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Abstract 
To achieve much faster decoding, or much lower power 
consumption, we need to liberate speech recognition from the 
artificial constraints of its current software-only form, and move 
the essential computations directly into silicon. There are vast 
efficiencies waiting to be unlocked in this application – we need 
the proper architecture to do so. We report results from a first-
generation hardware architecture simulated at bit-level, and a 
complete, working FPGA-based prototype. Simulation results 
show that rather modest hardware designs, running 10-20X 
slower than conventional processors, can already decode at 0.6 
xRT, running the standard 5K Wall Street Journal benchmark. 
   
Index Terms: speech recognition, hardware, silicon, SPHINX, 
FPGA, In Silico Vox. 

1. Introduction 
Today’s best speech recognizers are all implemented in 
software, and require a high-end processor and large memory 
subsystem to achieve real-time decoding. Improving accuracy 
or decoding speed cannot be achieved without compromising 
the other. New applications looming on the horizon only 
exacerbate this problem. For example, applications that search 
large media streams could easily make use of recognizers 
running 100-1000X faster than current recognizers. Mobile 
platforms such as cell phones could easily benefit from a 
reliable voice dictation capability, but have power budgets on 
the order of 0.1W to accommodate this. A typical general-
purpose processor consumes from 10-100W. Although we 
might hold out hope for better algorithms and tighter 
implementations, we simply do not see the two to three orders 
of magnitude improvements in speed, or in energy efficiency, 
coming from yet more software tweaks. 

Thus, we believe it is time to take a serious look at moving 
speech recognition from software into silicon. We already have 
one compelling historical precedent: graphics hardware. We 
simply do not paint pixels in software in any modern computing 
device: the software solution is too slow, and too power 
inefficient. Similarly, studies in the DSP community show that 
custom silicon can be from 100-10,000X more power efficient 
(computations per unit of power dissipated) than software-
programmable solutions [1]. Custom silicon can tailor arithmetic 
precision to match the demands of the application, deploy as much 
or as little parallelism as the task warrants, and optimize memory 
to meet very specific bandwidth needs. A general purpose 
processor, on the other hand, cannot.   

Of course, we are the not the first to consider hardware-based 
recognizers. There are several earlier efforts [2,3].  However, 

many were based on algorithms we would today regard as rather 
primitive. There are also more recent efforts [4,5,6], but these 
target either low-end applications (e.g., a 30 word vocabulary in 
[6]), or fail to accelerate other than a few kernels in the overall 
flow [4], ignoring the complexities inherent in tackling the entire 
problem. 

The In Silico Vox project at Carnegie Mellon is working to 
design a complete, high-end recognizer in silicon, and understand 
the difficulties inherent for both very fast, and very low power 
applications. We employ the CMU Sphinx 3.0 recognizer as our 
“reference” design. We report our first “hardware-centric” results 
herein. The paper is organized as follows. Section 2 offers a new, 
detailed analysis of the hardware requirements of SPHINX 3.0 [7]. 
Section 3 summarizes our architecture for fast recognition (we do 
not consider power issues in this paper). Section 4 describes two 
sets of experimental results, from a very detailed cycle-accurate 
simulation of our design, and from a working FPGA-based 
prototype of our current design. Section 5 offers concluding 
remarks.  

2. Characterizing SPHINX 3.0 for Hardware 
Since our goal is to move from software to silicon, we need first 
to answer two questions:  (1) which software, and (2) where 
does this software spend its execution time, i.e., what are the 
challenges?  To answer the first question, we choose as a 
reference model CMU’s SPHINX 3.0, a well-known recognizer 
that uses fully continuous Hidden Markov models (HMM) and 
flat lexical decoding. Although more recent versions exist, they 
have sacrificed accuracy for decoding speed, making them 
unattractive, given our interest in deploying custom hardware to 
avoid performance compromises.  

While previous studies [4,8,9] have profiled various speech 
recognizers, the recognizers used were less sophisticated and/or 
less accurate. To perform this analysis we first used the Intel 
VTune performance analyzer [10] to collect performance data 
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Figure 1 SPHINX 3.0 execution time breakdown. 



while the target program runs on a live processor (an Intel 1.6GHz 
P4-M, 256 MB RAM). We ran the standard Broadcast News task 
[11] with vocabulary size of 64K words. 

