatible.
At a higher level, one may need to employ domain knowl-
edge to select among multiple candidates that are compati-
ble with a given part. This paper focuses on the former as-
pect and enables users to interactively specify higher-level

Figure 1: Given a large set of parts from a mixture of broken solid
objects (left), our goal is to identify those that are locally compat-
ible so that they may be interactively reassembled to construct a
complete object, while the extraneous parts are left unused (right).

preferences.
3D reassembly poses several unique challenges beyond

those explored in 3D object similarity. First, global fea-
tures that work well for the latter problem fail on our task.
This is because two parts that are locally-compatible can
be very dissimilar at a global level. Figure 2 (left) shows
a typical scenario in 3D object similarity [3] where global
features can be employed to map a query to similar shapes
in the database. The challenge there is to find features that
generalize over the shape variations within the target class.
Figure 2 (right) shows a corresponding scenario in 3D re-
assembly, where locally-compatible parts appear very dis-
similar from a global viewpoint. Naively representing each
part as a single point in a high-dimensional feature space
would fail to represent the structure in corresponding local
regions that defines compatibility between the parts.

Second, although part compatibility is a local phe-
nomenon, independently identifying locally-compatible re-
gions between two parts is insufficient since a valid match
must also satisfy global geometric constraints (i.e., the two
parts should assemble without stretching, warping or inter-
penetration). It is this combination of local compatibility



Figure 2: Differences between 3D object similarity and 3D re-
assembly. (left) Indexing objects using suitable global features
enables a query in 3D object similarity to match similar shapes
in the database. (image courtesy of [3], used with permission);
(right) Two compatible parts in 3D reassembly typically look very
different at a global scale .

and non-local consistency that makes the problem interest-
ing.

Third, the problem of identifying whether two given
parts are physically compatible is inherently a continuous
problem — two 3D shapes can contact in an infinite num-
ber of ways; naively sampling the space of such configura-
tions to determine whether the parts are locally compatible
is unlikely to succeed. This motivates the need for efficient
methods for determining part compatibility.

Finally, in practical 3D reassembly scenarios, the
database of parts could be missing pieces or contain large
numbers of “extra” pieces from other objects. Automatic
reassembly of objects under these constraints without a pri-
ori knowledge of the target object is extremely challenging.
However, an interactive system that automatically identi-
fies candidate parts that are compatible with a partial re-
construction could enable a user with appropriate domain
knowledge to efficiently reconstruct complex objects by sig-
nificantly reducing the search space. For instance, an ar-
chaeologist could find the pieces that form a given vase
while ignoring pottery shards from other broken objects
(Figure 1 illustrates a subset of available pieces forming a
cube).

This paper proposes a feature-based approach to deter-
mine part compatibility in the context of an interactive 3D
reassembly task. The rest of the paper is organized as fol-
lows. Section 2 summarizes the related work in this area.
Section 3 presents the proposed framework and our imple-
mentation choices. Section 4 describes the experimental
setup and shows results. Section 5 concludes the paper and
identifies some promising directions for future research.

2 Related work
Early research on 2D jigsaw puzzle solving includes [7,
25]. However, these approaches focus on commercially-
produced jigsaw puzzles, where part contours are typically
regular [23]. An attempt to remove these restrictions is

made in [8, 10, 15, 20], which present an approach for the
reassembly of real-world 2D objects.

There has been relatively little research in 3D reassem-
bly. [4, 15, 22] advocate an approach based on curve match-
ing. However, measuring curvature and torsion for 3D
curve-matching involves higher-order derivatives that are
sensitive to noise. The papers show no results for more
than two 3D pieces. The underlying assumption of [19]
is that the pieces are nearly planar and match each other
completely. This does not allow for partial fitting. Willis et
al. [23] propose a Bayesian framework to automatically re-
assemble 3D pieces. However, they assume that the frag-
ments assemble to form an axially-symmetric object (such
as a pot). Winkelbach et al. [24] employ a generate-and-test
approach to determine the optimal relative pose between
two parts, which scales poorly.

