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Abstract. The increased use of context for high level reasoning has
been popular in recent works to increase recognition accuracy. In this
paper, we consider an orthogonal application of context. We explore the
use of context to determine which low-level appearance cues in an im-
age are salient or representative of an image’s contents. Existing classes
of low-level saliency measures for image patches include those based on
interest points, as well as supervised discriminative measures. We pro-
pose a new class of unsupervised contextual saliency measures based on
co-occurrence and spatial information between image patches. For recog-
nition, image patches are sampled using a weighted random sampling
based on saliency, or using a sequential approach based on maximizing
the likelihoods of the image patches. We compare the different classes of
saliency measures, along with a baseline uniform measure, for the task
of scene and object recognition using the bag-of-features paradigm. In
our results, the contextual saliency measures achieve improved accuracies
over the previous methods. Moreover, our highest accuracy is achieved
using a sparse sampling of the image, unlike previous approaches who’s
performance increases with the sampling density.

1 Introduction

Determining image patches of high saliency has recently received significant at-
tention. The goal of saliency detection is to identify the image patches that are
most informative of the image contents. A standard method for finding these
patches is the use of interest point detectors based on local low-level image statis-
tics [1–6]. Another class of saliency measures are discriminative in nature [7–12],
where a patch is considered salient if it is informative from a classification per-
spective. The usefulness of a patch may be based on the mutual information
between the presence of the patch and the scene categories [7] or the probability
of misclassification of a patch [8]. Using these techniques, a relatively small num-
ber of patches can be sampled while still achieving high recognition accuracy.

In this paper, we explore the use of contextual information that is typically
used for higher level reasoning for the low-level task of selecting informative or
salient patches in an image. We consider a patch to be salient if it is predic-
tive or representative of the other patches in the image. The relationships of
image patches are modeled using co-occurrence and spatial information. Unlike
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previous saliency measures that rely only on local information, our approach
incorporates contextual information using the patch statistics across the entire
image. For recognition, the sampling of patches is performed using weighted
random sampling based on patch saliency. In addition, we propose a sequential
sampling approach based on increasing the maximum likelihood of patches given
the set of previously selected patches.

Our saliency measure is evaluated within a bag-of-features framework [13–
17]. This simple approach has shown good performance in a variety of recog-
nition tasks and allows us to focus on the specific contributions of our paper.
The bag-of-features approach consists of three components: a method for sam-
pling patches from an image, a method for assigning the patches to a discrete
patch vocabulary, and a method for classifying the resulting global descriptor.
In this paper, we only address the first task of patch sampling, and use standard
approaches for the other two components. A vocabulary of patch appearances,
to which each patch is assigned, is constructed using K-means clustering [18,
19]. Classification is accomplished using an SVM classifier over the histogram of
patch assignments [7, 15].

We compare our proposed contextual saliency measures to a variety of ex-
isting measures including interest points, discriminative approaches and random
sampling. These measures are evaluated on both scene and object recognition
tasks. In contrast to previous results that show recognition accuracy increases
with the density of the sampling [7], the contextual measures achieve maximal
accuracy using a sparse sampling. Moreover, in our experiments the accuracy of
using contextual measures with sparse sampling is better than dense sampling
using other methods.

The rest of the paper is organized as follows: Previous works are discussed
in the following section. We describe our proposed contextual saliency measures
in Section 3 and sampling methods in Section 4. In Section 5 we briefly describe
the existing saliency measures used for comparison, followed by a description of
the experimental setup in Section 6. Results and some discussion are provided
in Section 7 and conclusions in Section 8.

2 Previous Work

Several works have explored the role of saliency measures for classification tasks.
Nowak et al. [7] compare the interest operators to random dense sampling and
find that random sampling performs comparable or superior to interest opera-
tors. Jurie et al. [20], apart from proposing a novel clustering approach to form
codebooks, evaluate a discriminative saliency measure used for the feature se-
lection problem. They find that when using smaller codebooks discriminative
feature selection can be used to improve accuracies. However, using the full
codebook for classification typically resulted in better performance. A related
class of works [8, 21, 22] is visual search, where similar notions of saliency are
important. The essence of visual search lies in the notion of active exploration,
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in which saliency maps are dynamically updated or areas are marked for further
exploration.

