
A 1000-Word Vocabulary, Speaker-Independent,
Continuous Live-Mode Speech Recognizer Implemented in

a Single FPGA
Edward C. Lin, Kai Yu, Rob A. Rutenbar, Tsuhan Chen

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

{eclin, kaiy, rutenbar, tsuhan}@ece.cmu.edu

ABSTRACT
The Carnegie Mellon In Silico Vox project seeks to move best-
quality speech recognition technology from its current software-
only form into a range of efficient all-hardware implementations.
The central thesis is that, like graphics chips, the application is
simply too performance hungry, and too power sensitive, to stay
as a large software application. As a first step in this direction, we
describe the design and implementation of a fully functional
speech-to-text recognizer on a single Xilinx XUP platform. The
design recognizes a 1000 word vocabulary, is speaker-
independent, recognizes continuous (connected) speech, and is a
“live mode” engine, wherein recognition can start as soon as
speech input appears. To the best of our knowledge, this is the
most complex recognizer architecture ever fully committed to a
hardware-only form. The implementation is extraordinarily small,
and achieves the same accuracy as state-of-the-art software
recognizers, while running at a fraction of the clock speed.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Signal
processing

General Terms
Algorithms, Performance, Design

Keywords
Speech Recognition, FPGA, DSP, In Silico Vox

1. INTRODUCTION
Speech is an exceptionally attractive modality for human-
computer interaction: it is “hands free”; it requires only modest
hardware for acquisition (a high-quality microphone or
microphones); and it arrives at a very modest bit rate.
Recognizing human speech, especially continuous (connected)
speech, without burdensome training (speaker-independent), for a
vocabulary of sufficient complexity (60,000 words) is very hard.

There has been significant progress over the last few decades on
this important problem [1]. However, whether supporting
dictation on a desktop computer, or customer telephone input for
a commercial call center, or recognizing numbers and contacts in
a cell phone, all high-quality recognizers exist today as software
running on some CPU. We believe this is extraordinarily limiting
to ultimate performance, vastly inefficient in its use of silicon,
and in need of a paradigm shift. Like graphics chips over the last
decade, we believe that the application is simply too important,
too performance hungry, and too power sensitive, to stay as a
large software application.

Audio mining is one such performance-hungry application worth
mention. As video content increasingly goes on-line, there is a
growing need to search it. One natural indexing method is the
accompanying audio track. However, today’s indexing requires
text-based search of closed-captioning for these video sources.
What if we could, instead, directly search the voice data in video
streams? What if we could search at 10X, 100X, or 1000X faster
than real-time (i.e., faster than the rate at which the speech was
produced)? We do not believe tweaks to software versions of
today’s state-of-the-art recognizers, or the near-term roadmap for
processor improvements, will yield the multiple orders-of-
magnitude speedups we seek. At Carnegie Mellon, the In Silico
Vox project [2] is working to design and deploy a range of
hardware-only implementations of recognizers operating at these
performance levels.

Of course, a hardware-based recognizer is hardly a new idea.
However, prior efforts suffer from a range of serious flaws. There
are many small-vocabulary architectures, e.g. dynamic time-warp
strategies [3][4] that cannot scale to the large-vocabulary case we
target. Such approaches were abandoned by the speech
community at least a decade ago. Critical bottleneck steps in the
algorithms have been migrated to hardware coprocessor forms [5],
but suffer from serious Amdahl’s Law limitations to overall
improvement. Still other studies have proposed interesting multi-
processor architectures, but these either fail to demonstrate more
than cursory performance improvement [6], or fail to demonstrate
performance on other than trivial benchmarks [7]. A notable
exception is the complete VLSI-based recognizer built at
Berkeley in the early 1990s [8]. However, by the standards of a
2007 recognizer, its core recognition strategy is quite primitive.

As a first step toward a fully hardware-based recognizer, we
explore the problem of moving a modern recognition architecture
onto FPGA hardware. We describe in detail the architecture,
design and implementation of a complete speech recognizer in a
single FPGA. Our principal objective is to build a fully functional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002...$5.00.

recognizer entirely in custom hardware, and use this
implementation to understand the essential tradeoffs inherent in a
hardware-only solution. As a consequence, we choose not to
exploit any on-chip processor cores available on our FPGA. The
problem of how best to deploy custom logic alongside embedded
processor resources for speech recognition is an interesting one—
but it is not the problem we address in this paper. Our overriding
interest is to use the FPGA prototype to gain insight into the
complexity of a hardware solution; we believe our ultimate
platform will be a custom silicon recognizer.

