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ABSTRACT 
The Carnegie Mellon In Silico Vox project seeks to move best-
quality speech recognition technology from its current software-
only form into a range of efficient all-hardware implementations. 
The central thesis is that, like graphics chips, the application is 
simply too performance hungry, and too power sensitive, to stay 
as a large software application. As a first step in this direction, we 
describe the design and implementation of a fully functional 
speech-to-text recognizer on a single Xilinx XUP platform. The 
design recognizes a 1000 word vocabulary, is speaker-
independent, recognizes continuous (connected) speech, and is a 
“live mode” engine, wherein recognition can start as soon as 
speech input appears.  To the best of our knowledge, this is the 
most complex recognizer architecture ever fully committed to a 
hardware-only form. The implementation is extraordinarily small, 
and achieves the same accuracy as state-of-the-art software 
recognizers, while running at a fraction of the clock speed.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Signal 
processing 

General Terms 
Algorithms, Performance, Design 

Keywords 
Speech Recognition, FPGA, DSP, In Silico Vox 

1. INTRODUCTION 
Speech is an exceptionally attractive modality for human-
computer interaction:  it is “hands free”; it requires only modest 
hardware for acquisition (a high-quality microphone or 
microphones); and it arrives at a very modest bit rate. 
Recognizing human speech, especially continuous (connected) 
speech, without burdensome training (speaker-independent), for a 
vocabulary of sufficient complexity (60,000 words) is very hard.  

There has been significant progress over the last few decades on 
this important problem [1]. However, whether supporting 
dictation on a desktop computer, or customer telephone input for 
a commercial call center, or recognizing numbers and contacts in 
a cell phone, all high-quality recognizers exist today as software 
running on some CPU. We believe this is extraordinarily limiting 
to ultimate performance, vastly inefficient in its use of silicon, 
and in need of a paradigm shift. Like graphics chips over the last 
decade, we believe that the application is simply too important, 
too performance hungry, and too power sensitive, to stay as a 
large software application.    

Audio mining is one such performance-hungry application worth 
mention. As video content increasingly goes on-line, there is a 
growing need to search it. One natural indexing method is the 
accompanying audio track. However, today’s indexing requires 
text-based search of closed-captioning for these video sources. 
What if we could, instead, directly search the voice data in video 
streams? What if we could search at 10X, 100X, or 1000X faster 
than real-time (i.e., faster than the rate at which the speech was 
produced)? We do not believe tweaks to software versions of 
today’s state-of-the-art recognizers, or the near-term roadmap for 
processor improvements, will yield the multiple orders-of-
magnitude speedups we seek. At Carnegie Mellon, the In Silico 
Vox project [2] is working to design and deploy a range of 
hardware-only implementations of recognizers operating at these 
performance levels. 

Of course, a hardware-based recognizer is hardly a new idea.  
However, prior efforts suffer from a range of serious flaws. There 
are many small-vocabulary architectures, e.g. dynamic time-warp 
strategies [3][4] that cannot scale to the large-vocabulary case we 
target. Such approaches were abandoned by the speech 
community at least a decade ago. Critical bottleneck steps in the 
algorithms have been migrated to hardware coprocessor forms [5], 
but suffer from serious Amdahl’s Law limitations to overall 
improvement. Still other studies have proposed interesting multi-
processor architectures, but these either fail to demonstrate more 
than cursory performance improvement [6], or fail to demonstrate 
performance on other than trivial benchmarks [7]. A notable 
exception is the complete VLSI-based recognizer built at 
Berkeley in the early 1990s [8]. However, by the standards of a 
2007 recognizer, its core recognition strategy is quite primitive.   

As a first step toward a fully hardware-based recognizer, we 
explore the problem of moving a modern recognition architecture 
onto FPGA hardware.  We describe in detail the architecture, 
design and implementation of a complete speech recognizer in a 
single FPGA. Our principal objective is to build a fully functional 
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recognizer entirely in custom hardware, and use this 
implementation to understand the essential tradeoffs inherent in a 
hardware-only solution. As a consequence, we choose not to 
exploit any on-chip processor cores available on our FPGA.  The 
problem of how best to deploy custom logic alongside embedded 
processor resources for speech recognition is an interesting one—
but it is not the problem we address in this paper. Our overriding 
interest is to use the FPGA prototype to gain insight into the 
complexity of a hardware solution; we believe our ultimate 
platform will be a custom silicon recognizer.  