3D similarity matching, unlike 3D reassembly, is a well-
studied problem and comprehensively surveyed in [3]. The
majority of established techniques employ global repre-
sentations that are unsuitable for our task. Feature-based
methods have computational benefits over generate-and-test
approaches, and have become popular in multimedia re-
trieval [5] and 3D similarity. This motivates us to explore
feature-based approaches for 3D reassembly.

As [2] indicates, feature-based methods may not be as
effective for reassembly since reassembly is inherently a
continuous problem, and projecting an object onto a sin-
gle point in the feature space can be problematic. This may
be alleviated if numerous local features are extracted from
each piece, so that the piece maps onto several points in the
feature space. As [15] observes, local shape analysis causes
several ambiguous matches in the database, especially for
large databases; this can be effectively addressed by enforc-
ing non-local geometric agreement among the locally com-
patible regions.

In very recent work, Huang et al. [11] independently pro-
pose a feature-based approach for automatic 3D reassembly.
Two key differences between our methods is that we employ
spectral techniques for non-local matching and focus on the
interactive aspect of the problem.

3. Proposed approach
We formulate the 3D reassembly problem as an iterative re-
trieval problem. When a 3D piece (or partial-assembly of
pieces) is posed as a query, our system computes a com-
patibility score between the query and candidate pieces in
the database and displays promising candidates. The user
selects one of these matches and requests the system to as-
semble the chosen part with the query. The new assembly
can then be used as the next query. The object is thus assem-
bled interactively and the user can employ domain knowl-
edge to choose among multiple possible compatible pieces



Figure 3: Illustrative example. Given a query (piece1), the most
promising match (piece2) has features that are both locally com-
patible and geometrically consistent.

for a location or vice-versa.
Figure 3 presents an overview of the approach, using a

2D example. When piece1 is posed as a query, the sys-
tem identifies the set of pieces in the database that have
at least a single interest point that is compatible with fea-
tures on the query. This eliminates the majority of pieces
in the database. Among the remaining pieces, some, such
as piece4, are low-scoring candidates because they match
at only one local feature. Others, such as piece3, match at
multiple locations that are geometrically inconsistent. The
most promising candidates, such as piece2, have multiple
matching features that are also geometrically compatible.

Our framework consists of a set of sequential stages: (1)
interest region detection; (2) local description of each inter-
est region; (3) near-neighbor based local correspondence;
(4) geometric agreement; (5) spectral technique based scor-
ing. Each of these stages is detailed in the following sub-
sections.

3.1 Interest region detection
The first step is to identify stable interest regions on each
piece at which local descriptors can be computed. In the
2D example, the obvious candidates for interest regions are
the vertices. For 3D reassembly, reasonable candidates in-
clude corners [9, 16], edges and uneven surfaces. In our
implementation, we define interest regions to be key edges
and identify them on each piece. This is done by comput-
ing the occupancy within a small sphere at each point on
the surface of every piece, and rejecting those that are ap-
proximately half-occupied (flat surfaces). We then fit lines
through points of similar occupancy using RANSAC [6] to
identify key edges.

3.2 Local description of interest regions
The next step is to find a compact but discriminative rep-
resentation for the local neighborhood around each region
of interest. In the 2D example from Figure 3, this could

be the angle formed at the vertex. For 3D, established de-
scriptors include measures of angularity, spin images [12],
mass per shell shape histograms [1] and spherical harmon-
ics of the Gaussian Euclidean distance transform [13]. If
available, these could be augmented using any available ap-
pearance information (e.g., surface texture). Our implemen-
tation uses the angularity of key edges, measured by the oc-
cupancy of a sphere placed at a point on the edge. The key
edges (lines) are parameterized with a direction vector and
a point on the line.

3.3 Near-neighbor based correspondence

Having extracted local features from the query and a candi-
date piece the next step is to find potentially compatible re-
gions. Note that two compatible regions are complementary
rather than similar (e.g., a convex region on the query piece
is compatible with concave regions on candidate pieces). In
our implementation, since the descriptors are scalar (nor-
malized fraction of occupancy), a natural notion of piece
compatibility is how well the two descriptors sum to one.