VTune results (see Figure 1) show that roughly 75% of the 
run-time is spent on search, and 25% on Gaussian mixture model 
(GMM) scoring. The time spent in the acoustic frontend (from 
voice to mel-frequency cepstral coefficient (MFCC) feature 
vectors) is negligible. Thus, in this paper we will primarily focus 
on GMM computation and search. 

A closer look shows memory performance to be the limiting 
factor, which is consistent with previous studies. Using the 
SimpleScalar toolkit [12], we show that SPHINX 3.0 has a large 
memory footprint and poor cache performance. We examine the 
effects of changing the size of the first-level data cache (DL1) and 
compare miss rates against the SPEC CPU 2000 benchmarks [13], 
a set of common software benchmarks.  

As shown in Figure 2, with the same cache configuration 
SPHINX 3.0 has a significantly worse DL1 cache miss rate than 
the average miss rate of the SPEC benchmarks. This can be 
explained by looking at the speech algorithm. During GMM 
scoring, constants are continuously streamed in from memory 
without any reuse in a frame. During backend search, data needed 
for active HMMs (live phone HMMs) comprises the bulk of the 
memory accesses, and again there is very little reuse within each 
frame.  Given such access patterns, caching the data make little 
sense unless all of the data can be stored. With a memory 
footprint of beyond 65 MB, this is impossible. 

While the majority of the memory accesses have no temporal 
locality, there are still some data that could benefit from being 
cached. Figure 2 shows that when the DL1 cache size is increased 
from 16 KB to 32 KB, the miss rate dramatically falls. We 
attribute this to caching of tied-state probabilities. Updating active 
HMM state probabilities requires constantly accessing the tied-
state probabilities, so 20 KB (5156 tied-states @ 4 bytes per 
probability) could be devoted to keeping a frames worth of values 
readily available. This behavior in DL1 miss rate is present in all 
the language models we tested. 

To determine other important factors related to performance 
besides memory, we removed memory-related bottlenecks by 
configuring SimpleScalar to have caches of effectively infinite 
size, and single cycle latency. Under the new “idealized” 
conditions, we found that the new performance bottlenecks to be: 
(1) the number of instructions decoded per cycle and (2) the 
number of functional units for arithmetic. By doubling the number 
of instructions fetched and decoded, doubling the number of 

integer units and quadrupling the number of floating-point units, 
we decreased the run-time by 30%.   

These preliminary results show the limitations of using a 
general processor, and the potential of a custom hardware design. 
Custom hardware can achieve fine-grained control over memory 
accesses without the overhead general processors carry. Also, 
artificial constraints that limit the amount of parallelism exploited, 
can be eliminated.  There seem to be vast efficiencies waiting to 
be unlocked in this application – we need the right architecture to 
exploit it. 

3. A First-Generation Hardware Architecture 
For expediency, we chose a simple set of initial performance 
goals for our hardware: achieve a decoding rate of roughly 
0.5xRT for the 5K word Wall Street Journal task [11], using the 
fewest hardware resources, running at the slowest possible clock 
speed. We use decoding speed (xRT) and word error rate 
(WER) as performance metrics. Given limitations of the space, 
and the fact that Figure 1 clearly shows that the acoustic 
frontend is of negligible complexity, we focus here on the 
scoring and backend search tasks.  

3.1. Functional Modifications 

Functional modifications change the original SPHINX 3.0 
algorithm, so they can potentially affect the WER. Only 
functional modifications that negligibly affected the WER were 
considered. We briefly survey these in this subsection. 

Custom Bit-widths: Custom hardware allows for custom bit-
widths, replacing the 32-bit floating-point numbers used 
throughout the frontend and GMMs with values using fewer bits. 
Reducing the bit-width reduces the chip area and size of memory 
required to store the GMM constants. When compared to the 
original software GMM implementation, this change did not affect 
the WER, but reduced the average bitwidth by 33%, and 
decreased memory required to store the GMM constants by 50%. 

Log Lookup Table: To compute the log probability of each 
tied-state in software, the log probability of each GMM mixture is 
computed, and then summed with the help of a ~100,000 element 
lookup table. Storing this large lookup table on-chip would be 
very expensive in hardware, so instead we replace this with a 
more complex interpolation using four third-order polynomials. At 
the logic gate level, replacing simple lookup and linear 
interpolation with complex nonlinear interpolation is significantly 
more area efficient and does not affect the WER. 