We use the Xilinx XUP development board as our 
implementation platform [9]; this has the twin advantages of 
having integrated DRAM in sufficient quantity, and on-board 
audio input. However, moving a modern recognizer onto the XUP 
system proves to be a significant design challenge:  our 
implementation must fit in a footprint with substantially fewer 
than 1M equivalent logic gates (i.e., roughly 1mm2 of silicon in a 
modern CMOS ASIC process) and less than 1MB of on-chip 
SRAM. Achieving a functional recognizer creates a challenging 
set of size/performance tradeoffs. We target a 1000-word 
command/control benchmark called Resource Management [10]. 
This is small by the standards of a dictation-class recognizer, but 
has three desirable features:  (1) it is widely used in the speech 
recognition community; (2) it is vastly larger than most recent 
hardware studies [7]; (3) it is the largest benchmark that fits on 
the rather small XUP platform, but can still run live. An earlier 
version of this work, with emphasis on its impact on the speech 
recognition community, appears in [11]. The XUP result was first 
mentioned in [12], but without details of the FPGA-based 
architecture and implementation. In this paper, we offer those 
details. 

The paper is organized as follows. Section 2 reviews the theory 
and algorithms of speech recognition, as embodied in the CMU 
Sphinx 3.0 [13] software recognizer, which we adopt as our 
reference model. Section 3 then profiles the performance of the 
Sphinx 3.0 reference software. Section 4 describes the 
components of our overall recognizer architecture. Section 5 
describes the XUP-based FPGA prototype. Section 6 describes 
experimental results: a fully functioning recognizer, running at 
50MHz, capable of recognition at roughly 2.3X slower than real-
time. Finally, Section 7 offers concluding remarks.  

2. ABOUT SPEECH RECOGNITION 
Speech recognition is the conversion of spoken words to text. As 
the first step toward rendering a state-of-the-art recognizer in 
hardware form, we start with a software implementation as a 
reference model, and dissect it. That reference platform for us is 
the Sphinx 3.0 recognizer, a speaker-independent speech 
recognition system which can handle continuous speech (no 
pauses between words). The Sphinx 3.0 architecture (and indeed, 
today the most common recognizer architecture) is depicted in 
Figure 1.  

First, analog speech input is sampled and digitized, then divided 
into 10 ms blocks called frames. Next, in the acoustic frontend 
stage, signal processing algorithms are applied to each frame to 
generate a feature vector, which contains all the acoustic 
information for the frame. After that, Gaussian mixture model  
(GMM) scoring is performed to calculate the probabilities of all 
the possible sounds that could have been pronounced. Finally, 

these values are used by the backend search to find the most 
probable word sequence. The following subsections will describe 
each individual stage in more detail.  

2.1 Acoustic Model 
Speech recognition is built upon a layered model [1]. In the most 
fundamental layer, acoustic information is used as the building 
block for piecing together speech. In the English language, this 
would be the approximately 50 differentiable sounds called 
phonemes. When these phonemes are pronounced, the acoustic 
realization, or phone, varies depending on the phone voiced 
directly before and after it. To accurately depict this effect, 
speech recognizers use triphones, phones in the context of the 
preceding and succeeding phones, to build words. Triphones are 
further divided into smaller sub-acoustic units, which are the 
really the first and lowest layer of the speech recognition 
hierarchy. Our implementation divides each triphone into three 
sequential acoustic states, i.e, three atomic sounds that we must 
try to recognize. Looking across all the data heard across all 
speech training inputs, we cluster these into a smaller, more 
manageable set of atomic sounds called senones. Thus, senones 
combine to form triphones, and triphones combine to form words. 

2.2 Hidden Markov Models 
Hidden Markov Models (HMMs) [14] are the most common 
method to represent speech at the acoustic level described above, 
i.e., from microphone input, to senones, to triphones. This is in 
part due to their ability to discriminate among a set of connected 
sounds by using a probabilistic approach. HMMs are composed of 
states and observations. States, like in Markov models, contain 
transition probabilities to other states that only depend on the 
current state. However, the state sequence is unknown, and only 
through a series of observations can the most likely hidden 
sequence of states be computed. To achieve this, each state must 
also contain the probability of each observation (each atomic 
sound) when within that state. 