Most existing approaches [1, 4, 15, 17, 18, 23, 24, 19] for selecting a sparse set
of image patches are based on interest point detectors [1–6]. These include those
based on edge cornerness [2], difference of Gaussian convolutions [1], stable
extremal regions [5] or local entropy [3]. While these measures are useful for
obtaining reliable correspondences or matching, they do not relate directly to
image understanding via classification or recognition. The strategies of dense
sampling [13, 16, 25] or random sampling [12] have shown to provide comparable
or even better performance than interest points [7]. Biologically inspired saliency
measures following the “feature integration theory” [26] extract regions of the
image that stand out from their surrounding as being salient [27, 28]. [3, 29] are
based on a similar notion and [30] consider features to be salient if they are rare.
While this is a plausible explanation to predict task-independent attention, they
do not take into account task-dependencies. Walther et al. [31] incorporate such
task dependencies and combine the biologically plausible saliency map of [28]
with interest point operators [1] to show improved performances.

Using high-level contextual information for better image understanding has
received significant attention in recent works [32–40]. Most of these approaches
use context as a post-processing step to prune out false positives [32, 33], aid
in detection by eliminating unlikely locations of objects [32, 34–37], or ensure
semantically consistent labels to regions of an image [32, 33, 38–40].

3 Proposed Contextual Saliency Measures

Our goal is to select a sparse set of image patches that are most informative for
classification. We propose that the patches, which are representative or predictive
of other patches in the image, are also the patches most useful for classification.
We measure the predictiveness of a patch using a contextual saliency measure
based on co-occurrence and spatial information. As stated earlier, we examine
our measure of saliency within the bag-of-features framework. In this framework,
classification is achieved by selecting a set of image patches and assigning them
to codewords. A histogram of codewords is then constructed and used for clas-
sification. In this paper, we address the first task of selecting image patches. We
describe the standard method of K-means for codebook creation and Support
Vector Machines for classification in Section 7.

For each image patch xi, we compute a patch descriptor yi. This descrip-
tor can vary based on the application and properties of particular datasets. In
this paper we examine two descriptors. The first is a 4 × 4 vector of average
color values over a patch. This descriptor is useful for scenarios in which color
information is important, such as in scene recognition. For object recognition
in which edge information is more useful than color, we use the standard SIFT
descriptor [1].

The codebook W consists of m descriptor templates. Each patch xi in an
image is assigned to a codeword wa in the codebook. These assignments may
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be soft or hard with αia being the probability of patch xi being assigned to
codeword wa:

αia = p(yi|wa) =
1
Z
N (yi;wa, σw)

N is the standard normal distribution with mean wa and variance σw. The value
of Z is set so that the values of αia sum to one for all a, i.e.

∑m
a=1 αia = 1. For

hard assignments αia = 1 for the codeword wa that lies closest to yi and αia = 0
otherwise.

For each patch xi in an image, we want to assign a saliency measure Si. In
the following two sections we propose two saliency measures based on contextual
information.

3.1 Occurrence-based Contextual Saliency

Our measures of contextual saliency are based on how well each individual patch
can predict the occurrence of other patches in the image. Our first saliency
measure So uses co-occurrence information between codewords in images. Given
a set of n patches in an image, we define the saliency of a patch xi equal to the
average likelihoods of the image patches conditioned upon yi.

So
i =

1
n

n∑
j=1

m∑
a=1

αiap(xj |wa) (1)

The value of p(xj |wa) is computed by marginalizing over all possible codeword
assignments for xj

p(xj |wa) =
m∑

b=1

αjbp(wb|wa) (2)

The value of p(wb|wa) is the empirical conditional probability of observing code-
word wb given the codeword wa has been observed somewhere in the image.
These are learnt through MLE counts from the training images. Given hard as-
signments of patches to codewords, the two summations over m can be removed
from equations (1) and (2).

Computing the above measure can be computational expensive, especially if
the codebook size and number of patches is large. One method for reducing the
computational complexity is to rearrange equations (1) and (2) as:

So
i =

m∑
a=1

αia
1
n

n∑
j=1

m∑
b=1

αjbp(wb|wa) (3)

The value Φa = 1
n

∑n
j=1

∑m
b=1 αjbp(wb|wa) can then be pre-computed for each

a, resulting in:

So
i =

m∑
a=1

αiaΦa (4)
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3.2 Location-based Contextual Saliency

The previous contextual saliency measure was based solely on co-occurrence
information without knowledge of the patch’s location. In this section we propose
a saliency measure that includes spatial information. The location of a patch in
an image is modeled using a Gaussian Mixture Model with c = 9 components.
For our experiments the Gaussian means are centered in a 3 × 3 grid evenly
spaced across an image with standard deviations in each dimension equal to half
the distance between the means. We define the value βiu as the likelihood of xi

belonging to component lu of the GMM, u ∈ {1, . . . , c}, and
∑c

u=1 βiu = 1,∀i.
Similar to equation (1), we define our location-based contextual saliency mea-

sure Sl as

Sl
i =

1
n

n∑
j=1

m∑
a=1

c∑
u=1

αiaβiup(xj |wa, lu) (5)

The value of p(xj |wa, bu) is computed as

p(xj |wa, bu) =
m∑

b=1

c∑
v=1

αjbβjvp(wb, lv|wa, lu) (6)

The value of p(wb, lv|wa, lu) is the empirical conditional probability of observing
word wb at location lv given word wa occurred at location lu. These are learnt
through MLE counts from the training images.

