
Moving Speech Recognition from Software to Silicon: the In Silico Vox Project

Edward C. Lin, Kai Yu, Rob A. Rutenbar, and Tsuhan Chen

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh PA 15213, USA

{eclin,kaiy,rutenbar,tsuhan}@ece.cmu.edu

Abstract
To achieve much faster decoding, or much lower power
consumption, we need to liberate speech recognition from the
artificial constraints of its current software-only form, and move
the essential computations directly into silicon. There are vast
efficiencies waiting to be unlocked in this application – we need
the proper architecture to do so. We report results from a first-
generation hardware architecture simulated at bit-level, and a
complete, working FPGA-based prototype. Simulation results
show that rather modest hardware designs, running 10-20X
slower than conventional processors, can already decode at 0.6
xRT, running the standard 5K Wall Street Journal benchmark.

Index Terms: speech recognition, hardware, silicon, SPHINX,
FPGA, In Silico Vox.

1. Introduction
Today’s best speech recognizers are all implemented in
software, and require a high-end processor and large memory
subsystem to achieve real-time decoding. Improving accuracy
or decoding speed cannot be achieved without compromising
the other. New applications looming on the horizon only
exacerbate this problem. For example, applications that search
large media streams could easily make use of recognizers
running 100-1000X faster than current recognizers. Mobile
platforms such as cell phones could easily benefit from a
reliable voice dictation capability, but have power budgets on
the order of 0.1W to accommodate this. A typical general-
purpose processor consumes from 10-100W. Although we
might hold out hope for better algorithms and tighter
implementations, we simply do not see the two to three orders
of magnitude improvements in speed, or in energy efficiency,
coming from yet more software tweaks.

Thus, we believe it is time to take a serious look at moving
speech recognition from software into silicon. We already have
one compelling historical precedent: graphics hardware. We
simply do not paint pixels in software in any modern computing
device: the software solution is too slow, and too power
inefficient. Similarly, studies in the DSP community show that
custom silicon can be from 100-10,000X more power efficient
(computations per unit of power dissipated) than software-
programmable solutions [1]. Custom silicon can tailor arithmetic
precision to match the demands of the application, deploy as much
or as little parallelism as the task warrants, and optimize memory
to meet very specific bandwidth needs. A general purpose
processor, on the other hand, cannot.

Of course, we are the not the first to consider hardware-based
recognizers. There are several earlier efforts [2,3]. However,

many were based on algorithms we would today regard as rather
primitive. There are also more recent efforts [4,5,6], but these
target either low-end applications (e.g., a 30 word vocabulary in
[6]), or fail to accelerate other than a few kernels in the overall
flow [4], ignoring the complexities inherent in tackling the entire
problem.

The In Silico Vox project at Carnegie Mellon is working to
design a complete, high-end recognizer in silicon, and understand
the difficulties inherent for both very fast, and very low power
applications. We employ the CMU Sphinx 3.0 recognizer as our
“reference” design. We report our first “hardware-centric” results
herein. The paper is organized as follows. Section 2 offers a new,
detailed analysis of the hardware requirements of SPHINX 3.0 [7].
Section 3 summarizes our architecture for fast recognition (we do
not consider power issues in this paper). Section 4 describes two
sets of experimental results, from a very detailed cycle-accurate
simulation of our design, and from a working FPGA-based
prototype of our current design. Section 5 offers concluding
remarks.

2. Characterizing SPHINX 3.0 for Hardware
Since our goal is to move from software to silicon, we need first
to answer two questions: (1) which software, and (2) where
does this software spend its execution time, i.e., what are the
challenges? To answer the first question, we choose as a
reference model CMU’s SPHINX 3.0, a well-known recognizer
that uses fully continuous Hidden Markov models (HMM) and
flat lexical decoding. Although more recent versions exist, they
have sacrificed accuracy for decoding speed, making them
unattractive, given our interest in deploying custom hardware to
avoid performance compromises.