We use the Xilinx XUP development board as our
implementation platform [9]; this has the twin advantages of
having integrated DRAM in sufficient quantity, and on-board
audio input. However, moving a modern recognizer onto the XUP
system proves to be a significant design challenge: our
implementation must fit in a footprint with substantially fewer
than 1M equivalent logic gates (i.e., roughly 1mm2 of silicon in a
modern CMOS ASIC process) and less than 1MB of on-chip
SRAM. Achieving a functional recognizer creates a challenging
set of size/performance tradeoffs. We target a 1000-word
command/control benchmark called Resource Management [10].
This is small by the standards of a dictation-class recognizer, but
has three desirable features: (1) it is widely used in the speech
recognition community; (2) it is vastly larger than most recent
hardware studies [7]; (3) it is the largest benchmark that fits on
the rather small XUP platform, but can still run live. An earlier
version of this work, with emphasis on its impact on the speech
recognition community, appears in [11]. The XUP result was first
mentioned in [12], but without details of the FPGA-based
architecture and implementation. In this paper, we offer those
details.

The paper is organized as follows. Section 2 reviews the theory
and algorithms of speech recognition, as embodied in the CMU
Sphinx 3.0 [13] software recognizer, which we adopt as our
reference model. Section 3 then profiles the performance of the
Sphinx 3.0 reference software. Section 4 describes the
components of our overall recognizer architecture. Section 5
describes the XUP-based FPGA prototype. Section 6 describes
experimental results: a fully functioning recognizer, running at
50MHz, capable of recognition at roughly 2.3X slower than real-
time. Finally, Section 7 offers concluding remarks.

2. ABOUT SPEECH RECOGNITION
Speech recognition is the conversion of spoken words to text. As
the first step toward rendering a state-of-the-art recognizer in
hardware form, we start with a software implementation as a
reference model, and dissect it. That reference platform for us is
the Sphinx 3.0 recognizer, a speaker-independent speech
recognition system which can handle continuous speech (no
pauses between words). The Sphinx 3.0 architecture (and indeed,
today the most common recognizer architecture) is depicted in
Figure 1.

First, analog speech input is sampled and digitized, then divided
into 10 ms blocks called frames. Next, in the acoustic frontend
stage, signal processing algorithms are applied to each frame to
generate a feature vector, which contains all the acoustic
information for the frame. After that, Gaussian mixture model
(GMM) scoring is performed to calculate the probabilities of all
the possible sounds that could have been pronounced. Finally,

these values are used by the backend search to find the most
probable word sequence. The following subsections will describe
each individual stage in more detail.

2.1 Acoustic Model
Speech recognition is built upon a layered model [1]. In the most
fundamental layer, acoustic information is used as the building
block for piecing together speech. In the English language, this
would be the approximately 50 differentiable sounds called
phonemes. When these phonemes are pronounced, the acoustic
realization, or phone, varies depending on the phone voiced
directly before and after it. To accurately depict this effect,
speech recognizers use triphones, phones in the context of the
preceding and succeeding phones, to build words. Triphones are
further divided into smaller sub-acoustic units, which are the
really the first and lowest layer of the speech recognition
hierarchy. Our implementation divides each triphone into three
sequential acoustic states, i.e, three atomic sounds that we must
try to recognize. Looking across all the data heard across all
speech training inputs, we cluster these into a smaller, more
manageable set of atomic sounds called senones. Thus, senones
combine to form triphones, and triphones combine to form words.

2.2 Hidden Markov Models
Hidden Markov Models (HMMs) [14] are the most common
method to represent speech at the acoustic level described above,
i.e., from microphone input, to senones, to triphones. This is in
part due to their ability to discriminate among a set of connected
sounds by using a probabilistic approach. HMMs are composed of
states and observations. States, like in Markov models, contain
transition probabilities to other states that only depend on the
current state. However, the state sequence is unknown, and only
through a series of observations can the most likely hidden
sequence of states be computed. To achieve this, each state must
also contain the probability of each observation (each atomic
sound) when within that state.

The following example will better illustrate the difference
between HMMs and Markov models. Consider a simple weather
system where it is either sunny or raining, and the probability of
carrying an umbrella in the two climates is already known. In a
standard Markov model, this system would be represented by two
states, sunny and raining, with transition probabilities between the
two states. Now consider a person who is interested in the
weather, but cannot directly observe the climate. Instead, this
person can only observe whether a daily visitor is carrying an
umbrella. This situation is best represented with a hidden Markov
model, or HMM, where the system looks like the Markov model
but the sunny and rainy states now carry the additional
information as to the probability of carrying an umbrella in that

Figure 1. Speech recognition decoding flow

climate. Now, based on a series of daily observations of whether
this visitor is carrying an umbrella or not, the most likely
sequence of daily climates can be computed.

But HMMs are just the representation of the connected sounds.
To determine the most likely state sequence, i.e., to determine
which set of heard atomic sounds is most likely what was uttered
by the speaker, the Viterbi search algorithm is used [15]. It is
time-synchronous, and for every time interval (10ms frame), it
steps through all the possible transitions. For each state, the
highest probability of reaching that state at the end of the time
interval is stored. To calculate the maximum probability of
reaching state j at time t:

Pt(j) = max[Pt-1(i)aij]bj(Ot) for all states that transition to j (1)
where aij is the transition probability from state i to state j, bj is
the observation probabilities of state j, and Ot is the observation at
time step t. To trace the most likely state sequence, each state
needs to additionally store the predecessor state that led to the
highest probability.