3.4 Geometric agreement

Having found the correspondences between the query piece
and database candidate piece, the next step is to ensure
geometric agreement among these correspondences. This
is done on a pair-wise basis, i.e., we quantify the degree
to which two correspondences are in geometric agreement.
Clearly, two distinct correspondences cannot be in agree-
ment if they start (or end) at the same interest region. More
generally, each feature correspondence imposes a constraint
between respective points on each piece; two correspon-
dences are in agreement if these constraints are consistent.
This is illustrated in Figure 4. A 2D example with key
points (verteces) as the interest regions are shown for illus-
trative purposes. In our implementation, where correspon-
dences map key edges to edges, the geometric agreement is
quantified as the degree to which the distance between the
line features is preserved. Specifically, we assign a weight
that decreases linearly with the disparity in the distance be-
tween a pair of edges in the query piece and the distance
between the corresponding edges on the database candidate
piece (and is zero once the disparity exceeds 10%). This
definition of geometric agreement is inherently invariant to
the relative pose between the two pieces.

3.5 Spectral technique based scoring

Given weights for each pair of correspondences between the
two pieces, where only some of the correspondences may
be correct, our goal is to identify the cluster of correspon-
dences that is most in mutual agreement and thus generate



Figure 4: Correspondences α and β disagree because they start at
the same interest region. Correspondences α and γ are in greater
mutual geometric agreement than α and ε. This figure illustrates a
subset of the correspondences.

Figure 5: Graph employed for clustering correspondences for the
example in Figure 4. Node weights encode the quality Q of that
correspondence while edge weights encode the geometric compat-
ibility G between two correspondences.

an overall compatibility score. We employ a spectral tech-
nique introduced in [17] to accomplish this. We summarize
the approach below.

A fully connected graph is constructed whose nodes are
the correspondences (the graph has the same number of
nodes as the number of correspondences). For the example
in Figure 4, the five correspondences map to the five nodes
shown in Figure 5. Each node weight encodes the quality of
that correspondence (based on the descriptor compatibility).
Edge weights encode the geometric agreement between the
pair of correspondences connected by that edge. We rep-
resent this graph by its adjacency matrix, where the diago-
nal and off-diagonal elements correspond to node and edge
weights, respectively.

The primary eigenvector of the adjacency matrix indi-
cates the largest cluster of correspondences that are in mu-
tual geometric agreement [17]. Specifically, we can binarize
the eigenvector to obtain a hard assignment of correspon-
dences to the cluster. In our implementation, we perform
binarization using an iterative greedy scheme: the highest
value in the eigenvector is set to 1, and those entries for
correspondences that disagree with the selected correspon-
dence are set to 0 (eliminated). We repeat this process until
the entire vector is binarized. The set of retained correspon-

Figure 6: Examples of 3D pieces generated by simulated breaking
of cubes and spheres (100 pieces are used).

dences could be used to estimate the relative pose between
the two pieces when the user requests the system to assem-
ble them. Thus, for an adjacency matrix M and a binarized
primary eigenvector x, the compatibility score between two
pieces is given by MTxM.

In summary, we detect regions of interest on the two
pieces for which a compatibility score is to be computed.
Correspondences are established between features extracted
at each interest region using a local compatibility metric.
We identify the cluster of correspondences between the two
pieces that are most in geometric agreement using spectral
techniques. This generates a final compatibility score be-
tween the two candidate pieces.

4 Experimental setup and results

Experiments were conducted on synthetic data, where 25
solid objects (cubes and spheres) were each broken into four
irregular pieces using a random walk algorithm with a cut-
ting plane or band saw to generate a database of 100 pieces
(see Figure 6). We describe three experiments below.

4.1 Experiment 1: 100 piece database

The goal of the first experiment was to assess the retrieval
quality of our method at the piece level and to examine the
effects of noisy data. Each piece in the database was se-
lected as a query and the highest-matching piece was re-
trieved. Under noise-free conditions, the part-level retrieval
accuracy is 100%, providing initial validation of the ap-
proach. Figure 7 is a visualization of the compatibility score
matrix, where each entry shows the part-level compatibility
between a query (column) and candidate piece (row). To
simplify visualization, the first four pieces in the database
come from the first broken object, the next four from the
next broken object, and so on, and the queries are presented
in the same order (this information is obviously not pre-
sented to the algorithm). We observe that individual objects
appear as connected sub-blocks in Figure 7 (right), show-
ing that part-level compatibility between pieces can reliably
identify adjacent pieces within an object, without a priori
knowledge about the shape of the object.