While previous studies [4,8,9] have profiled various speech
recognizers, the recognizers used were less sophisticated and/or
less accurate. To perform this analysis we first used the Intel
VTune performance analyzer [10] to collect performance data

Frontend
(MFCC)

Scoring
(GMM)

Search
(Viterbi, n-gram)

GMM
25%

n-gram
27%

Other
Search

33%
Viterbi
15%

0%

Figure 1 SPHINX 3.0 execution time breakdown.

while the target program runs on a live processor (an Intel 1.6GHz
P4-M, 256 MB RAM). We ran the standard Broadcast News task
[11] with vocabulary size of 64K words.

VTune results (see Figure 1) show that roughly 75% of the
run-time is spent on search, and 25% on Gaussian mixture model
(GMM) scoring. The time spent in the acoustic frontend (from
voice to mel-frequency cepstral coefficient (MFCC) feature
vectors) is negligible. Thus, in this paper we will primarily focus
on GMM computation and search.

A closer look shows memory performance to be the limiting
factor, which is consistent with previous studies. Using the
SimpleScalar toolkit [12], we show that SPHINX 3.0 has a large
memory footprint and poor cache performance. We examine the
effects of changing the size of the first-level data cache (DL1) and
compare miss rates against the SPEC CPU 2000 benchmarks [13],
a set of common software benchmarks.

As shown in Figure 2, with the same cache configuration
SPHINX 3.0 has a significantly worse DL1 cache miss rate than
the average miss rate of the SPEC benchmarks. This can be
explained by looking at the speech algorithm. During GMM
scoring, constants are continuously streamed in from memory
without any reuse in a frame. During backend search, data needed
for active HMMs (live phone HMMs) comprises the bulk of the
memory accesses, and again there is very little reuse within each
frame. Given such access patterns, caching the data make little
sense unless all of the data can be stored. With a memory
footprint of beyond 65 MB, this is impossible.

While the majority of the memory accesses have no temporal
locality, there are still some data that could benefit from being
cached. Figure 2 shows that when the DL1 cache size is increased
from 16 KB to 32 KB, the miss rate dramatically falls. We
attribute this to caching of tied-state probabilities. Updating active
HMM state probabilities requires constantly accessing the tied-
state probabilities, so 20 KB (5156 tied-states @ 4 bytes per
probability) could be devoted to keeping a frames worth of values
readily available. This behavior in DL1 miss rate is present in all
the language models we tested.

To determine other important factors related to performance
besides memory, we removed memory-related bottlenecks by
configuring SimpleScalar to have caches of effectively infinite
size, and single cycle latency. Under the new “idealized”
conditions, we found that the new performance bottlenecks to be:
(1) the number of instructions decoded per cycle and (2) the
number of functional units for arithmetic. By doubling the number
of instructions fetched and decoded, doubling the number of

integer units and quadrupling the number of floating-point units,
we decreased the run-time by 30%.

These preliminary results show the limitations of using a
general processor, and the potential of a custom hardware design.
Custom hardware can achieve fine-grained control over memory
accesses without the overhead general processors carry. Also,
artificial constraints that limit the amount of parallelism exploited,
can be eliminated. There seem to be vast efficiencies waiting to
be unlocked in this application – we need the right architecture to
exploit it.

3. A First-Generation Hardware Architecture
For expediency, we chose a simple set of initial performance
goals for our hardware: achieve a decoding rate of roughly
0.5xRT for the 5K word Wall Street Journal task [11], using the
fewest hardware resources, running at the slowest possible clock
speed. We use decoding speed (xRT) and word error rate
(WER) as performance metrics. Given limitations of the space,
and the fact that Figure 1 clearly shows that the acoustic
frontend is of negligible complexity, we focus here on the
scoring and backend search tasks.

3.1. Functional Modifications

Functional modifications change the original SPHINX 3.0
algorithm, so they can potentially affect the WER. Only
functional modifications that negligibly affected the WER were
considered. We briefly survey these in this subsection.

Custom Bit-widths: Custom hardware allows for custom bit-
widths, replacing the 32-bit floating-point numbers used
throughout the frontend and GMMs with values using fewer bits.
Reducing the bit-width reduces the chip area and size of memory
required to store the GMM constants. When compared to the
original software GMM implementation, this change did not affect
the WER, but reduced the average bitwidth by 33%, and
decreased memory required to store the GMM constants by 50%.