Although an exhaustive search guarantees the Viterbi algorithm
will find the most likely state sequence, it also causes the search
space to grow exponentially with each time step. To make the
search more manageable and complete within a reasonable
amount of time, at each time step the sequences with probabilities
below a certain threshold are pruned away. This algorithm is
called the Viterbi beam search, and the unpruned states are
referred to as active. Although this algorithm is now sub-optimal
and may prune away the most likely state sequence, the resulting
most likely state sequence may still be the same as the most likely
state sequence.

In our speech recognition implementation, 4-state HMMs are used
to represent triphones. The first three states represent senones
(atomic sounds we have heard during off-line training over a large
number of different speakers, i.e., the library of lowest level
acoustic units we can start matching/recognizing). The fourth and
final state is a null state used to tie the HMMs together into
words. Each word has its own HMM sequence, and the
observation (senone) probabilities are calculated by the GMM
scoring.

2.3 Language Model
One issue that the acoustic model cannot handle by itself is word
ambiguity. Word ambiguity can occur in several forms such as
homophones and word boundaries. With homophones, words are
indistinguishable to the ear, but are different in spelling and
meaning. The words “to”, “two”, and “too” are such examples. In
continuous speech, word boundaries can also be challenging. For
instance, the word “conundrum” can be misconstrued as “con nun
drum” if not correctly parsed. The use of a language model
resolves these issues by considering phrases and words that are
more likely to be uttered. When a transition occurs at the final
state of the last HMM of a word, the language model is used to
analyze possible following word candidates given the previous
word(s) that were believed to have been recognized. Likely word
candidates have their probabilities boosted. Because the memory
storage required grows exponentially with the number of previous
words taken into account, only single word, word pairs, and/or
word triples, commonly referred to as unigrams, bigrams and
trigrams, are considered in the language model.

2.4 Acoustic Frontend
The acoustic frontend takes each frame (each 10ms sample of live
speech) and distills the relevant acoustic information through a
series of signal processing operations. While there are several
methods to extract the acoustic data, the most popular form, mel
frequency cepstral coefficients (mfcc), will be explained here. Its
operations are based on the physiology of the human ear and
relatively straightforward to implement. To generate the mfcc
values per frame, a pre-emphasis filter is first used to boost the
energy in the high frequencies which contain important acoustic
information. A Hamming window and 512-point FFT are then
applied, and the power content of the frequencies, or spectrum, is
computed. A triangular filter bank designed to extract mel
frequencies is applied to simulate the spectral resolution of the
ear, and an inverse discrete cosine transform converts the data
back to the time domain and into the mfcc values.

To generate the acoustic feature vector, the mfcc values undergo
cepstral mean normalization, which average the mfcc values over
a certain time period. This helps reduce the effect of background
noise on the mfcc values, and the time period varies from the
entire speech sample (batch mode) to a subset of the preceding
frames (live mode). Since human hearing is also related to the
change velocity and acceleration of the mfcc values, the first and
second derivative of the normalized mfcc values are taken to
generate the acoustic feature vector.

2.5 GMM Scoring
GMM scoring assigns probabilities to each of the senones per
frame based on the acoustic feature vector. To achieve speaker-
independent decoding, variations in senone pronunciation (i.e., for
different voices, accents, genders, etc.) must be accommodated,
so senones are not represented by a single point but rather a
weighted sum of Gaussian probability density functions called a
Gaussian mixture model. To calculate the individual senone
probabilities, this equation is computed once per frame per
senone:

∑

Λ
= =

−

=
∑

t

k kj

kjkx
n

j j

j e
w

p 1
2
,

2
,

2

)(

1 22

σ

µ

π

 (2)

where n is the number of Gaussian mixtures per model, t is the
size of the acoustic feature vector, wj is the weight, Λj

2 is the
generalized variance, xk is an element from the feature vector, µj,k
the mean of the Gaussian pdf, and σj,k

2 the variance. Besides the
feature vector, all of the other values are pre-computed constants
derived from the training data. To prevent floating point
underflow problems when the senone probabilities are multiplied
together to find the most likely sequence of sounds, the
logarithms of the senone probabilities are calculated.

2.6 Backend Search
The backend search takes the senone probabilities per frame, and
finds the most likely sequence of words. To do this, it applies the
Viterbi algorithm to all the active states within an active HMM of
all the active word candidates. A particular set of complications
here is the fact that backend search is not the process of scoring
transitions within one single HMM. In addition to handling
transitions between atomic sounds (senones) in one triphone, we

must also handle transitions from one triphone to another, inside
one word (within-word transitions), and transitions from the
ending triphone of one word, to the beginning triphone of the
follow-on word (cross-word transitions). The three types of
transitions are illustrated in Figure 2. For the within-triphone and
within-word transitions, the possible transitions are limited by the
HMM structure and word pronunciation. For the cross-word
transitions, any transition between words is possible, so the
language model is applied to help recognition accuracy.