Similar to equation (4), we may pre-compute the values

Ψau =
1
n

n∑
j=1

m∑
b=1

c∑
v=1

αjbβjvp(wb, lv|wa, lu)

and find Sl
i as

Sl
i =

m∑
a=1

c∑
u=1

αiaβiuΨau (7)

Since our proposed saliency measures are dependent on the codeword as-
signments of other image patches, a significant number of patches need to be
sampled from the image for the measures to be reliable. However, we will only
select a subset of these image patches for use in classification. While it may seem
advantageous to use all the patches for classification, as we show later in our re-
sults, using a subset of the patches can actually lead to improved recognition
rates.

As can be seen, there is no dependence of the saliency measures So or Sl on
the class labels of the images, making the proposed contextual saliency measures
unsupervised.

4 Sampling Strategies

Using the equations above we can compute a saliency measure for each patch
in an image. In this section we discuss three methods for selecting a subset of
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these patches for use in classification. Let us assume s patches are desired for
classification out of a possible n.

4.1 Sampling by Sorting

A naive approach to sampling is to pick the s patches with highest saliency.
However, due to strong correlations in natural images, neighboring patches often
have similar appearances, and would hence share similar saliency values. The
result of using this technique is many neighboring patches being selected that
convey similar information. As a consequence, classification rates may suffer.

4.2 Random Sampling

One method to reduce the odds of sampling neighboring or redundant patches
is to use a weighted random sampling. The saliency map may be normalized to
form a distribution over the patches from which samples can be drawn. This
allows for patches with higher saliency to be sampled with a higher probability,
without any one region dominating. This allows for a good balance between
exploiting the highly salient regions, and exploring the rest of the image for
other salient regions.

4.3 Sequential Sampling

The last strategy sequentially selects patches by considering the patches pre-
viously selected. Specifically, we pick the patch that is most predictive of the
patches that were not highly likely given at least one of previously picked patches.
Let us consider the saliency measures of equations (1) and (5), which compute the
probability of p(xj |xi) equal to

∑
a αiap(xj |wa) and

∑
a

∑
u αiaβiup(xj |wa, lu)

respectively. Then given a set of previously picked patches {x́1, . . . , x́t} we com-
pute our saliency measure as

Si(x́1, . . . , x́t) =
1
n

n∑
j=1

max (p(xj |xi), p(xj |x́1), . . . , p(xj |x́t)) (8)

A each iteration, the patch with highest saliency is selected. This sequential
approach selects patches that give the highest average increase in maximum
predicted probability for the patches in the image. As a result, patches that
convey similar information as those already chosen are unlikely to be selected.

5 Existing Saliency Measures

In our experiments, we compare our proposed contextual saliency measures with
three classes of existing saliency measures. The first baseline measure is the
uniform saliency measure across the entire image, where patches are sampled
randomly from the image. Equivalently, this can be thought of as computing a
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coast          forest       highway   inside-city  mountain open-country  street      tall-building

cars                      bicycles                motorbikes                 people

Fig. 1. Example images from the (top) outdoor scene category dataset [41] and (bot-
tom) Pascal-01 object recognition dataset [42].

distribution over the codewords using a normalized histogram. The distribution
over codewords is then randomly sampled. The second measure is an interest-
point based saliency measure. More specifically, we apply the Harris corner de-
tector [2] to the image, and used its response at every location in the image as
the saliency map. We also provide experiments using the patches found from the
SIFT detector [1]. Finally, we compare against a discriminative saliency mea-
sure. The discriminative measure considers a patch to be salient if the mutual
information of the patch and the class labels is high. More specifically, ifM(wa)
is the mutual information of the ath word with the class labels, the measure is
defined as SD

i =
∑m

a=1 αiaM(wa).

6 Experimental Setup

We evaluate our proposed contextual saliency measure for the tasks of scene and
object recognition using the bag-of-features approach. In both scenarios we con-
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struct a codebook of feature descriptors using the standard K-means clustering
technique with K = 1000. Classification is accomplished by first assigning each
sampled patch to a codeword. A histogram of codewords is created as input into
a Support Vector Machine (SVM) classifier. We use a Gaussian kernel SVM in all
our experiments. We also experimented with adaptively thresholded histograms
by picking thresholds that maximize mutual information with the class labels
as suggested by Nowak et al. [7]. However, the results were comparable, so we
only report experiments using the normalized histograms in our experiments.
Experiments using the nearest-neighbor classifier were also tested. The results
were consistently inferior, and hence are not included here.