Log Lookup Table: To compute the log probability of each
tied-state in software, the log probability of each GMM mixture is
computed, and then summed with the help of a ~100,000 element
lookup table. Storing this large lookup table on-chip would be
very expensive in hardware, so instead we replace this with a
more complex interpolation using four third-order polynomials. At
the logic gate level, replacing simple lookup and linear
interpolation with complex nonlinear interpolation is significantly
more area efficient and does not affect the WER.

Pruning Threshold: The final major functional change is how
the pruning threshold per frame is determined. SPHINX 3.0 first
updates the state probabilities of all the active HMMs, determines
the pruning threshold based on the highest probability present in
the frame, and then prunes the active HMMs. This requires
passing through the active HMMs twice, which practically
doubles the memory accesses and hurts performance
proportionally. This algorithm also prevents any transition
computations from occurring until after the second pass occurs,
which reduces the effective parallelism. To avoid both
bottlenecks, we use the best score from the previous frame to
determine the pruning threshold. This means an active HMM can
immediately be pruned or transitioned after updating all its state
probabilities. It also allows for different active HMMs to be doing
computation in different stages simultaneously. This method can
potentially decrease the number of active HMMs per frame, but Figure 2: Miss Rate vs DL1 Cache Size

through simulation we show there is a negligible increase in WER
from 6.707 to 6.725%.

3.2. Structural Modifications

Structural modifications improve hardware performance
without affecting the original SPHINX 3.0 algorithm. Most of
our present optimization work has been on the backend search
stage (e.g., Viterbi search, HMMs, n-gram language model; see
Figure 3). In the diagram, square shaded boxes represent
memory and all other boxes represent custom logic. We survey
the critical structural optimizations here.

Active HMM Storage: In SPHINX 3.0, an HMM requires 40
to 52 bytes of storage, but we compressed this to 28 to 36 bytes
without affecting functionality. The active HMMs are also stored
consecutively in memory as a queue instead of using linked data
structures, which allows for more much regular memory accesses.

Cross-word Transitions: Cross-word transitions normally
require fetching the first HMM of the word being transitioned to,
and possibly updating the probability of the first state of the first
HMM. However, with memory accesses being our major
bottleneck, we tried to eliminate this memory access by storing
the all cross-word probabilities in an on-chip memory called the
Patch List (see Figure 3). Thus, all cross-word transitions are only
compared to the value stored in the on-chip memory, and at the
end of every frame the memory stores the most likely cross-word
transition per word.

Caching: Our analysis in Section 2 showed that having tied-
state probabilities readily available is important for performance,
so we have an on-chip memory devoted to it. We also devote an
on-chip memory to recently accessed language model
probabilities. We found that if an n-gram data structure is accessed
once in a frame, then it is likely to be reused, so we created a tiny
direct-mapped 64 byte cache to store recent language model
probabilities.

Pipelining: In the scoring stage, GMM mixture computation
is pipelined such that Gaussian probabilities in 6 different
dimensions are being computed concurrently. Pipelining not only
allows for high data throughput, but also increases the maximum
clock frequency at which the design can run. If the data in DRAM
can be fetched faster than consumed by a single GMM unit,
multiple GMM units can be used to compute separate mixtures in
the same frame. Conversely, if the DRAM data cannot be fetched

fast enough, multiple GMM units can be used for the same GMM
mixture over different frames.

Similarly, in the search phase, we pipeline the decoding
process by breaking the stages down according to Figure 4. The
Fetch HMM and Viterbi stages are further pipelined. Because
each active HMM entry is large, as its data streams in during a
fetch, it can be sent to the Viterbi stage for computation. In (a),
when an active word with a single active HMM reaches the Fetch
HMM/Viterbi stage, the next active word can be fetched. In (b),
an active word, active HMM can be performing the cross word
transition computation in the n-gram language model, while the
next active word is worked on. Active HMMs can continue to
decode while the language model is in use, until another active
HMM requires the language model at which a stall will occur.

4. Experimental Results
Because designing real silicon is both arduous and expensive,
conventional methodology is to build a sequence of detailed
simulation and emulation prototypes first. We describe our
experience and results with both, in this section.

