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Abstract—We describe an ensemble of classifiers based 
data fusion approach to combine information from two 
sources, believed to contain complimentary information, for 
early diagnosis of Alzheimer’s disease. Specifically, we use the 
event related potentials recorded from the Pz and Cz elec-
trodes of the EEG, which are further analyzed using multireso-
lution wavelet analysis. The proposed data fusion approach in-
cludes generating multiple classifiers trained with strategically 
selected subsets of the training data from each source, which 
are then combined through a weighted majority voting. Several 
factors set this study apart from similar prior efforts: we use a 
larger cohort, specifically target early diagnosis of the disease, 
use an ensemble based approach rather then a single classifier, 
and most importantly, we combine information from multiple 
sources, rather then using a single modality. We present prom-
ising results obtained from the first 35 (of 80) patients whose 
data are analyzed thus far.  

Keywords—Alzheimer’s disease, data fusion, wavelet 
analysis, oddball paradigm, ensemble system, Learn++. 

I. INTRODUCTION

A. EEG Analysis for AD diagnosis 

Alzheimer’s disease (AD) affects an estimated 4 million 
Americans, making it a major public health concern. The 
positive predictive value of clinical diagnosis based on 
neuropsychological analysis is around 93% (overall diag-
nostic performance around 80%) at university hospitals, 
however, most patients are evaluated at community clinics, 
where the expertise and the accuracy of disease specific de-
mentia diagnoses is uncertain. In fact, a recent study re-
ported that despite the advantage of longitudinal follow up, 
a group of HMO based physicians had a sensitivity of 83%, 
specificity of 55% and an overall accuracy of 75% for the 
clinical diagnosis of AD [1].  

Several biomarkers have been linked to AD, such as the 
cerebrospinal fluid tau, -amyloid, urine F2-isoprostane, 
brain atrophy and volume loss detected by MRI. However, 
none of these methods has proven to be conclusive, and 
even if they were, they remain primarily research hospital 
based tools. Consequently, there is significant need for a 
clinically useful, accurate, non-invasive, cost-effective and 
automated procedure for early diagnosis of the AD that 
would be available to community healthcare providers.  

One such tool that is potentially feasible is the electroen-
cephalogram (EEG). EEG analysis has not traditionally been 
part of a routine evaluation for AD diagnosis, however, in 
part due to difficulties in separating EEG changes that could 

be attributed to AD from those due to normal aging. An al-
ternative EEG based technique that specifically targets the 
changes due to mental impairment by analyzing scalp re-
cordings of auditory event related potentials (EPR), has been 
more promising, but still with inconclusive results. The pro-
tocol uses the oddball paradigm in which subjects are asked 
to respond when they hear an occasionally occurring 2 kHz 
(the oddball) tone, presented randomly within a series of fre-
quently occurring 1 kHz tones. The ERPs in response to 
oddball tones then show a positive peak (P3 or P300, most 
prominently on Pz channel of the EEG covering parietal re-
gions), with an approximate latency of 300 ms after the 
stimulus. Changes in the amplitude and latency of P300 are 
altered by neurological disorders affecting the temporal-
parietal regions of the brain [2]. This includes AD, where 
the average P300 latency is prolonged and the amplitude de-
creased compared to elderly controls [3].  

Traditional ERP analysis is performed either in time or 
frequency domain. However, this is suboptimal, since the 
ERP is a time and frequency varying signal. Despite its now 
mature history, studies applying time-frequency techniques, 
such as wavelets, to ERPs have only recently started, and 
mostly on non AD related  studies designed specifically for 
P300 analysis [4,5]. Studies directly targeting AD diagnosis 
using wavelet analysis, have been even more rare with lim-
ited success, in part due to lack of a large study cohort (e.g., 
6 in [6]); the results therefore remain largely inconclusive.  
B. Ensemble Approaches for Classification & Data Fusion 

Data obtained from multiple sources may carry compli-
mentary information, suitable fusion of which, can lead to 
improved classification performance compared to a decision 
based on any of the individual data sources alone. In P300 
studies, signals from the Pz electrode are usually analyzed 
[7], where the P300 is most prominent. However, we believe 
that the nearby electrodes, such as Cz and Fz, may also carry 
complimentary information. Hence our goal was to deter-
mine whether an appropriate combination of data from these 
channels may lead to improved diagnosis performance. 

Traditional data fusion methods are generally based on 
probability theory, such as the Dempster-Schafer (DS) and 
its many variations. For classification and data fusion appli-
cations, ensemble approaches that use strategically trained 
and combined multiple classifiers constitute a new breed of 
algorithms that often offer an improved and more stable per-
formance compared to their single classifier counterparts. 
Such approaches include bagging, Adaboost and other varia-
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tions based on simpler combination schemes such as major-
ity vote, threshold voting, averaged Bayes classifier, 
max/min rules, and linear combinations of posterior prob-
abilities [8,9]. More sophisticated approaches have also been 
proposed, including ensemble based variations of DS, neu-
rofuzzy systems, stacked generalization and hierarchical 
mixture of classifiers [10-14]. 