The following example will better illustrate the difference 
between HMMs and Markov models. Consider a simple weather 
system where it is either sunny or raining, and the probability of 
carrying an umbrella in the two climates is already known. In a 
standard Markov model, this system would be represented by two 
states, sunny and raining, with transition probabilities between the 
two states. Now consider a person who is interested in the 
weather, but cannot directly observe the climate. Instead, this 
person can only observe whether a daily visitor is carrying an 
umbrella. This situation is best represented with a hidden Markov 
model, or HMM, where the system looks like the Markov model 
but the sunny and rainy states now carry the additional 
information as to the probability of carrying an umbrella in that 

 
Figure 1. Speech recognition decoding flow 



climate. Now, based on a series of daily observations of whether 
this visitor is carrying an umbrella or not, the most likely 
sequence of daily climates can be computed. 

But HMMs are just the representation of the connected sounds. 
To determine the most likely state sequence, i.e., to determine 
which set of heard atomic sounds is most likely what was uttered 
by the speaker, the Viterbi search algorithm is used [15]. It is 
time-synchronous, and for every time interval (10ms frame), it 
steps through all the possible transitions. For each state, the 
highest probability of reaching that state at the end of the time 
interval is stored. To calculate the maximum probability of 
reaching state j at time t: 

Pt(j) = max[Pt-1(i)aij]bj(Ot) for all states that transition to j      (1) 
where aij is the transition probability from state i to state j, bj is 
the observation probabilities of state j, and Ot is the observation at 
time step t. To trace the most likely state sequence, each state 
needs to additionally store the predecessor state that led to the 
highest probability. 

Although an exhaustive search guarantees the Viterbi algorithm 
will find the most likely state sequence, it also causes the search 
space to grow exponentially with each time step. To make the 
search more manageable and complete within a reasonable 
amount of time, at each time step the sequences with probabilities 
below a certain threshold are pruned away. This algorithm is 
called the Viterbi beam search, and the unpruned states are 
referred to as active. Although this algorithm is now sub-optimal 
and may prune away the most likely state sequence, the resulting 
most likely state sequence may still be the same as the most likely 
state sequence. 

In our speech recognition implementation, 4-state HMMs are used 
to represent triphones. The first three states represent senones 
(atomic sounds we have heard during off-line training over a large 
number of different speakers, i.e., the library of lowest level 
acoustic units we can start matching/recognizing). The fourth and 
final state is a null state used to tie the HMMs together into 
words. Each word has its own HMM sequence, and the 
observation (senone) probabilities are calculated by the GMM 
scoring.  

2.3 Language Model 
One issue that the acoustic model cannot handle by itself is word 
ambiguity. Word ambiguity can occur in several forms such as 
homophones and word boundaries. With homophones, words are 
indistinguishable to the ear, but are different in spelling and 
meaning. The words “to”, “two”, and “too” are such examples. In 
continuous speech, word boundaries can also be challenging. For 
instance, the word “conundrum” can be misconstrued as “con nun 
drum” if not correctly parsed. The use of a language model 
resolves these issues by considering phrases and words that are 
more likely to be uttered. When a transition occurs at the final 
state of the last HMM of a word, the language model is used to 
analyze possible following word candidates given the previous 
word(s) that were believed to have been recognized. Likely word 
candidates have their probabilities boosted. Because the memory 
storage required grows exponentially with the number of previous 
words taken into account, only single word, word pairs, and/or 
word triples, commonly referred to as unigrams, bigrams and 
trigrams, are considered in the language model. 

2.4 Acoustic Frontend 
The acoustic frontend takes each frame (each 10ms sample of live 
speech) and distills the relevant acoustic information through a 
series of signal processing operations. While there are several 
methods to extract the acoustic data, the most popular form, mel 
frequency cepstral coefficients (mfcc), will be explained here. Its 
operations are based on the physiology of the human ear and 
relatively straightforward to implement.  To generate the mfcc 
values per frame, a pre-emphasis filter is first used to boost the 
energy in the high frequencies which contain important acoustic 
information. A Hamming window and 512-point FFT are then 
applied, and the power content of the frequencies, or spectrum, is 
computed. A triangular filter bank designed to extract mel 
frequencies is applied to simulate the spectral resolution of the 
ear, and an inverse discrete cosine transform converts the data 
back to the time domain and into the mfcc values.  