4.1. Cycle-Accurate Hardware Simulator

To determine both the correctness and effectiveness of a
proposed hardware solution, one conventionally implements a
high-fidelity model as a software simulator. We need two
properties in this simulator: cycle accurate and bit-true. This
means that after every clock tick, all internal state elements of
the hardware have exactly the right data values – down to the
very last bit – when compared with a “correct” reference model.
Our simulator, implemented in C++, achieves this. Although it
is common to complain about the CPU demands of
tuning/debugging a high-end recognizer, we note that the
problem is vastly exacerbated when the recognizer is being
simulated at bit-level. It was common for ~2 seconds of speech
to require 3-4 CPU days to simulate.

To estimate the decoding speed of the proposed architecture,
we assume a clock frequency of 125 MHz and created a memory
model for a commercial synchronous (SDRAM) memory. Both
chip and memory clock frequencies are conservative.

Assuming a hardware design with two DRAM ports, one
devoted to scoring and the other to search, scoring and search can
be performed simultaneously. Thus, we estimate that this
hardware design can decode at 0.6xRT. These are untuned results

time

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
Prune

Language Model

Fetch Word Language Model

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
Prune

(a)

(b)

time

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
Prune

Language Model

Fetch Word Language Model

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
PruneFetch Word

Fetch HMM/
Viterbi

Transition/
Prune

(a)

(b)
Figure 4: Pipelines for (a) Fetch Word-Fetch

HMM/Viterbi and (b) Language model and
 Fetch HMM/Viterbi-Transition

Active
Word

Queue

Active
HMM

Queue
Patch
Word
List

Patch
Entry
List

Merge sort

Viterbi

Transition/Prune

Language Model

Senone
Data

N-gram
Data

Cache

Last Phone
Info

Word
Info

Word
Lattice

Within Word
Phone Info

Right
Context
Scores

Next Frame
Patch
Word
List

Next
Frame
Patch
Entry
List

Active
Word

Queue

Active
HMM

Queue
Patch
Word
List

Patch
Entry
List

Merge sort

Viterbi

Transition/Prune

Language Model

Senone
Data

N-gram
Data

Cache

Last Phone
Info

Word
Info

Word
Lattice

Within Word
Phone Info

Right
Context
Scores

Next Frame
Patch
Word
List

Next
Frame
Patch
Entry
List

Figure 3: Search Stage Block Diagram

with conservative timing models; we believe we can do much
better than this.

Table 1 shows accuracy comparisons between our recognizer
– running in simulation – and several software versions of
SPHINX running on fast and slow Intel Pentiums. As can be seen,
our WER is competitive, our hardware is roughly 3 times faster
than the fast Pentium, and can run at a clock rate ~8 - 20X slower
than the processors. One can create a crude Figure of Merit
(FOM—smaller is better) for efficiency by multiplying clock rate
(GHz) by the decoder speedup (xRT). Using this metric, our
recognizer is ~10-60 times more efficient than software based
recognizers.

Table 1: Comparing Software and (Simulated) Hardware

Recognizer
WER
(%)

Clock
(GHz)

Speed
(xRT) FOM

SPHINX 3.3
(fast decoder) 7.32 1.0 1.36 1.36

SPHINX 4
(single CPU) 6.97 1.0 1.22 1.22

SPHINX 4
(dual CPU) 6.97 1.0 0.96 0.96

SPHINX 3.0
(single CPU) 6.707 2.8 1.7 4.76

Hardware Model 6.725 0.125 0.60 0.075

4.2. FPGA-based Recognizer Prototype

To further validate our design, we ported it to a small Xilinx
field programmable gate array (FPGA). FPGAs implement
gate-level logic and interconnect in a convenient, rapidly
reconfigurable manner. While much less silicon-efficient than a
custom chip, they allow for rapid debugging at clock speeds
closer to custom silicon. In addition, the FPGA version – being
“real hardware” itself – offers yet another concrete datapoint
toward the credibility of our overall approach.

We re-implemented our design using the Verilog hardware
description language, and again verified we were cycle-accurate
and bit-true, frame-by-frame, over our entire several-minute data
set. We then synthesized the design to logic level for a Xilinx
Virtex-IIPro XC2VP30 FPGA, using a Xilinx XUP development
board. Because this chip is so small – only 200K equivalent logic
gates, only 2.44Mb of on-chip memory -- we used the 1K
Resource Management task [11] due to silicon resource
limitations. We also excised trigrams from the n-gram model,
again simply to fit the language model on this rather small
platform. The design supports an arbitrary n-gram model,
however, given more silicon resources.