6.1 Scene Recognition

We evaluate our approaches on the outdoor scene category dataset from Tor-
ralba et al. [41]. Example images from this dataset are shown in Fig. 1 (top). It
contains images from 8 categories: coast, mountain, forest, open country, street,
inside city, tall buildings and highways. There are a total of 2866 256 × 256
color-images. For scene recognition our 48 dimensional descriptor consists of the
average color values sampled in a 4 × 4 grid. The patches were sampled evenly
across the image on a 64× 64 grid. The patch scale was set so that neighboring
patches overlap by 75%. Each sampled patch is given a soft assignment to the
codewords using equation (3) with σw = 30. Similar to Torralba et al. [43], we
use 100 images per scene category for training, and the rest as testing.

6.2 Object Recognition

Our experiments on object recognition use the Pascal-01 [42] dataset which
contains 4 object categories: cars, bicycles, motorbikes and people. Example
images from the dataset are shown in Fig. 1 (bottom). A training set of 684
images and a test set of 689 images is defined. Since object recognition is more
dependent on image gradients than color, we use SIFT [1] as our descriptor.
The descriptor was sampled on a 64 × 64 uniformly spaced grid. The scale of
the sampled patches was set so that horizontally neighboring patches overlap by
75%. In this scenario we used hard assignments of patches to codewords.

7 Results

7.1 Comparing Saliency Measures

Our first experiments test our contextual saliency measures and those described
in Section 5 on the scene and object recognition datasets. Recognition accuracies
are plotted relative to the density of samples used for classification in Fig. 2.
The weighted random sampling strategy is used in all cases. For comparison,
representative reported accuracies on these datasets are 84% on the outdoor
scene recognition dataset by Torralba et al. [43] and ∼ 88% on the Pascal-01



Determining Patch Saliency Using Low-Level Context 9

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% of image sampled

R
ec

og
ni

tio
n 

ac
cu

ra
cy

 %

Scene Recognition

 

 

Uniform
Interest−points
Discriminative
Occurrence Contextual
Location Contextual

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% of image sampled

R
ec

og
ni

tio
n 

ac
cu

ra
cy

 %

Object Recognition

 

 

Uniform
Interest−points
Discriminative
Occurrence Contextual
Location Contextual

Fig. 2. Scene (left) and object (right) recognition accuracies for different saliency mea-
sures. The weighted random sampling strategy is used in all cases.

object recognition dataset by Nowak et al. [7]. The highest accuracies achieved
by the contextual saliency measures are 84% and 86% on the scene recognition
task for Sl and So respectively, and 85% and 90% for the object recognition task.
We also tested our algorithm using higher resolution grids for scene recognition.
The highest accuracies for So were 55%, 68% and 81% for 8 × 8, 16 × 16 and
32× 32 sampled grids respectively.

The contextual saliency measures have the best performance on both datasets.
The discriminative measure using mutual information is next followed by similar
results for both interest points and random saliency measures. We also ran exper-
iments using the complete set of interest points found using the SIFT detector.
On average the SIFT detector found 926 interest points and a recognition accu-
racy of 71% was achieved on the object recognition dataset. The performance of
the saliency measures not using context increase monotonically with the density
of the sampling. This is consistent with observations made by Nowak et al. [7].
However, with the contextual saliency measures a sparser sampling results in
higher accuracy. This indicates that a sparser sampling is desirable not only for
computational efficiency, but also higher recognition performance. With respect
to the saliency measures, the usefulness of spatial information varies based on
the dataset. The spatial information provides a larger performance boost for ob-
ject recognition. We speculate that this is due to the increased spatial ambiguity
of SIFT descriptors as compared to color descriptors. In scene recognition, color
descriptors such as blue patches that correspond to sky or green patches that
correspond to grass are strongly correlated with certain image locations. As a
result, the spatial information may be redundant.

The various saliency maps for a set of sample images are shown in Fig. 3. In
the scene recognition examples, objects that are unlikely given the scene category
typically have lower saliency measures. As can be seen in Fig. 3(b), the saliency
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image

interest-points

discriminative

contextual

image

interest-points

discriminative

contextual

Fig. 3. Example saliency maps for images for the (top) scene recognition and (bot-
tom) object recognition tasks using different classes of saliency measures. Maps are
normalized to lie between 0 (least salient patch) and 1 (most salient patch)

maps for the object recognition datasets have high saliency values even for the
backgrounds. We believe this is due to several reasons: a strong correlation of
objects and background, the higher entropy of the SIFT descriptor and the use
of hard assignments.

