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ABSTRACT 
 

To enable floating-point (FP) signal processing applications in 
low-power mobile devices, we propose a lightweight FP design 
flow that can optimize the bit-width configuration. The 
optimization considers both the hardware cost and the numerical 
precision. Variable grouping is used to reduce the complexity of 
optimization by connecting software description and hardware 
implementation. The optimization algorithm is able to avoid local 
optima, and multiple-phase optimization helps to reduce the cost 
further. We apply the proposed design flow to the design of 
inverse discrete cosine transform (IDCT), and show that the 
power consumption of our lightweight FP IDCT is comparable to 
an optimized fixed-point design. In addition, promising results on 
some real-world applications such as video coding and speech 
recognition demonstrate that lightweight FP signal processing 
will find more and more applications in low-power devices.  

 
1. INTRODUCTION 

 
Digital signal processing has been widely used in mobile 

applications, such as video decoding, speech recognition.  A lot of 
effort must be made to manage the complexity, power 
consumption and time-to-market of the modern signal processing 
system-on-chip (SoC) designs. However, some DSP algorithms 
are computationally intensive, rich in costly FP arithmetic 
operations rather than simple logic. FP hardware offers a wide 
dynamic range and high computation precision, yet occupies large 
fractions of total chip area and energy budget.  Therefore, its 
usage in low-power applications is highly limited. Many 
embedded microprocessors such as the StrongARM do not even 
include a FP unit due to its unacceptable hardware cost.   

In the real world, fixed-point hardware is used to reduce the 
complexity and power consumption at the cost of degraded 
precision. However, there is an obvious gap in the design flow: 
software designers prototype these algorithms using high-
precision FP operations, while the silicon designers ultimately 
implement these algorithms using integer-like hardware, or fixed-
point units. The translation from FP operations to fixed-point 
operations often distorts the natural form of the algorithm and 
even introduces perceptible artifacts. There is some previous 
work studying such translation and fixed-point bit-width 
optimization.  In [1], it proposes an analytical approach to find the 
minimum fixed-point bit-width by the control-dataflow graph, but 
it needs the user to annotate the bit-widths of some variables. In 
[2], a simulation based optimization algorithm is developed to 
find the optimal bit-width configuration.   

Even with such fixed-point optimization techniques, the 
translation is often a time-consuming procedure and becomes the 
bottleneck of the design flow. In order to speed up the design 
cycle and broaden FP signal processing applications, we propose 
a lightweight FP design flow, to enable the simulation, 
optimization and fast implementation of variable bit-width FP 

algorithms.  As shown in Fig. 1, CMUfloat C++ class provides 
the support for variable bit-width (32 bits or less) FP operations 
so that the performance of the algorithm can be monitored during 
the software simulation stage. The optimization engine configures 
the bit-widths for both minimal hardware cost and acceptable 
algorithm performance.  Then the algorithm can be easily 
developed into hardware with a library of variable bit-width FP 
arithmetic cores that we have developed, using the standard ASIC 
or FPGA flow.   

 
 
 
 
 
 
 
 
 
 
 
 
 
In this paper, we focus on the bit-width optimization engine, as 

it is the core of such automated design flow, freeing the designer 
from the manual tuning of bit-widths.  The cost function in this 
optimization engine is related to hardware cost and power 
consumption.  

 IDCT (Inverse Discrete Cosine Transform) is chosen to 
illustrate the effectiveness of the optimization engine and the 
whole design flow. As a result, our lightweight FP IDCT 
consumes comparable amount of power compared to a fixed-point 
implementation as configured in [3].  

The paper is organized as follows: Section 2 introduces briefly 
the CMUfloat C++ class we use in the simulator and the 
optimization engine. Section 3 describes the optimization 
algorithm, and an optimization example of IDCT. Section 4 
demonstrates the hardware implementation of the lightweight FP 
IDCT. Comparisons are made among three implementations: 
fixed-point, lightweight FP, and IEEE standard FP IDCT.  Section 
5 shows the impact of lightweight FP on two applications: video 
decoding and speech recognition. Concluding remarks follow in 
Section 6.  