3. PROFILING THE SPHINX 3.0
REFERENCE ARCHITECTURE
Given the brief overview of the major components of a state-of-
the-art recognizer, the next obvious question is: Why is this
computationally so difficult? To answer this, we profiled Sphinx
3.0 to determine where it spends its time, and what potential gains
our FPGA implementation could exploit. While many speech
recognizers, including earlier versions of Sphinx, have been
profiled before [16][17], Sphinx 3.0 has significant differences
that lead to its high accuracy. For these experiments we used a
1000 word vocabulary Resource Management (RM) task
composed of military command and control phrases. The speech
model contained 8 Gaussians per GMM, a 39-dimensional feature
vector, 1000 unigrams, 2385 bigrams and no trigrams. On a 2.8
GHz Intel Xeon workstation with 1 GB of RAM, Sphinx 3.0 was
able to decode 3.7 times faster than real-time. As seen in Figure 3,
it spent 76% of the time on the GMM scoring stage, 24% of the
time on backend search, and a negligible amount of time on the
acoustic frontend. This is consistent with published results,
though GMM scoring made up an abnormally large amount of
execution time due to the small language model used.

To find what factors limit decoding speed, we used Simplescalar
[18] and modified parameters to see their effect on cycles
simulated. While the DL1 miss rate is small (5.40% for a 16 KB
cache with 16 byte blocks), this is due to the small size of the
language model. As the language model size increases, so does
the miss rate. For example, the miss rate increases to 24.41% for
the 60,000 word vocabulary Broadcast News task [10]. We found
that accessing data from memory had the largest effect, and if we
had perfect memory, where DRAM and caches all had single
cycle access, the cycles decreased by 36%. We also modified the
parameters to better match that of a custom hardware design to
get an estimate of how much improvement our design would
achieve. By reducing cache accesses to a single cycle, and

increasing the number of functional units and the number of
instructions fetched/decoded/issued, the cycles decreased by 34%.

Our results show that a custom hardware speech recognition can
achieve significant gains compared to a software one. It also
shows that since the acoustic frontend takes so little time, it
should be designed to minimize area, while the GMM scoring and
backend search should be designed to maximize decoding speed.
Finally, if we plan to extend this design to larger language
models, when designing the architecture we need to be aware that
there is little memory locality.

4. HARDWARE SPEECH RECOGNITION
For our FPGA-based speech recognition system, we settled on a
live-mode design running the 1000-word RM task. The target
platform was the Xilinx XUP development board with a Xilinx
Virtex-IIPro XC2VP30. The goal for our hardware recognizer is
to achieve a modest decoding speed (the XUP memory subsystem
is not fast enough for real-time), while using the fewest hardware
resources and running at the slowest possible clock speed. In this
section we discuss our approach to developing our architecture,
the datapath of our design, and the optimizations we made to our
hardware speech recognizer to increase performance. We use
decoding speed and word error rate (WER) as metrics to evaluate
speech recognition performance.

4.1 Cycle-Accurate Hardware Simulator
Because going directly to the FPGA is difficult and time
consuming, we followed a conventional system simulation
methodology before placing our design on the FPGA. To begin,
we developed a hardware simulator in C++ to prototype different
hardware designs and to converge on an optimal architecture. For
success, we needed to be able to guarantee that the simulator was
both cycle-accurate and bit-true. All internal state elements of the
hardware after every cycle must match the exact data value when
compared with a software reference model. Our simulator
maintains these characteristics. Of course, with software speech
recognition already a CPU-intensive task, simulating a hardware
recognizer at bit-level requires significantly more processing
power. It was common for several seconds of speech to require
several CPU days to simulate.

Frontend
(MFCC)

Scoring
 (Gaussian)

Search
 (Viterbi,n-gram)

Scoring
76%

Search
24%

Frontend
~0%

Figure 3. Timing breakdown of Sphinx 3.0 using

1000 Word Resource Management Task

Figure 2. Three types of transitions in HMMs

4.2 Architecture
After several revisions of our simulator, we established the
datapath to be implemented on the FPGA. The design has the
following attributes.

4.2.1 Acoustic Frontend
As determined from the profiling, decoding speed is not an issue
in this stage, so the focus was on minimizing resource usage.
Since the algorithm is sequential, the design attempts as much
resource sharing as possible. For example, the memories and
multipliers used for the FFT are reused in the later parts of
decoding. To save space, many of the constants for small
individual data structures were combined into a single dual-ported
block RAM (BRAM).