Figure 7: A visualization of the compatibility score matrix ob-
tained for the noise-free case. (left) The entire matrix (100×100)
(right) A zoomed in version of the region marked on the left
(20×20). We observe that a non-zero score is typically assigned
only to those pieces that come from the same broken object, even
in the presence of several other broken objects.
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Figure 8: A cumulative match characteristic curve obtained for
noise-free scenario and after adding 3% noise to the voxels.

A similar experiment was run on noisier 3D data. Gaus-
sian noise with zero mean and 3% standard deviation was
added to each voxel of the 3D pieces. Figure 8 summarizes
the retrieval accuracy of the system using the cumulative
match characteristic (CMC) curve as a function of retrieved
rank. Performance under noise-free conditions is perfect
and degrades slightly with noise (area under CMC = 0.94).

4.2 Experiment 2: varying database sizes
The second experiment examines the behavior of the algo-
rithm as the size of the database increases — both in terms
of retrieval accuracy and computation time. The database
size was varied from 4 to 100 pieces (1 to 25 broken ob-
jects). Without noise, the rank-1 accuracy was 100% re-
gardless of database size; with 3% noise, the accuracy de-
creased slightly. Figure 9 plots the area under the CMC
curve as database size is changed. We note that the per-
formance of the proposed framework does not significantly
degrade as the database grows, even under noisy conditions.

The average time required to retrieve the top match
among a 100-piece database in noise-free scenarios is 47s
on a standard processor, of which only a few ms are con-
sumed by matching and the bulk of the remainder by

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

# pieces in database

A
re

a 
un

de
r 

C
M

C
 c

ur
ve

No noise
3% noise

Figure 9: Retrieval performance of the algorithm for varying
database sizes.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

% std. dev. of noise added
A

re
a 

un
de

r 
C

M
C

 c
ur

ve

Proposed
Baseline

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

% std. dev. of noise added

R
et

rie
va

l a
cc

. a
t t

op
 5

%
 r

an
k

Proposed
Baseline

Figure 10: Retrieval performance of the proposed algorithm com-
pared to a baseline at several different noise levels. (left) uses the
area under the CMC as a metric for comparison. For an interactive
retrieval system it is important to have higher accuracies at lower
ranks, so (right) uses the accuracy at the top 5% rank as a metric.
In both cases the proposed method significantly outperforms the
baseline approach at several noise levels.

RANSAC on the query piece (constant for any database
size). Thus, there is negligible difference in processing
time for different database sizes if feature extraction on the
database pieces has been performed in advance. For noisy
data, matching takes longer (about 2.5s per piece) and thus
the elapsed time increases linearly with database size.

4.3 Experiment 3: varying noise levels
The third experiment conducted was to observe the behavior
of the algorithm for different noise levels. The performance
of the proposed algorithm was compared to that of a base-
line algorithm that uses only nearest neighbor for each local
interest region on the query piece, without enforcing ge-
ometric agreement. Figure 10 compares the retrieval accu-
racy according to two metrics: (left) area under CMC curve,
and (right) retrieval accuracy at 5% rank. The proposed sys-
tem shows significant improvements over the baseline ac-
cording to both criteria. The latter (10right) is particularly
relevant for an interactive system since the user will only be
shown the best-ranked results; here the proposed approach



is clearly superior.

5 Conclusions
This paper proposes a feature-based approach for estab-
lishing robust part-level compatibility with applications in
interactive 3D reassembly. Each part is described by a
set of local descriptors that generate candidate pair-wise
matches between parts. We employ spectral techniques
that enforce global geometric agreement to eliminate false
matches. The algorithm is robust to noise and scales well to
large databases containing the aggregated parts from multi-
ple broken objects. In future work, we plan to integrate our
algorithm into a system where noisy 3D scans of broken
objects can be assembled under the interactive high-level
guidance of a user.
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