Pruning Threshold: The final major functional change is how 
the pruning threshold per frame is determined. SPHINX 3.0 first 
updates the state probabilities of all the active HMMs, determines 
the pruning threshold based on the highest probability present in 
the frame, and then prunes the active HMMs. This requires 
passing through the active HMMs twice, which practically 
doubles the memory accesses and hurts performance 
proportionally. This algorithm also prevents any transition 
computations from occurring until after the second pass occurs, 
which reduces the effective parallelism. To avoid both 
bottlenecks, we use the best score from the previous frame to 
determine the pruning threshold. This means an active HMM can 
immediately be pruned or transitioned after updating all its state 
probabilities. It also allows for different active HMMs to be doing 
computation in different stages simultaneously. This method can 
potentially decrease the number of active HMMs per frame, but Figure 2: Miss Rate vs DL1 Cache Size 



through simulation we show there is a negligible increase in WER 
from 6.707 to 6.725%. 

 

3.2. Structural Modifications 

Structural modifications improve hardware performance 
without affecting the original SPHINX 3.0 algorithm. Most of 
our present optimization work has been on the backend search 
stage (e.g., Viterbi search, HMMs, n-gram language model; see 
Figure 3).  In the diagram, square shaded boxes represent 
memory and all other boxes represent custom logic. We survey 
the critical structural optimizations here. 

Active HMM Storage: In SPHINX 3.0, an HMM requires 40 
to 52 bytes of storage, but we compressed this to 28 to 36 bytes 
without affecting functionality. The active HMMs are also stored 
consecutively in memory as a queue instead of using linked data 
structures, which allows for more much regular memory accesses. 

Cross-word Transitions: Cross-word transitions normally 
require fetching the first HMM of the word being transitioned to, 
and possibly updating the probability of the first state of the first 
HMM. However, with memory accesses being our major 
bottleneck, we tried to eliminate this memory access by storing 
the all cross-word probabilities in an on-chip memory called the 
Patch List (see Figure 3). Thus, all cross-word transitions are only 
compared to the value stored in the on-chip memory, and at the 
end of every frame the memory stores the most likely cross-word 
transition per word.  

Caching: Our analysis in Section 2 showed that having tied-
state probabilities readily available is important for performance, 
so we have an on-chip memory devoted to it. We also devote an 
on-chip memory to recently accessed language model 
probabilities. We found that if an n-gram data structure is accessed 
once in a frame, then it is likely to be reused, so we created a tiny 
direct-mapped 64 byte cache to store recent language model 
probabilities. 

Pipelining: In the scoring stage, GMM mixture computation 
is pipelined such that Gaussian probabilities in 6 different 
dimensions are being computed concurrently. Pipelining not only 
allows for high data throughput, but also increases the maximum 
clock frequency at which the design can run. If the data in DRAM 
can be fetched faster than consumed by a single GMM unit, 
multiple GMM units can be used to compute separate mixtures in 
the same frame. Conversely, if the DRAM data cannot be fetched 

fast enough, multiple GMM units can be used for the same GMM 
mixture over different frames. 

Similarly, in the search phase, we pipeline the decoding 
process by breaking the stages down according to Figure 4.  The 
Fetch HMM and Viterbi stages are further pipelined. Because 
each active HMM entry is large, as its data streams in during a 
fetch, it can be sent to the Viterbi stage for computation.  In (a), 
when an active word with a single active HMM reaches the Fetch 
HMM/Viterbi stage, the next active word can be fetched.  In (b), 
an active word, active HMM can be performing the cross word 
transition computation in the n-gram language model, while the 
next active word is worked on.  Active HMMs can continue to 
decode while the language model is in use, until another active 
HMM requires the language model at which a stall will occur.    

4. Experimental Results  
Because designing real silicon is both arduous and expensive, 
conventional methodology is to build a sequence of detailed 
simulation and emulation prototypes first.  We describe our 
experience and results with both, in this section. 

4.1. Cycle-Accurate Hardware Simulator 

To determine both the correctness and effectiveness of a 
proposed hardware solution, one conventionally implements a 
high-fidelity model as a software simulator.  We need two 
properties in this simulator:  cycle accurate and bit-true.  This 
means that after every clock tick, all internal state elements of 
the hardware have exactly the right data values – down to the 
very last bit – when compared with a “correct” reference model.  
Our simulator, implemented in C++, achieves this. Although it 
is common to complain about the CPU demands of 
tuning/debugging a high-end recognizer, we note that the 
problem is vastly exacerbated when the recognizer is being 
simulated at bit-level. It was common for ~2 seconds of speech 
to require 3-4 CPU days to simulate. 