To generate the acoustic feature vector, the mfcc values undergo 
cepstral mean normalization, which average the mfcc values over 
a certain time period. This helps reduce the effect of background 
noise on the mfcc values, and the time period varies from the 
entire speech sample (batch mode) to a subset of the preceding 
frames (live mode). Since human hearing is also related to the 
change velocity and acceleration of the mfcc values, the first and 
second derivative of the normalized mfcc values are taken to 
generate the acoustic feature vector. 

2.5 GMM Scoring 
GMM scoring assigns probabilities to each of the senones per 
frame based on the acoustic feature vector. To achieve speaker-
independent decoding, variations in senone pronunciation (i.e., for 
different voices, accents, genders, etc.) must be accommodated, 
so senones are not represented by a single point but rather a 
weighted sum of Gaussian probability density functions called a 
Gaussian mixture model. To calculate the individual senone 
probabilities, this equation is computed once per frame per 
senone: 

∑
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where n is the number of Gaussian mixtures per model, t is the 
size of the acoustic feature vector, wj is the weight, Λj

2 is the 
generalized variance, xk is an element from the feature vector, µj,k 
the mean of the Gaussian pdf, and σj,k

2 the variance. Besides the 
feature vector, all of the other values are pre-computed constants 
derived from the training data. To prevent floating point 
underflow problems when the senone probabilities are multiplied 
together to find the most likely sequence of sounds, the 
logarithms of the senone probabilities are calculated.  

2.6 Backend Search 
The backend search takes the senone probabilities per frame, and 
finds the most likely sequence of words. To do this, it applies the 
Viterbi algorithm to all the active states within an active HMM of 
all the active word candidates. A particular set of complications 
here is the fact that backend search is not the process of scoring 
transitions within one single HMM.  In addition to handling 
transitions between atomic sounds (senones) in one triphone, we 



must also handle transitions from one triphone to another, inside 
one word (within-word transitions), and transitions from the 
ending triphone of one word, to the beginning triphone of the 
follow-on word (cross-word transitions).  The three types of 
transitions are illustrated in Figure 2. For the within-triphone and 
within-word transitions, the possible transitions are limited by the 
HMM structure and word pronunciation. For the cross-word 
transitions, any transition between words is possible, so the 
language model is applied to help recognition accuracy.  

3. PROFILING THE SPHINX 3.0 
REFERENCE ARCHITECTURE 
Given the brief overview of the major components of a state-of-
the-art recognizer, the next obvious question is:  Why is this 
computationally so difficult? To answer this, we profiled Sphinx 
3.0 to determine where it spends its time, and what potential gains 
our FPGA implementation could exploit. While many speech 
recognizers, including earlier versions of Sphinx, have been 
profiled before [16][17], Sphinx 3.0 has significant differences 
that lead to its high accuracy. For these experiments we used a 
1000 word vocabulary Resource Management (RM) task 
composed of military command and control phrases. The speech 
model contained 8 Gaussians per GMM, a 39-dimensional feature 
vector, 1000 unigrams, 2385 bigrams and no trigrams. On a 2.8 
GHz Intel Xeon workstation with 1 GB of RAM, Sphinx 3.0 was 
able to decode 3.7 times faster than real-time. As seen in Figure 3, 
it spent 76% of the time on the GMM scoring stage, 24% of the 
time on backend search, and a negligible amount of time on the 
acoustic frontend. This is consistent with published results, 
though GMM scoring made up an abnormally large amount of 
execution time due to the small language model used. 

To find what factors limit decoding speed, we used Simplescalar 
[18] and modified parameters to see their effect on cycles 
simulated. While the DL1 miss rate is small (5.40% for a 16 KB 
cache with 16 byte blocks), this is due to the small size of the 
language model. As the language model size increases, so does 
the miss rate. For example, the miss rate increases to 24.41% for 
the 60,000 word vocabulary Broadcast News task [10]. We found 
that accessing data from memory had the largest effect, and if we 
had perfect memory, where DRAM and caches all had single 
cycle access, the cycles decreased by 36%. We also modified the 
parameters to better match that of a custom hardware design to 
get an estimate of how much improvement our design would 
achieve. By reducing cache accesses to a single cycle, and 

increasing the number of functional units and the number of 
instructions fetched/decoded/issued, the cycles decreased by 34%. 