 
2. CUSTOMIZABLE CMUfloat C++ LIBRARY 

 
Since the standard C++ does not include variable bit-width FP 

data type, we create a customizable C++ library to support the 
configuration of the bit-width, rounding modes and exception 
handling as well. The data type is called ‘CMUfloat’ and 
implemented by overloading existing C++ arithmetic operators 
including +, -, *, /, etc. It allows direct operations, including 
assignment between ‘CMUfloat’ and any C++ data types other 
than char, as shown in Fig. 2. All the typical C++ features, such 

Standard C++ FP algorithm 

Bit-width optimization engine 

C++ lightweight FP algorithm 
with optimal bit-width 

  CMUfloat 
 C++ class  

  FP arithmetic 
Verilog library Lightweight FP hardware 

Fig. 1. Lightweight FP system design flow  



as pointer, reference, arrays, casting, and even I/O stream are also 
supported.  The bit-width of a ‘CMUfloat’ variable can vary from 
3 to 32 including sign, fraction and exponent bits and can be 
easily specified during variable declaration. In Fig. 3, we show 
some examples of using ‘CMUfloat’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Such implementation of customizable FP C++ class offers two 

advantages. First, it provides a transparent mechanism to embed 
‘CMUfloat’ numbers in an algorithm. As shown in the example, 
designers can use ‘CMUfloat’ just as a standard C++ data type. 
Therefore, the overall structure of the source codes can be 
preserve. Second, the arithmetic operators are implemented by 
bit-level manipulation that carefully emulates the hardware 
implementation. Therefore the correspondence between algorithm 
and final bit-level hardware is more exact than previous work 
[5,6], which appears to have implemented the operators by simply 
quantizing the result of standard FP operations into limited bit-
width. Our approach guarantees better consistency with the 
hardware implementation. Hence, the numerical performance of 
the system during the early algorithm simulation is more 
trustworthy.  

 
3. BIT-WIDTH OPTIMIZATION  

 
With the support of CMUfloat, we can easily set the fraction 

and exponent bit-widths to be variables, and then let the 
optimization engine determine the configuration during the 
simulation. Since the exponent width is determined by the 
dynamic range, while the fraction width is related to the precision, 
we can configure them separately.  We notice that if two operands 
have different exponent widths, there has to be an extra adder in 
hardware to convert the format before the computation. Therefore 
we simply choose a uniform exponent bit-width according to the 
overall dynamic range observed by the simulation. We then 
optimize the fraction width configuration as follows.  

 
3.1 Problem description 

 
The fraction width configuration can be formulated into an 

optimization problem. 
        minimize cost (f1, f2, …fn)   
        under the constraints : 
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where f1, f2, …fn are fraction widths of the variables used in the 
signal processing algorithm, and the cost function is a measure 
related to the power consumption.  

cost =  

jj
j

j countexecutiontypeopwidthoppower _)_,_( ×∑  (2), 

where opj_width and opj_type represent the fraction width and the 
type of the jth operation, respectively, and execution_countj  is the 
number of times this operation is executed. The power 
consumption of jth FP operation is determined by opj_type and 
opj_width that is the larger value of two operands’ fraction width. 
This power model can be built upon the power measurement of 
the FP hardware library. This term can be changed to any other 
form representing the hardware cost.  

Performance( f1, f2, …fn ) is an objective measurement of the 
numerical precision of the signal processing algorithm, usually in 
terms of SNR (signal-to-noise ratio),  or MSE (mean square 
error).  

 
3.2 Variable grouping 

 
There are usually hundreds of FP variables in a signal 

processing algorithm. If we assign a different fraction width to 
every single variable, the complexity of the optimization problem 
will be unacceptably enormous. Also the large variation among 
the resulting fraction widths will make the hardware design more 
complex. Signal processing applications usually run on embedded 
DSPs or custom designed ASICs, both of which can only afford 
one or very few types of FP formats. Therefore variable grouping 
according to the hardware implementation topology can help 
reduce the number of different fraction widths in the optimization 
procedure. In this case, f1,f2…fn in (1) represent the fraction 
widths of the variable groups. A variable grouping example will 
be shown in 3.4.  

 
3.3 Algorithm description 

 
(a) For each fi , reduce fi to its minimal value that satisfy the 

performance requirement, while keeping all the other variables 
to be the full width, i.e., 23. Then set each fi at such minimal, 
which gives the starting point for the following optimization 
procedure.  

(b) Check the performance requirement. If it is satisfied, then we 
are done.  

(c) Starting from the lower bound configuration obtained in (a), 
choose the variable to increase the fraction width by one, 
according to  
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If none of fi satisfies (3), that means we have entered a local 
optimum. No matter which fi we choose to increase by one, 

eperformanc∆  is always negative. In this case, we take a big 
step by increasing all the fi by one. Repeat (c), until the 
performance requirement is satisfied. 

(d) Starting from the result of (c), choose variable to decrease the 
fraction width by one, according to   

Fig. 2. Operators supported by CMUfloat 
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Cmufloat a(14,5,0.5);  //14 bit fraction and 5 bit exponent 
Cmufloat b=1.5;    // Default Cmufloat is IEEE-standard float 
Cmufloat c[2];      //  Define an array  
float fa; 

 
c[1] = a + b;         // Operation between Cmufloats  
fa = a * b;             // Assign the result to float 
c[2] = fa + b;        //  Operation between float and Cmufloat 
cout << c[1] << c[2] << endl; // I/O stream  

 Fig. 3. Examples of CMUfloat 
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 If none of fi satisfies (4), we are done. Otherwise, repeat (d). 
 