This prototype design is currently completely functional on
this FPGA hardware. It consists of a live-mode acoustic frontend
module that converts microphone input to MFCC features, a
complete GMM scoring unit, and a full backend search, including
the Viterbi/HMM/n-gram computations with the word hypotheses
displaying on a VGA monitor.

With the DRAM interface running at 100MHz, and the
recognizer logic running at 50MHz, the recognizer decodes at
roughly 2xRT. Our current challenge is the very small size of this
FPGA, on which the implementation had to be significantly scaled
back to fit. Thus, we are now in the process of moving to a much
larger FPGA-based emulation platform, the Berkeley BEE engine
[14], which consists of 5 large FPGAs, roughly 5M equivalent

gates, and 20GB of available memory. We believe this will let us
move up to larger (50K+ word), and much faster recognizers.

5. Conclusions
We have argued that the time is ripe to migrate speech
recognition from software to hardware, to liberate it from the
artificial constraints on speed/power made by general purpose
CPUs. From detailed performance studies of the CMU
SPHINX 3.0 system, we proposed a first-generation hardware
architecture, developed fully detailed hardware models, and
successfully prototyped individual pieces of this design in
FPGA form. We are a long way from where we believe a
silicon-centric approach can take us, but preliminary results are
very promising.

Acknowledgements: This research was supported by the
Semiconductor Research Corp., the National Science
Foundation, and the MARCO/DARPA Focus Center for Circuit
& System Solutions (C2S2). The authors would like to thank
Richard Stern and Arthur Chan of CMU for their valuable
suggestions.

6. References
[1] Brodersen, R.W. “Low-Voltage Design for Portable Systems,”

Panel Session Presentation, International Symposium on Solid
State Circuits (ISSCC), Feb 2002.

[2] Stolzle, A. et al. "Integrated Circuits for a Real-Time Large-
Vocabulary Continuous Speech Recognition System," IEEE
Journal of Solid-State Circuits, vol. 26 no. 1, pp 2-11, Jan 1991.

[3] Hon, H. W. A Survery of Hardware Architectures Designed for
Speech Recognition. Technical Report CMU-CS-91-169, 1991.

[4] Mathew, B. Davis, A. and Fang, Z. “A Low-power Accelerator for
the SPHINX 3 Speech Recognition System”. In International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pg 210–219. ACM Press, 2003.

[5] Krishna, R. Mahlke, S. and Austin, T. “Architectural optimizations
for low-power, real-time speech recognition”. In International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 220–231. 2003.

[6] Nedevschi, S. Patra, R. and Brewer, E. “Hardware Speech
Recognition on Low-Cost and Low-Power Devices," Proc. Design
Automation Conference, 2005 .

[7] CMU Sphinx Open Source Speech Recognition Engines,
http://cmusphinx.sourceforge.net/html/cmusphinx.php.

[8] Krishna, R. Austin, T. and Mahlke, S. “Insights into the Memory
Demands of Speech Recognition Algorithms,” ACM/IEEE 2nd
Annual Workshop on Memory Performance Issues, May 2002.

[9] Agaram, K. Keckler, S.W. and Burger, D.C. "Characterizing the
SPHINX Speech Recognition System," IBM Austin Center for
Advanced Studies Workshop, January, 2001

[10] Intel Vtune Performance Analyzer Homepage.
http://developer.intel.com/software/products/vtune/.

[11] Pallett, D., “A Look at NIST’s Benchmark ASR Tests: Past,
Present, and Future”, Proc 2003 IEEE Workshop on Automatic
Speech Recognition and Understanding.

[12] Burger, D. and Austin, T. “The Simplescalar tool set version 2.0.”
Technical Report 1342, Dept of CS, UW, Madison, WI, Jun 1997.

[13] Cantin, J. and Hill, M. “Cache Performance for Selected SPEC
CPU2000 Benchmarks”, Computer Architecture News, Sept 2001.

[14] Chang, C. Wawrzynek, J. and Brodersen, R. W. "BEE2: A High-
End Reconfigurable Computing System," IEEE Design and Test of
Computers, 22(2):114--125, Mar/Apr 2005.