A useful addition to this list would be a general structure 
containing the ability to combine classifier outputs for (i) a 
stronger overall classifier, (ii) a classifier capable of incre-
mental learning, and (iii) a classifier capable of data fusion.  

The algorithm Learn++, described here, provides such an 
alternative. We had previously introduced the ensemble 
based Learn++ for general classification and incremental 
learning problems [15]. In this paper, we specifically inves-
tigate the data fusion capability of the algorithm in extract-
ing and combining complimentary information provided 
from different channels of EEG recording, on a unique ap-
plication to detect the earliest neurodegenerative changes of 
AD. We are interested in determining the sensitivity, speci-
ficity, positive and negative predictive value of this ap-
proach, in distinguishing patients with AD from cognitively 
normal elderly subjects. 

II. METHODOLOGY

A. Test Subjects and Clinical Evaluation 
 This study will include a total of 80 subjects, half nor-

mal, half with AD, 50 of whom will be used to train the 
automated classification system, and the remaining 30 will 
be used to evaluate the system performance on previously 
unseen signals. Subjects are verified to be free of any evi-
dence of other neurological disorders (e.g. stroke, multiple 
sclerosis, Parkinson’s disease, etc.) by history or by exam.  
The two groups were defined by the following criteria:  
Cognitively normal: (i) age > 60; (ii) Clinical Dementia Rat-
ing (CDR) = 0; (iii) Mini-Mental Scores (MMS)  24; (iv) 
no indication of functional / cognitive decline during the 
previous two years based on a detailed interview with the 
subject’s knowledgeable informant or two previous annual 
clinical assessments. AD subjects: (i) age > 60; (ii) CDR 
0.50; (iii)  MMS< 24; (iv)  presence of functional / cognitive 
decline over the previous 12 months; (v) satisfaction of 
NINCDS-ADRDA (National Institute of Neurological and 
Communicative Disorders and Stroke - Alzheimer's Disease 
and Related Disorders Association) criteria for probable AD 
[16]. All subjects received a through medical history analy-
sis, neurological exam, memory tests and standardized 
evaluations for several functional impairments, extrapyra-
midal signs for behavioral changes and depression. The 
clinical diagnosis was made as a result of these analyses. 
B.  Acquisition of Event Related Potentials 

 The ERPs were obtained using the auditory oddball 
paradigm [2]. Binaural audiometric thresholds were deter-
mined for each subject using a 1 kHz tone. Auditory stimuli 
were presented to both ears using stereo earphones at 60dB 
above each individual’s auditory threshold. The stimulus 
consisted of tone bursts 100ms in duration, including 5ms 

inset and offset envelopes. Tones of 1 and 2 kHz were pre-
sented in a random sequence with the tones occurring in 
65% and 20% of the trials respectively. The remaining 15% 
of the trials consisted of novel sounds presented randomly. 
These included 60 unique environmental sounds that were 
recorded digitally and edited to 200ms duration. A total of 
1000 stimuli, including frequent 1000Hz (n=650), infre-
quent 2000Hz tones (n=200) and novel sounds (n=150) were 
delivered to each subject with an interstimulus interval of 
1.0-1.3 seconds.  The subjects were instructed to press a but-
ton each time they heard the 2 kHz tone.  With frequent 
breaks, data collection process lasted about 30 minutes per 
subject with each session proceeded by a 1 minute practice 
session without the novel sounds.   

 The ERPs were recorded from tin electrodes embedded 
in a plastic cap, using linked mastoids as reference. Artifac-
tual recordings were identified and rejected. The remaining 
potentials were amplified, digitized at 256Hz/channel and 
stored. The ERPs were then lowpass filtered, averaged 
(40~90 oddball tones per patient), notched filtered at 59-
61Hz and baselined with the prestimulus interval. 45 sub-
jects have been recruited so far, however, data from 10 were 
excluded from further analysis due to low signal to noise ra-
tio. Of the remaining 35 patients (µAge=77) 15 were AD pa-
tients and 20 were cognitively normal individuals.  
C. Multiresolution Wavelet Analysis 

Since ERPs are nonstationary signals, a time-frequency 
technique is a natural choice. The discrete wavelet transform 
(DWT) has versatile properties in data compression, time-
frequency localization, noise suppression, and prior success-
ful record in analyzing EEG signals, all with modest compu-
tational expense. We have tried several types of wavelets, 
including Daubechies, quadratic b-spline wavelets, etc. and 
have found that Daubechies with 4 vanishing moments pro-
vided best overall performance [17] in prior single channel 
studies. Since DWT is now well-established, excellent refer-
ences are readily available, such as those in [18]. 
D. The Learn++ Algorithm 

The novelty of Learn++ is in its incremental learning ca-
pability. It can learn new information as and when new data 
become available, without forgetting the previously acquired 
knowledge and without requiring access to previous data. 
Specifically, Learn++ generates an ensemble of classifiers 
for each new database that becomes available, where the de-
cisions of individual classifiers are combined through 
weighted majority voting. We recognize that data fusion and 
incremental learning are conceptually similar: data fusion 
also requires learning from additional data, albeit using a 
different set of features with each dataset; leading us to in-
vestigate the feasibility of Learn++ on this application. The 
pseudocode of Learn++ is given in Figure 1. 