4.2.2 GMM Scoring
The GMM scoring algorithm is conceptually simple and
straightforward to implement. But because it is applied per
senone per frame, this stage turns out to consume a significant
amount of decoding time. GMM scoring is limited by the time it
takes to fetch the GMM constants from DRAM. If the GMMs are
computed per frame sequentially, the read memory bandwidth
required would be 143 MB/s. However, this is the worst case and
can be reduced by replicating the GMM scoring unit many times.
Each instance can compute senone scores independently of each
other while sharing the same constants read from main memory.
This way, if the GMM scoring unit is replicated N times, the
bandwidth required would also decrease by N times. For our

design, while it would have been beneficial to replicate the GMM
scoring unit, due to area constraints we were unable to. The final
architecture for the acoustic frontend and GMM scoring is
depicted in Figure 4.

4.2.3 Backend Search
The backend search data flow can be described as a finite state
machine as shown in Figure 5. Each state in the diagram
corresponds to a part of the hardware datapath shown in Figure 6.
We briefly describe each state and its corresponding role and
requirements in the backend search datapath.

• The Start Frame and Done states determine the beginning
and end of decoding. The Initialization state sets up the
initial values of data for each frame.

• The Fetch Active Word state retrieves word information for a
single active word stored in the Active Word Queue or the
newly entered word list from the cross-word transitions,
called the Patch List. The words are decoded alphabetically.

• Once a word is selected, active word HMMs are either
fetched from the Active HMM Queue or a new HMM is
activated when a new word is entered by the Patch List in
the Fetch Active HMM state.

• Next, each active HMM goes through the Viterbi scoring
state. While the Viterbi computation itself is not
computationally demanding, it does require several memory
lookups.

Figure 4. Acoustic Frontend and GMM Scoring

datapath

Initialize Frame

Fetch Active Word

Fetch Active HMM

Viterbi

Transition/Prune

Language
Model

Start Frame
Done

More phones in word active.

Done with current word.
Last phone of word not active or

does not transition. More words exist.

More active words exist in frame.

Current word
finished. Last
phone of word

transitions.

Score current HMM.
Check if score low or if
HMM makes transition.

No more frames.

Fetch first active
phone (HMM)

of Active Word.

Begin decoding.

No more active
words exist in frame.

Current word finished.
Last phone of word not

active or does not transition.
No more words in frame.

Fetch first active word

 Figure 5. Backend Search state machine

Figure 6. Backend Search datapath

R/W for Backend Search

0
1
2
3
4
5
6
7
8

FAW FAH
Vite

rbi

Trans
/P

run
e

LM

State

B
an

dw
id

th
 (M

B
/s

)

Write

Read

Figure 7. Backend Search bandwidth per state

• In the Transition/Prune state, an active HMM can make a
transition to the next phone, get pruned, and/or get written
back for the next frame.

• If an HMM makes a word transition, the Language Model is
used to determine possible words that can get generated. If a
word is deemed likely, it gets stored into the Patch list for the
next frame. Much like Viterbi, this state requires many
memory lookups.

The overall backend search requires ~23.3 MB/s of I/O, broken
down into ~15.4 MB/s of reads and ~7.9MB/s of writes. A
breakdown of I/O by states is shown in Figure 7. It is interesting
to note that the fetching and storing back of active HMMs and
accessing the language model dominate memory accesses.

4.3 Architectural Modifications
In this section we highlight different functional modifications
which set our hardware design apart from Sphinx 3.0, and
introduce structural modifications which use efficient hardware
methods to increase performance.

4.3.1 Functional Modifications
Custom Bit-widths: In the acoustic frontend and GMM scoring
stages of Sphinx 3.0, numbers are represented as 32-bit floats.
Through experimentation we found that these numbers do not
require such precision to achieve the same WER. By using
custom bit-widths, we reduce the required memory storage and
chip area of our design without sacrificing WER. On average the
modification reduces bit-widths by 33%, and decreases memory
required to store GMM constants by 50%.

Log Lookup Table: In the GMM scoring stage, the log probability
of each senone needs to be calculated. In software, this is
accomplished when the log probability of each GMM mixture is
computed, and then summed with the help of a ~100,000 element
lookup table. In hardware, storing this large lookup table on-chip
would be very costly. Thus, in its place we use a more complex
interpolation using four third-order polynomials. This equates to
replacing a large memory lookup table with extra logic gates
which proves to be more area efficient.

Pruning Threshold: Another major functional change we make is
how the pruning threshold per frame is determined. In Sphinx 3.0,
each frame begins by updating the state probabilities of all the
active HMMs. Then based on the highest probability state, the
pruning threshold is established. Next, they go through all the
active HMMs again to find active HMMs whose probabilities fall
below the threshold are pruned away. This approach requires
going through the active HMMs twice, which practically doubles
the memory accesses and hinders performance proportionally.
This algorithm also forces the transition computations to occur
after all the HMMs are updated, which reduces the effective
parallelism. We avoid these constraints by using the best score
from the previous frame to determine the pruning threshold. By
setting the threshold to be a function of the previous frame, active
HMMs can immediately be pruned or transitioned after updating
all its state probabilities, reducing memory bandwidth. The
modification also allows for different active HMMs to be doing
computation in different stages at the same time. This method can
potentially decrease the number of active HMMs per frame, but

through simulation we show there is a negligible increase in WER
from 10.88% to 10.95%.