Our results show that a custom hardware speech recognition can 
achieve significant gains compared to a software one. It also 
shows that since the acoustic frontend takes so little time, it 
should be designed to minimize area, while the GMM scoring and 
backend search should be designed to maximize decoding speed. 
Finally, if we plan to extend this design to larger language 
models, when designing the architecture we need to be aware that 
there is little memory locality.  

4. HARDWARE SPEECH RECOGNITION  
For our FPGA-based speech recognition system, we settled on a 
live-mode design running the 1000-word RM task. The target 
platform was the Xilinx XUP development board with a Xilinx 
Virtex-IIPro XC2VP30. The goal for our hardware recognizer is 
to achieve a modest decoding speed (the XUP memory subsystem 
is not fast enough for real-time), while using the fewest hardware 
resources and running at the slowest possible clock speed. In this 
section we discuss our approach to developing our architecture, 
the datapath of our design, and the optimizations we made to our 
hardware speech recognizer to increase performance. We use 
decoding speed and word error rate (WER) as metrics to evaluate 
speech recognition performance.       

4.1 Cycle-Accurate Hardware Simulator 
Because going directly to the FPGA is difficult and time 
consuming, we followed a conventional system simulation 
methodology before placing our design on the FPGA.  To begin, 
we developed a hardware simulator in C++ to prototype different 
hardware designs and to converge on an optimal architecture.  For 
success, we needed to be able to guarantee that the simulator was 
both cycle-accurate and bit-true.  All internal state elements of the 
hardware after every cycle must match the exact data value when 
compared with a software reference model. Our simulator 
maintains these characteristics. Of course, with software speech 
recognition already a CPU-intensive task, simulating a hardware 
recognizer at bit-level requires significantly more processing 
power. It was common for several seconds of speech to require 
several CPU days to simulate. 
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4.2 Architecture 
After several revisions of our simulator, we established the 
datapath to be implemented on the FPGA.  The design has the 
following attributes.   

4.2.1 Acoustic Frontend 
As determined from the profiling, decoding speed is not an issue 
in this stage, so the focus was on minimizing resource usage. 
Since the algorithm is sequential, the design attempts as much 
resource sharing as possible. For example, the memories and 
multipliers used for the FFT are reused in the later parts of 
decoding. To save space, many of the constants for small 
individual data structures were combined into a single dual-ported 
block RAM (BRAM). 

4.2.2 GMM Scoring 
The GMM scoring algorithm is conceptually simple and 
straightforward to implement.  But because it is applied per 
senone per frame, this stage turns out to consume a significant 
amount of decoding time. GMM scoring is limited by the time it 
takes to fetch the GMM constants from DRAM. If the GMMs are 
computed per frame sequentially, the read memory bandwidth 
required would be 143 MB/s. However, this is the worst case and 
can be reduced by replicating the GMM scoring unit many times. 
Each instance can compute senone scores independently of each 
other while sharing the same constants read from main memory. 
This way, if the GMM scoring unit is replicated N times, the 
bandwidth required would also decrease by N times. For our 

design, while it would have been beneficial to replicate the GMM 
scoring unit, due to area constraints we were unable to.  The final 
architecture for the acoustic frontend and GMM scoring is 
depicted in Figure 4. 

4.2.3 Backend Search 
The backend search data flow can be described as a finite state 
machine as shown in Figure 5.  Each state in the diagram 
corresponds to a part of the hardware datapath shown in Figure 6.  
We briefly describe each state and its corresponding role and 
requirements in the backend search datapath.  

• The Start Frame and Done states determine the beginning 
and end of decoding.  The Initialization state sets up the 
initial values of data for each frame. 

• The Fetch Active Word state retrieves word information for a 
single active word stored in the Active Word Queue or the 
newly entered word list from the cross-word transitions, 
called the Patch List. The words are decoded alphabetically.  

• Once a word is selected, active word HMMs are either 
fetched from the Active HMM Queue or a new HMM is 
activated when a new word is entered by the Patch List in 
the Fetch Active HMM state.   

• Next, each active HMM goes through the Viterbi scoring 
state.  While the Viterbi computation itself is not 
computationally demanding, it does require several memory 
lookups.   

 
Figure 4. Acoustic Frontend and GMM Scoring 
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• In the Transition/Prune state, an active HMM can make a 
transition to the next phone, get pruned, and/or get written 
back for the next frame. 

• If an HMM makes a word transition, the Language Model is 
used to determine possible words that can get generated.  If a 
word is deemed likely, it gets stored into the Patch list for the 
next frame. Much like Viterbi, this state requires many 
memory lookups. 