To estimate the decoding speed of the proposed architecture, 
we assume a clock frequency of 125 MHz and created a memory 
model for a commercial synchronous (SDRAM) memory. Both 
chip and memory clock frequencies are conservative. 

Assuming a hardware design with two DRAM ports, one 
devoted to scoring and the other to search, scoring and search can 
be performed simultaneously. Thus, we estimate that this 
hardware design can decode at 0.6xRT. These are untuned results 
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with conservative timing models; we believe we can do much 
better than this. 

Table 1 shows accuracy comparisons between our recognizer 
– running in simulation – and several software versions of 
SPHINX running on fast and slow Intel Pentiums. As can be seen, 
our WER is competitive, our hardware is roughly 3 times faster 
than the fast Pentium, and can run at a clock rate ~8 - 20X slower 
than the processors. One can create a crude Figure of Merit 
(FOM—smaller is better) for efficiency by multiplying clock rate 
(GHz) by the decoder speedup (xRT). Using this metric, our 
recognizer is ~10-60 times more efficient than software based 
recognizers. 

 
Table 1:  Comparing Software and (Simulated) Hardware 

Recognizer 
WER 
(%) 

Clock 
(GHz) 

Speed 
(xRT) FOM 

SPHINX 3.3  
(fast decoder) 7.32 1.0 1.36 1.36 

SPHINX 4 
(single CPU) 6.97 1.0 1.22 1.22 

SPHINX 4 
(dual CPU) 6.97 1.0 0.96 0.96 

SPHINX 3.0 
(single CPU) 6.707 2.8 1.7 4.76 

Hardware Model 6.725 0.125 0.60 0.075 

4.2. FPGA-based Recognizer Prototype 

To further validate our design, we ported it to a small Xilinx 
field programmable gate array (FPGA).  FPGAs implement 
gate-level logic and interconnect in a convenient, rapidly 
reconfigurable manner.  While much less silicon-efficient than a 
custom chip, they allow for rapid debugging at clock speeds 
closer to custom silicon.  In addition, the FPGA version – being 
“real hardware” itself – offers yet another concrete datapoint 
toward the credibility of our overall approach.   

We re-implemented our design using the Verilog hardware 
description language, and again verified we were cycle-accurate 
and bit-true, frame-by-frame, over our entire several-minute data 
set. We then synthesized the design to logic level for  a Xilinx 
Virtex-IIPro XC2VP30 FPGA, using a Xilinx XUP development 
board. Because this chip is so small – only 200K equivalent logic 
gates, only 2.44Mb of on-chip memory -- we used the 1K 
Resource Management task [11] due to silicon resource 
limitations. We also excised trigrams from the n-gram model, 
again simply to fit the language model on this rather small 
platform.  The design supports an arbitrary n-gram model, 
however, given more silicon resources. 

This prototype design is currently completely functional on 
this FPGA hardware.  It consists of a live-mode acoustic frontend 
module that converts microphone input to MFCC features, a 
complete GMM scoring unit, and a full backend search, including 
the Viterbi/HMM/n-gram computations with the word hypotheses 
displaying on a VGA monitor.   

With the DRAM interface running at 100MHz, and the 
recognizer logic running at 50MHz, the recognizer decodes at 
roughly 2xRT.  Our current challenge is the very small size of this 
FPGA, on which the implementation had to be significantly scaled 
back to fit.  Thus, we are now in the process of moving to a much 
larger FPGA-based emulation platform, the Berkeley BEE engine 
[14], which consists of 5 large FPGAs, roughly 5M equivalent 

gates, and 20GB of available memory.  We believe this will let us 
move up to larger (50K+ word), and much faster recognizers. 

5. Conclusions 
We have argued that the time is ripe to migrate speech 
recognition from software to hardware, to liberate it from the 
artificial constraints on speed/power made by general purpose 
CPUs.  From detailed performance studies of the CMU 
SPHINX 3.0 system, we proposed a first-generation hardware 
architecture, developed fully detailed hardware models, and 
successfully prototyped individual pieces of this design in 
FPGA form.  We are a long way from where we believe a 
silicon-centric approach can take us, but preliminary results are 
very promising.  
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