4.3.2 Structural Modifications
Active HMM Storage: In Sphinx 3.0’s search stage, an HMM
requires 40 to 52 bytes of storage. We compressed this to 28 to
36 bytes without affecting functionality. We also modify how the
active HMMs are stored in memory. Instead of as linked data
structures in Sphinx, we store active HMMs consecutively in
memory as a queue. By replacing a random access memory
structure with a predictable one, we can retrieve data from
memory more effectively.

Cross-word Transitions: Normally when a cross-word transition
occurs it requires retrieving the first HMM of the word being
transitioned into, and possibly updating the probability of the first
state of the HMM according to the Viterbi algorithm. With a large
word candidate list which a given word can transition to, this can
be a very memory intensive operation. To eliminate this
bottleneck, we store all cross-word probabilities in an on-chip
memory called the Patch List. This approach filters off-chip
memory accesses, and quickly handles probability updates. As
stated in the previous subsection, the Patch List updates the
Active HMM list in the next frame.

Pipelining: We use pipelining throughout our design to increase
throughput and allow for a fast clock frequency. One such
example is with the GMM mixture computation, where Gaussian
probabilities in 6 different dimensions are computed at the same
time.

Scheduling: In our design, two stages require use of the DRAM,
GMM scoring and backend search. We use a token passing
scheduler to handle priority of requests between the stages.
Within the GMM stage only a single unit requires the DRAM. In
the backend search stage there are many sub units which require
the DRAM. A fixed priority scheduler is used to determine which
sub unit gets access.

5. FPGA-BASED SPEECH RECOGNIZER
For our live-mode hardware speech recognition system to be fully
functional on the Xilinx XUP development board, several key
system issues also needed to be addressed, including DRAM
initialization, DRAM bandwidth, decoding speed, and I/O. These
topics are discussed in this section.

5.1 DRAM
Before decoding can begin, the recognizer requires an
initialization period to move static data (all the scoring
information for all the GMMs, HMMs, and language models)
from a Compact Flash card to DRAM. This is accomplished by
using one of the on-chip PowerPC processors. Once the data is
transmitted, control is then passed to the speech recognition core
where decoding may begin. During decoding, the speech
recognition core directly accesses the DRAM through the
Processor Local Bus (PLB). We selected this method of accessing
DRAM for practicality since Xilinx provides its own PLB-DDR
controller in its library. A higher bandwidth solution would be to
design our own memory controller to DRAM, which given time
constraints, we decided against.

A major bottleneck in decoding is DRAM memory bandwidth
through the PLB. With a maximum burst length of 16 and a data
bus size of 64 bits, the maximum bandwidth allowed to DRAM
through the PLB is ~200MB/s. Bandwidth is limited by bus
communication and the 100MHz PLB speed. In our design, only
reads are able to be bursted. Read transfers fully utilize the 64-bit
data bus, while writes are masked, and transferred at 32-bits. Each
request is handled one at a time; there are no split transactions. In
order to speed up our design we use custom burst lengths
depending on requestor’s access patterns. Only DRAM command
transfers are handled by the PLB so there is no contention for the
bus by other devices.

Because of these bandwidth and also area constraints, we chose to
run our design at a modest 50MHz. By doing so, synchronization
is needed to handle DRAM transfers. A dual-ported BRAM is
used to buffer read bursts and handshaking is used to coordinate
signals between the two clock domains.

5.2 Buffering for Live Mode Decoding
If the decoding speed of a frame is slower than the frame length,
frames will be dropped unless some buffering mechanism is
introduced. While the acoustic frontend and GMM scoring stages
have deterministic decoding times shorter than the frame length,
the backend search decoding time varies depending on the
number of active HMMs which are alive in each frame.
Therefore, to prevent dropping frames, we introduce a buffer right
after normalizing the mfcc values. This way the essential
information is captured by a mere 13 values, which is much more
efficient than a buffer placed elsewhere.

5.3 System-Level Environment
The Xilinx XUP development board has the capability to support
a microphone, VGA monitor, and push buttons. We use each of
these devices to aid our recognizer in the following manner.
When a push button is pressed, the speech from the microphone is
sampled by the AC97 audio codec, and fed to the speech
recognition core on the FPGA, where decoding immediately
begins. Another push button press signifies the end of recording.
Once the recognizer is done decoding, the decoded word
hypothesis is displayed on the VGA.

6. EXPERIMENTAL RESULTS
In this section we discuss our initial simulation results, verify
functionality, and discuss the results of our design on the Xilinx
XUP development board.