The overall backend search requires ~23.3 MB/s of I/O, broken 
down into ~15.4 MB/s of reads and ~7.9MB/s of writes. A 
breakdown of I/O by states is shown in Figure 7. It is interesting 
to note that the fetching and storing back of active HMMs and 
accessing the language model dominate memory accesses. 

4.3 Architectural Modifications 
In this section we highlight different functional modifications 
which set our hardware design apart from Sphinx 3.0, and 
introduce structural modifications which use efficient hardware 
methods to increase performance.   

4.3.1 Functional Modifications 
Custom Bit-widths: In the acoustic frontend and GMM scoring 
stages of Sphinx 3.0, numbers are represented as 32-bit floats. 
Through experimentation we found that these numbers do not 
require such precision to achieve the same WER.  By using 
custom bit-widths, we reduce the required memory storage and 
chip area of our design without sacrificing WER.  On average the 
modification reduces bit-widths by 33%, and decreases memory 
required to store GMM constants by 50%. 

Log Lookup Table: In the GMM scoring stage, the log probability 
of each senone needs to be calculated.  In software, this is 
accomplished when the log probability of each GMM mixture is 
computed, and then summed with the help of a ~100,000 element 
lookup table. In hardware, storing this large lookup table on-chip 
would be very costly. Thus, in its place we use a more complex 
interpolation using four third-order polynomials. This equates to 
replacing a large memory lookup table with extra logic gates 
which proves to be more area efficient. 

Pruning Threshold: Another major functional change we make is 
how the pruning threshold per frame is determined. In Sphinx 3.0, 
each frame begins by updating the state probabilities of all the 
active HMMs. Then based on the highest probability state, the 
pruning threshold is established.  Next, they go through all the 
active HMMs again to find active HMMs whose probabilities fall 
below the threshold are pruned away. This approach requires 
going through the active HMMs twice, which practically doubles 
the memory accesses and hinders performance proportionally. 
This algorithm also forces the transition computations to occur 
after all the HMMs are updated, which reduces the effective 
parallelism. We avoid these constraints by using the best score 
from the previous frame to determine the pruning threshold. By 
setting the threshold to be a function of the previous frame, active 
HMMs can immediately be pruned or transitioned after updating 
all its state probabilities, reducing memory bandwidth. The 
modification also allows for different active HMMs to be doing 
computation in different stages at the same time. This method can 
potentially decrease the number of active HMMs per frame, but 

through simulation we show there is a negligible increase in WER 
from 10.88% to 10.95%. 

4.3.2 Structural Modifications 
Active HMM Storage:  In Sphinx 3.0’s search stage, an HMM 
requires 40 to 52 bytes of storage.  We compressed this to 28 to 
36 bytes without affecting functionality. We also modify how the 
active HMMs are stored in memory. Instead of as linked data 
structures in Sphinx, we store active HMMs consecutively in 
memory as a queue. By replacing a random access memory 
structure with a predictable one, we can retrieve data from 
memory more effectively. 

Cross-word Transitions: Normally when a cross-word transition 
occurs it requires retrieving the first HMM of the word being 
transitioned into, and possibly updating the probability of the first 
state of the HMM according to the Viterbi algorithm. With a large 
word candidate list which a given word can transition to, this can 
be a very memory intensive operation. To eliminate this 
bottleneck, we store all cross-word probabilities in an on-chip 
memory called the Patch List. This approach filters off-chip 
memory accesses, and quickly handles probability updates. As 
stated in the previous subsection, the Patch List updates the 
Active HMM list in the next frame.    

Pipelining: We use pipelining throughout our design to increase 
throughput and allow for a fast clock frequency. One such 
example is with the GMM mixture computation, where Gaussian 
probabilities in 6 different dimensions are computed at the same 
time.   

Scheduling: In our design, two stages require use of the DRAM, 
GMM scoring and backend search. We use a token passing 
scheduler to handle priority of requests between the stages. 
Within the GMM stage only a single unit requires the DRAM. In 
the backend search stage there are many sub units which require 
the DRAM. A fixed priority scheduler is used to determine which 
sub unit gets access. 

5. FPGA-BASED SPEECH RECOGNIZER  
For our live-mode hardware speech recognition system to be fully 
functional on the Xilinx XUP development board, several key 
system issues also needed to be addressed, including DRAM 
initialization, DRAM bandwidth, decoding speed, and I/O. These 
topics are discussed in this section. 