The higher performance of contextual saliency measures over discriminative
saliency measures may seem un-intuitive at first, since the discriminative saliency
measure is supervised and is optimized specifically for recognition accuracies.
However, it should be noted that the discriminative saliency measure ignores
the rest of the scene, or the context in which the patch is present. This can lead
to undesirable artifacts. For instance, in a scene recognition task, red/orange
patches may be considered to be salient by the discriminative measure since
they occur pre-dominantly only in sunset (coast) images. Consider a highway test
image that has a red car present in it, as seen in Fig. 4 (left). All the patches on
the car will be considered highly salient by the discriminative saliency measure
even though they are not representative of the scene. The saliency measure using
context would identify that the red patches on the car are not representative of
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image discriminative contextual image discriminative contextual

Fig. 4. Red patches on the car in the highway image (left) and the white patches
from the light behind the trees in the forest image (right) are considered to be salient
by the discriminative measure because they occur pre-dominantly in sunset coast and
snow-covered mountain images respectively. However, the contextual saliency measure
incorporates the context of the rest of the scene and thus considers the road, sky and
tress to be salient instead.
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Fig. 5. Scene (left) and object (right) recognition accuracies for different sampling
strategies. The occurrence-based contextual saliency measure So is used in all cases.

the image, and would not use them for classification. As a result, the contextual
saliency measure is more likely to ignore clutter in the scene, resulting in higher
accuracies. A similar result can be seen in Fig. 4 (right).

7.2 Comparing Sampling Strategies

To compare the different sampling strategies described in Section 4, we work with
the occurrence-based contextual saliency measure. The scene and object recog-
nition accuracies using the different sampling strategies are shown in Fig. 5. We
can see that for scene recognition, the sorting strategy is much worse than the
weighted random sampling. The features used for the scene recognition task are
raw color patches, and hence neighboring patches in an image have very similar
features and hence very similar saliency measures. While sequential sampling
does not give higher accuracies, it reaches the peak accuracy using fewer patches
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Fig. 6. Illustration of sequential sampling. Left: original image; Subsequent columns:
saliency map being updated at each iteration; Top two rows: scene recognition; Bottom
row: object recognition.

than the weighted random sampling. Similar trends are seen for object recog-
nition with the sequential and weighted random sampling results being more
comparable. This may be due to the lower correlation of neighboring SIFT fea-
tures as compared to the color descriptors used for scene recognition. Examples
of how the saliency maps are updated after each iteration of the sequential sam-
pling are shown in Fig. 6.

7.3 Discussion

Typically, contextual information is used for high-level reasoning about interac-
tions between objects. In this paper, we demonstrate how contextual information
may also be useful for low-level applications such as measuring patch saliency.
While low-level contextual reasoning lacks semantic object information, even
color or texture patches can supply useful contextual information as also shown
in [44].

Discriminative saliency measures capture classification specific statistics of
the patches. Our proposed contextual saliency measures capture contextual in-
formation of the entire image to determine saliency of patches. Both these aspects
are complementary, and are both important to select representative patches that
give good recognition accuracies. For the data sets we experimented with so far,
the contextual information was more critical than the discriminative informa-
tion, such as the example shown in Figure 4. However, one can imagine scenarios
where the reverse is true. The balance between the two is task and domain de-
pendent. A natural future direction, hence, is to combine discriminative and
contextual information to design the optimum saliency measure for a given task.
This is related to subjectiveness in the notion of saliency itself. Salient regions
may be considered to be those that are representative of the image (as we do
in this work), or those that are rare or unusual and hence draw attention. If we
consider a more generic definition of saliency as being informative, it leads us
back to the notion of task and domain dependency.

While our contextual saliency measure is unsupervised it is still dataset spe-
cific. That is, training images are needed to learn the co-occurrence statistics of
the codewords. Other methods such as the use of interest points or random sam-
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pling may be better suited for applications in which the statistics of the images
may not be known beforehand.

8 Conclusions

In this paper we propose two measures of saliency using contextual information.
The first measure relies on co-occurrence information between codewords, while
the second measure includes spatial information. We test our saliency measures
against several others using the bag-of-features paradigm. Our experiments show
improved results over other saliency measures on both scene and object recogni-
tion datasets. In contrast to previous works that produce results with accuracies
that monotonically increase with sampling density, the contextual saliency mea-
sures produce optimal results with a sparse sampling.
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