6.1 Hardware Simulator Results
To estimate the decoding speed of the proposed architecture, we
modeled the design running at 50 MHz on our cycle-accurate
hardware simulator and created a memory model which simulated
64-bit DRAM accesses through the PLB as in the FPGA. The
model handles burst and non-burst memory requests. Each SRAM
access is assumed to be a single cycle.

 A critical bottleneck is how memory should be divided in the
backend search stage. After profiling the bandwidth and size of
each memory structure and looking at access patterns, we
determined a good partition for which data should be placed in
SRAM or DRAM (Figure 8).

From our final simulator results we estimate that this hardware
design can decode at roughly ~2.2 slower than real-time or ~0.5
time faster than real-time; cycle breakdown by stage is as follows:
~0% for acoustic frontend, 37% for GMM scoring, and 63% for
backend search. The timing breakdown of the backend search
stage can be seen in Figure 9. The reason why the backend search
takes so much time for decoding is because of DRAM latency.
52% of the backend search decoding time is accessing DRAM.
42% of that is spent doing reads and 58% doing writes. The

Memory Bandwidth for Backend
Search SRAM & DRAM

0.001
0.01
0.1

1
10

100

Vit S
RAM

CI S
RAM

RC SRAM

LM
 SRAM

Ug SRAM

WI S
RAM

PL S
RAM

DRAM

Memory (SRAM & DRAM)

Ba
nd

w
id

th
 (M

B/
s)

Figure 8. Backend Search SRAM and DRAM bandwidth

Timing Breakdown of Backend Search
Unit

1%
16%

8%

44%

31% FAW
FAH
Viterbi
Trans/Prune
LM

Figure 9. Timing breakdown of the Backend Search

stage

Table 1: Comparing Software and FPGA-based
Hardware

Recognizer
Engine

Word
Error
Rate
(%)

Clock
(GHz)

Speedup
Over Real
Time

FOM

Sphinx 3.0 10.88 2.8 3.7 1.32

Hardware: Our
recognizer

10.9 0.05 0.5 10

cause for the high percentage of time spent on writes is not due to
the quantity of writes, but that only 32-bits are written back at a
time, as explained in the previous section.

We evaluate our design by comparing our results with the Sphinx
3.0 software recognizer. Table 1 shows the WER and decoding
speed of Sphinx 3.0, running on a 2.8 GHz Xeon processor, and
our FPGA-based design running at 50 MHz. While our design
does not run faster, one can create a crude Figure of Merit
(FOM—larger is better) for efficiency by dividing the decoder
speedup by the clock rate (GHz). Using this metric, our
recognizer is 7.6 times more efficient than the software based
recognizer.

We are also interested in how fast our design could theoretically
run without the board’s current memory constraints. If we sped
up our clock to 200 MHz and directly connect our design to a
memory controller with a DDR DRAM with a theoretical
bandwidth of 2GB/s, we estimate our design can achieve at least
~3.9 times faster than real-time. If the writeback mechanism is
modified to capture 64-bits and burst mode, speedup can increase
upwards of 5 times faster than real-time. These results, when
compared to Sphinx 3.0’s 3.7 times faster than real-time, suggest
that if our custom hardware is fitted with dedicated DRAM, it
should be able to achieve faster results than a processor running at
15 times its speed.

6.2 Final Live-Mode FPGA Speech Recognizer
Once we converged upon the best architecture to implement in
hardware, we use synthesizable Verilog to describe the model so
it could be mapped on the FPGA of the XUP development board.
For the final live-mode hardware speech recognition system, we
also wrote peripheral controllers in Verilog for a microphone,
VGA monitor, push buttons, and DRAM. At no point do we use
the PowerPC cores during decoding. The final block diagram is
shown in Figure 10.

Our design is currently completely operational on the Xilinx XUP
development board. The final FPGA speech recognition setup can
be seen in Figure 11. The core (including peripheral controls) uses
98% of the overall FPGA slices (13449/13696), 45% of the
overall 2.44 Mb BRAM (62/136) and ~24Mb of DRAM. The
breakdown of each module derived from Xilinx ISE can be seen
in Table 2. As stated earlier, we ran the speech recognition core at
50MHz to meet timing requirements while maintaining a
reasonable decoding speed. The decoding speed of the FPGA is
found to be ~2.3 times slower real-time, which is comparable to
the simulator decoding speed. We verify functionality of the
FPGA speech recognizer at the bit-level, frame-by-frame, over
our entire several-minute data set.

7. CONCLUSION
The Carnegie Mellon In Silico Vox project seeks to move best-
quality speech recognition technology from its current software-
only form into a range of efficient all-hardware implementations.
The central thesis is that, like graphics chips, the application is
simply too important, too performance hungry, and too power
sensitive, to stay as a large software application. To achieve gains
in hardware speech recognition, we must first realize the
requirements and limitations of a hardware-based recognizer by
prototyping the design. We address these issues in this paper and
describe in detail the design and implementation of a fully
functional speech recognizer on a single Xilinx XUP platform.
The design recognizes a 1000 word vocabulary, is speaker-
independent, and recognizes continuous (connected) live-mode
speech. Our current design runs at 50MHz, decodes at roughly
2.3 times slower real-time, achieves the same accuracy as state-
of-the-art software, and is, to the best of our knowledge, the most
complex recognizer architecture ever fully committed to a
hardware-only form.