5.1 DRAM 
Before decoding can begin, the recognizer requires an 
initialization period to move static data (all the scoring 
information for all the GMMs, HMMs, and language models) 
from a Compact Flash card to DRAM. This is accomplished by 
using one of the on-chip PowerPC processors. Once the data is 
transmitted, control is then passed to the speech recognition core 
where decoding may begin. During decoding, the speech 
recognition core directly accesses the DRAM through the 
Processor Local Bus (PLB). We selected this method of accessing 
DRAM for practicality since Xilinx provides its own PLB-DDR 
controller in its library. A higher bandwidth solution would be to 
design our own memory controller to DRAM, which given time 
constraints, we decided against.  



A major bottleneck in decoding is DRAM memory bandwidth 
through the PLB. With a maximum burst length of 16 and a data 
bus size of 64 bits, the maximum bandwidth allowed to DRAM 
through the PLB is ~200MB/s. Bandwidth is limited by bus 
communication and the 100MHz PLB speed. In our design, only 
reads are able to be bursted. Read transfers fully utilize the 64-bit 
data bus, while writes are masked, and transferred at 32-bits. Each 
request is handled one at a time; there are no split transactions. In 
order to speed up our design we use custom burst lengths 
depending on requestor’s access patterns. Only DRAM command 
transfers are handled by the PLB so there is no contention for the 
bus by other devices.     

Because of these bandwidth and also area constraints, we chose to 
run our design at a modest 50MHz. By doing so, synchronization 
is needed to handle DRAM transfers. A dual-ported BRAM is 
used to buffer read bursts and handshaking is used to coordinate 
signals between the two clock domains. 

5.2 Buffering for Live Mode Decoding 
If the decoding speed of a frame is slower than the frame length, 
frames will be dropped unless some buffering mechanism is 
introduced. While the acoustic frontend and GMM scoring stages 
have deterministic decoding times shorter than the frame length, 
the backend search decoding time varies depending on the 
number of active HMMs which are alive in each frame. 
Therefore, to prevent dropping frames, we introduce a buffer right 
after normalizing the mfcc values. This way the essential 
information is captured by a mere 13 values, which is much more 
efficient than a buffer placed elsewhere. 

5.3 System-Level Environment  
The Xilinx XUP development board has the capability to support 
a microphone, VGA monitor, and push buttons. We use each of 
these devices to aid our recognizer in the following manner. 
When a push button is pressed, the speech from the microphone is 
sampled by the AC97 audio codec, and fed to the speech 
recognition core on the FPGA, where decoding immediately 
begins. Another push button press signifies the end of recording. 
Once the recognizer is done decoding, the decoded word 
hypothesis is displayed on the VGA.   

6. EXPERIMENTAL RESULTS 
In this section we discuss our initial simulation results, verify 
functionality, and discuss the results of our design on the Xilinx 
XUP development board.   

6.1 Hardware Simulator Results 
To estimate the decoding speed of the proposed architecture, we 
modeled the design running at 50 MHz on our cycle-accurate 
hardware simulator and created a memory model which simulated 
64-bit DRAM accesses through the PLB as in the FPGA. The 
model handles burst and non-burst memory requests. Each SRAM 
access is assumed to be a single cycle. 

 A critical bottleneck is how memory should be divided in the 
backend search stage. After profiling the bandwidth and size of 
each memory structure and looking at access patterns, we 
determined a good partition for which data should be placed in 
SRAM or DRAM (Figure 8).  

From our final simulator results we estimate that this hardware 
design can decode at roughly ~2.2 slower than real-time or ~0.5 
time faster than real-time; cycle breakdown by stage is as follows:  
~0% for acoustic frontend, 37% for GMM scoring, and 63% for 
backend search. The timing breakdown of the backend search 
stage can be seen in Figure 9. The reason why the backend search 
takes so much time for decoding is because of DRAM latency.  
52% of the backend search decoding time is accessing DRAM.  
42% of that is spent doing reads and 58% doing writes.  The 
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Table 1:  Comparing Software and FPGA-based 
Hardware 

Recognizer 
Engine 

Word 
Error 
Rate 
(%) 

Clock 
(GHz) 

Speedup 
Over Real 
Time 

FOM 

Sphinx 3.0 10.88 2.8 3.7 1.32 

Hardware: Our 
recognizer 

10.9 0.05 0.5 10 



cause for the high percentage of time spent on writes is not due to 
the quantity of writes, but that only 32-bits are written back at a 
time, as explained in the previous section. 