For each database, using a different Feature Set, FSk, k = 
1,…,K, submitted to Learn++, the inputs to the algorithm are  
(i) Sk, training data xi along with their correct labels yi; (ii) a 
supervised algorithm BaseClassifier, generating individual 
classifiers (henceforth, hypotheses); and (iii) an integer Tk,
the number of classifiers to be generated for the kth database.  
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Input: For each dataset from a different source 
Sequence of mk examples Sk=[(x1,y1),(x2, y2),…,(xmk,ymk)]. 
Weak learning algorithm BaseClassifier.
Integer Tk, specifying the number of classifiers. 

Do for each k=1,2,…,K:
Initialize )()( 11 iDiw  = 1 ,   ,   1, 2, ,k km i i m        (1)
Do for t = 1,2,...,Tk:
1. Set Dt 1 ( )m

t ti w iwtD  so that Dt is a distribution.     (2)

2. Draw training TRt and testing TEt subsets from Dt.
3. Call BaseClassifier to be trained with TRt ,obtain hypothesis  

ht : X  Y, and calculate its error on Sk=TRt + TEt.

t : ( ) ( )
t i i

ti h x y D i           (3)

If t > ½, discard ht and go to step 2.  
Otherwise, compute normalized error as t= t / (1- t).   

4. Obtain composite hypothesis from weighted majority voting 

: ( )arg max log 1
t

t tt h x y
y Y

H                      (4)

5. Compute the error of the composite hypothesis 

: ( ) ( )tt i i
t i H x y D i            (5)

6. Set Bt = Et/(1-Et), and update the weights: 

1
 ,     ( )

( ) ( )
1    ,     t t

t t i iB if   H x y
w i w i

otherwise
                   (6)

Call weighted majority voting and Output the final hypothesis.  
Figure 1. Learn++ algorithm pseudocode 

Each hypothesis ht is trained on a different subset of the 
training data. This is achieved by initializing a set of weights 
for the training data, wt, and a distribution Dt obtained from 
wt. According to this distribution a training subset TRt is 
drawn from the training data at the tth iteration of the algo-
rithm. The distribution Dt determines which instances of the 
training data are more likely to be selected into the training 
subset TRt. Unless a priori information indicates otherwise, 
this distribution is initially set to be uniform, giving equal 
probability to each instance to be selected into the first train-
ing subset. At each subsequent iteration t, the weights previ-
ously adjusted at iteration t-1 are first normalized to ensure a 
legitimate distribution Dt (step 1). Training subset TRt is 
drawn according to Dt (step 2) and the BaseClassifier is 
trained on TRt. A hypothesis ht is generated, whose error t,
is computed on the entire database Sk as the sum of the dis-
tribution weights of the misclassified instances (step 3). 

We require that the error t be less than ½ to ensure that a 
minimum reasonable performance can be expected from ht.
If t < 0.5, ht is accepted and the error is normalized to ob-
tain the normalized error. If t  0.5 then the current hy-
pothesis is discarded, and a new training subset is selected 
(return to step 2). All t hypotheses generated thus far are 
then combined using a voting scheme to obtain the ensemble 
decision, called the composite hypothesis Ht (step 4).  

In the voting scheme used by Learn++, each hypothesis is 
assigned a weight inversely proportional to its normalized 
error. Hypotheses with smaller training error, indicating bet-
ter performance, are given higher voting weights and thus 
have more say in the final decision. The error of the com-

posite hypothesis Ht is then computed in a similar fashion 
(step 5) as the sum of the distribution weights of the in-
stances misclassified by Ht. The normalized composite error 
Bt is obtained in step 6, which is then used for updating the 
distribution weights assigned to individual instances.  

Equation (6) indicates that the distribution weights of the 
instances correctly classified by the composite hypothesis Ht

are reduced by a factor of Bt<1. Effectively, this increases 
the weights of the misclassified instances making them more 
likely to be selected to the training subset of the next itera-
tion. We note that this weight update rule, based on the per-
formance of the current ensemble, facilitates incremental 
learning: when a new dataset is introduced, the existing en-
semble is bound to misclassify instances carrying previously 
unlearned knowledge. The weights of these instances are 
therefore increased, forcing the algorithm to focus on learn-
ing novel information introduced by the new data.  