Our current work focuses on much larger vocabularies (5000 –
60,000 words), at rates much fast than real-time, leveraging the
hardware resources of a more sophisticated FPGA-based
platform, the Berkeley BEE2 system [19].

Figure 11. Fully custom hardware speech recognition

system setup

Table 2: Resource utilization breakdown by module

Module Slices (% of total) BRAM (% of total)

Acoustic
Frontend

3348 (24%) 13 (9%)

GMM Scoring 1004 (7%) 1 (1%)

Backend
Search

8802 (67%) 40 (29%)

IO Peripherals 295 8 (6%)

Figure 10. Block diagram of a hardware speech
recognition system running on the Xilinx XUP Board

8. ACKNOWLEDGMENTS
This research was supported by the Semiconductor Research
Corp., the National Science Foundation, and the
MARCO/DARPA Focus Center for Circuit & System Solutions
(C2S2). Kai Yu is supported by the NSF Graduate Research
Fellowship. The authors would like to thank Richard Stern and
Arthur Chan for their valuable suggestions.

9. REFERENCES
[1] Huang, X., Acero, A., and Hon, H., Spoken Language Processing: A

Guide to Theory, Algorithm and System Development, Prentice Hall
PTR, New Jersey, 2001.

[2] “The Talking Cure”, The Economist, Mar 12th 2005, p. 11.

[3] Kavaler, R. et al., A Dynamic Time Warp Integrated Circuit for a
1000-Word Recognition System", IEEE Journal of Solid-State
Circuits, vol SC-22, NO 1, February 1987, pp 3-14.

[4] Cali, L., Lertora, F., Besana, M., Borgatti, M., “CO-Design Method
Enables Speech Recognition SoC,” EETimes, Nov. 2001, p. 12.

[5] Mathew, B., Davis, A., and Fang, Z. “A Low-power Accelerator for
the SPHINX 3 Speech Recognition System”. In International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pg 210–219. ACM Press, 2003.

[6] Krishna, R., Mahlke, S., and Austin, T. “Architectural optimizations
for low-power, real-time speech recognition”. In International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 220–231. 2003.

[7] Nedevschi, S., Patra, R., and Brewer, E. “Hardware Speech
Recognition on Low-Cost and Low-Power Devices," Proc. Design
and Automation Conference, 2005.

[8] Stolzle, A. et al. "Integrated Circuits for a Real-Time Large-
Vocabulary Continuous Speech Recognition System," IEEE Journal
of Solid-State Circuits, vol. 26 no. 1, pp 2-11, Jan 1991.

[9] Xilinx Research Labs, XUP Virtex-II Pro Development System –
Hardware Reference Model Version UG069, 2004.

[10] Pallett, D., “A Look at NIST’s Benchmark ASR Tests: Past, Present,
and Future”, Proc 2003 IEEE Workshop on Automatic Speech
Recognition and Understanding.

[11] Lin, E., Yu. K., Rutenbar, R., Chen, T. "Moving Speech Recognition
from Software to Silicon: the In Silico Vox Project” Proceedings of
Interspeech 2006 Sept 2006.

[12] Lin, E., Yu. K., Rutenbar, R., Chen, T. “In Silico Vox: Towards
Speech Recognition in Silicon” HOTCHIPS 18, August, 2006.

[13] CMU Sphinx Open Source Speech Recognition Engines,
http://cmusphinx.sourceforge.net/html/cmusphinx.php.

[14] Huang, X. D., Ariki, Y., and Jack, M. Hidden Markov Models for
Speech Recognition. Edinburgh University Press, 1990.

[15] Viterbi, A.: “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm.” IEEE Transactions on
Information Theory 13 (1967) 260-269.

[16] Agaram, K., Keckler, S.W., and Burger, D.C. "Characterizing the
SPHINX Speech Recognition System," IBM Austin Center for
Advanced Studies Workshop, January, 2001.

[17] Krishna, R., Austin, T., and Mahlke, S. “Insights into the Memory
Demands of Speech Recognition Algorithms,” ACM/IEEE 2nd
Annual Workshop on Memory Performance Issues, May 2002.

[18] Burger, D. and Austin, T. “The simplescalar tool set version 2.0.”
Technical Report 1342, Dept of CS, UW, Madison, WI, Jun 1997.

[19] Chang, C., Wawrzynek, J., and Brodersen, R. W. "BEE2: A High-
End Reconfigurable Computing System," IEEE Design and Test of
Computers, 22(2):114--125, Mar/Apr 2005.