We evaluate our design by comparing our results with the Sphinx 
3.0 software recognizer. Table 1 shows the WER and decoding 
speed of Sphinx 3.0, running on a 2.8 GHz Xeon processor, and 
our FPGA-based design running at 50 MHz.  While our design 
does not run faster, one can create a crude Figure of Merit 
(FOM—larger is better) for efficiency by dividing the decoder 
speedup by the clock rate (GHz). Using this metric, our 
recognizer is 7.6 times more efficient than the software based 
recognizer.  

We are also interested in how fast our design could theoretically 
run without the board’s current memory constraints.  If we sped 
up our clock to 200 MHz and directly connect our design to a 
memory controller with a DDR DRAM with a theoretical 
bandwidth of 2GB/s, we estimate our design can achieve at least 
~3.9 times faster than real-time.  If the writeback mechanism is 
modified to capture 64-bits and burst mode, speedup can increase 
upwards of 5 times faster than real-time.  These results, when 
compared to Sphinx 3.0’s 3.7 times faster than real-time, suggest 
that if our custom hardware is fitted with dedicated DRAM, it 
should be able to achieve faster results than a processor running at 
15 times its speed.  

6.2 Final Live-Mode FPGA Speech Recognizer 
Once we converged upon the best architecture to implement in 
hardware, we use synthesizable Verilog to describe the model so 
it could be mapped on the FPGA of the XUP development board. 
For the final live-mode hardware speech recognition system, we 
also wrote peripheral controllers in Verilog for a microphone, 
VGA monitor, push buttons, and DRAM.  At no point do we use 
the PowerPC cores during decoding.  The final block diagram is 
shown in Figure 10. 

Our design is currently completely operational on the Xilinx XUP 
development board. The final FPGA speech recognition setup can 
be seen in Figure 11. The core (including peripheral controls) uses 
98% of the overall FPGA slices (13449/13696), 45% of the 
overall 2.44 Mb BRAM (62/136) and ~24Mb of DRAM. The 
breakdown of each module derived from Xilinx ISE can be seen 
in Table 2. As stated earlier, we ran the speech recognition core at 
50MHz to meet timing requirements while maintaining a 
reasonable decoding speed. The decoding speed of the FPGA is 
found to be ~2.3 times slower real-time, which is comparable to 
the simulator decoding speed. We verify functionality of the 
FPGA speech recognizer at the bit-level, frame-by-frame, over 
our entire several-minute data set.  

7. CONCLUSION 
The Carnegie Mellon In Silico Vox project seeks to move best-
quality speech recognition technology from its current software-
only form into a range of efficient all-hardware implementations. 
The central thesis is that, like graphics chips, the application is 
simply too important, too performance hungry, and too power 
sensitive, to stay as a large software application. To achieve gains 
in hardware speech recognition, we must first realize the 
requirements and limitations of a hardware-based recognizer by 
prototyping the design. We address these issues in this paper and 
describe in detail the design and implementation of a fully 
functional speech recognizer on a single Xilinx XUP platform. 
The design recognizes a 1000 word vocabulary, is speaker-
independent, and recognizes continuous (connected) live-mode 
speech.  Our current design runs at 50MHz, decodes at roughly 
2.3 times slower real-time, achieves the same accuracy as state-
of-the-art software, and is, to the best of our knowledge, the most 
complex recognizer architecture ever fully committed to a 
hardware-only form.    

Our current work focuses on much larger vocabularies (5000 – 
60,000 words), at rates much fast than real-time, leveraging the 
hardware resources of a more sophisticated FPGA-based 
platform, the Berkeley BEE2 system [19].    

 
Figure 11. Fully custom hardware speech recognition 

system setup 

Table 2: Resource utilization breakdown by module 

Module Slices (% of total) BRAM (% of total) 

Acoustic 
Frontend 

3348 (24%) 13 (9%) 

GMM Scoring 1004 (7%) 1 (1%) 

Backend 
Search 

8802 (67%) 40 (29%) 

IO Peripherals 295 8 (6%) 

Figure 10. Block diagram of a hardware speech 
recognition system running on the Xilinx XUP Board
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