For data fusion applications, voting weights for each en-
semble are adjusted before final voting, based on expected 
or observed training performance of each data source: if re-
liable prior information is available about the individual fea-
ture set (e.g., we may know that Pz data are more reliable 
then Cz data), a higher weight can be given to classifiers 
trained with that feature set, otherwise, the adjustment can 
be based on the training performance of the ensemble on 
that feature set. If such a strategy is chosen, the weight of 
each classifier would be multiplied by the adjustment factor 
of the feature set to which it belongs. This adjusted weight is 
then used during the voting for the final hypothesis Hfinal

1  : ( )

1( ) arg max log
t

K

final
t ky Y k t h

H
x y

x              (7)     

where, k is the adjustment factor assigned to the ensemble 
trained on the kth feature set. In this study, k was chosen as 
the misclassification ratio of the last Ht on Sk:

, 1, ,
kk T i i k ki H y m i mx      (8) 

with evaluating to 1, if the predicate holds true. 

III. RESULTS

We have used data from three channels, Pz, Fz and Cz to 
be fused by Learn++. Initial results indicated that the Fz 
electrode (frontal region, furthest away from the parietal re-
gion), did not provide any performance improvement, and 
hence was later removed from analysis. The features were 
four DWT coefficients from each electrode (Cz and Pz), 
corresponding to the frequency band of 2 ~ 4 Hz and time 
interval of 100 ~ 500 ms after stimulus, where the P300 is 
known to reside.  A multilayer perceptron (MLP) type net-
work with an error goal of 0.001 and 50 hidden layer nodes 
was used as the BaseClassifier in Learn++. 7 classifiers 
were generated for each ensemble. Leave-one-out cross 
validation was used to estimate the true generalization per-
formance of the algorithm, each of which was repeated 40 
times and averaged in order to draw statistical conclusions 
about the effectiveness of data fusion.  

Fig. 2 provides average classification performance over 40 
trials, along with their respective 95% confidence intervals 
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Fig. 2. Comparison of overall generalization performances 
obtained by using (from bottom to top): the Cz node alone, 
the Pz node alone, data fusion (DF) of Cz and Pz using 
Learn++, a single MLP trained on the concatenated features 
of Cz and Pz,  and an ensemble of 7 classifiers trained on 
the concatenated features (ENS). Several observations can 
me made from Figure 2: the Pz channel provided better di-
agnostic performance then Cz, as expected, but the differ-
ence is not significant at 95% confidence. The data fusion 
performance however, is better then each, and the non-
overlapping confidence intervals of data fusion performance 
over others indicate that the improvement is statistically sig-
nificant. Also, neither a single MLP, nor an ensemble, 
trained with concatenated Cz and Pz data performs well, in-
dicating that concatenation is not a good data fusion ap-
proach.  The sensitivity (SN), specificity (SP), positive pre-
dictive value (PPV) and the negative predictive value (NPV) 
for the diagnosis using data fusion are provided in Table 1. 

TABLE 1: DATA FUSION DIAGNOSTIC PERFORMANCE
 Mean 95% Confidence interval width 

SN 79.5% ±1.6% 
SP 89.9% ±0.6% 

PPV 85.5% ±0.7% 
NPV 85.5% ±0.9% 

 Similar to the classification performance, the sensitivity, 
specificity, positive predictive value and negative predictive 
for Learn++ based data fusion were all found to be better 
(with statistical significance at 95% confidence) than those 
obtained with the individual Cz and Pz channels alone, or ei-
ther of the concatenation based fusion (MLP and ENS). 
These results are not shown here for space considerations.  

IV. DISCUSSIONS & CONCLUSIONS

Based on the results presented above, we make the follow-
ing observations: (i) using wavelet analysis to extract fea-
tures of the ERPs, followed by Learn++ based data fusion 
appears to be an effective tool for early diagnosis of AD. 
The approach is non-invasive, cost-effective, can be made 
readily available to community clinics, since EEG recording 
technology is well established and widely available; (ii) the 
approach seems to meet or exceed the current performances 
of community based clinical evaluations; (iii) the data fusion 
performance is significantly better than the individual elec-
trodes and other classification schemes, in terms of perform-
ance, sensitivity, specificity, positive predictive value and 

negative predictive value; indicating that Cz electrode does 
carry complementary information; (iv) unlike Learn++ 
based data fusion, concatenation of features on their own is 
not effective for data fusion; (v) we have also tried several 
BaseClassifier architectures and error goals, and Learn++ is 
quite invariant to minor changes in these parameters. There-
fore the approach is expected to be a stable and effective 
one, once the remaining patients are recruited and their sig-
nals are integrated into the knowledge base of the algorithm.  
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