We have studied some fixed-point bit-width optimization 

techniques, as indicated in [3]. The best algorithm they have 
proved by experiments is called “min+1bit,” which is integrated 
into Steps (a), (b), (c) of our algorithm as shown above. 
Compared to the algorithm in [3], Step (c) considers both the 
hardware cost and the precision performance when choosing the 
best fi, instead of only the precision. Also it has some mechanism 
to avoid local optima. Step (d) helps to reduce the cost further 
while maintaining the performance.  

 
3.4 Optimization of fraction widths on IDCT  

 
To be comparable with previous work [4] on fixed-point 

optimization, we choose a multiplier-adder-based topology for 
IDCT. As shown in Fig. 4, the diagram is a straightforward 
mapping from the source code. In the source code, there are 56 FP 
variables that can be divided into 10 groups according to the 
implementation diagram.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the optimization algorithm, we use the MSE (mean square 

error) as a performance measure. The maximum allowable MSE 
is 0.02, according to the IEEE Standard 1180-1990 [7]. The cost 
of each operator is simplified to be type_factor * 
operator_fraction_width * execution_count, where the 
type_factor is ADD_F for an adder, and MUL_F for a multiplier, 
respectively. We will show how the variable grouping and 
type_factor affect the optimal configuration.  

The first set of experiments is for the variable grouping. We 
set ADD_F = ADD_M = 1. Three types of variable grouping are 
compared: 

Grouping_A :  No variable grouping, i.e., each variable can 
have a different bit-width.   

Grouping_B :  6 groups {a, b}, {c, d}, {e},{g}, {f, h}, {i, j} 
Grouping_C:   4 groups {a, b}, {c, d}, {e, g, f, h}, {i, j} 
For Grouping_A, fraction widths are distributed from 8 to 13.  

The distribution histogram is shown in Fig. 5. It is really hard to 
configure the hardware design given such a wide distribution. 
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    The results for Grouping_B and Grouping_C are reasonably 
distinguished.  Grouping_C has more uniform bit-width than 
Grouping_B because it tries to group more variables together.  

 
Grouping_B:  {a, b}, {c, d},   {e},    {g},   {f, h}, {i, j} 
 Bit-width    :     10        11       10       11       12        11 

  Grouping_C:  {a, b}, {c, d},  {e, g, f, h}, {i, j} 
  Bit-width    :     11        11            11          11 

 
 
So the point of variable grouping is to give some hardware 

topology information to the optimization algorithm. If the 
hardware has lots of resource reusing, then more variables should 
be grouped together.   

The second set of experiments is regarding the type_factor. 
This time we choose Grouping_C as the variable grouping and 
ADD_F = 1. The comparison of two MUL_F’s is shown in Table 
2. When the hardware cost of a multiplier is three times of an 
adder of the same bit-width, then it tries to use fewer bits for the 
multiplier at the cost of more bits for the adder.  

 
  MUL_F = 1 :  {a, b}, {c, d},   {e, g, f, h}, {i, j} 
  Bit-width    :     11        11             11          11 

  MUL_F = 3 :  {a, b}, {c, d},   {e, g, f, h}, {i, j} 
  Bit-width     :     10        11             12          11 

 
 
The variable grouping and the power consumption related cost 

function enable the designer to optimize the hardware cost at the 
early design stage. Since the simulation is much faster on the 
software level, it is beneficial to determine the optimum bit-width 
configuration during the software simulation.  

 
4. HARDWARE IMPLEMENTATION OF LIGHTWEIGHT 

FP IDCT 
 
In order to demonstrate the efficiency of our lightweight FP 

design flow, and the power reduction by narrowing the bit-width, 
we design a IDCT according to the diagram and the bit-width 
configuration in Section 3 (5 exponent bits + 11 fraction bits for 

for (i = 0; i < 4; i++ ) {     // upper half 
        dout[i] = 0 ; 
        for (j = 0; j< 4; j++ ) { 
          dout[i] += Coeff[i][j] * din[j];  
        } 
  } 
  for (i = 0; i < 4; i++ ) {   // lower half 
        dout[4+i] = 0 ; 
        for (j = 0; j< 4; j++ ) { 
          dout[4+i] += Coeff[4+i][j] * din[4+j]; 
       } 
  } 
  // post-processing 
    for( i = 0 ; i < 4 ; i++ ) 
        y[i] = (dout[i] + dout[i+4])/2 ; 
  for( i = 0 ; i < 4 ; i++ ) 
        y[7-i] = (dout[i] - dout[i+4])/2 ; 
 a 
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Fig. 4. Source code and diagram of IDCT 

Table 1. Results of Variable grouping 

Table 2. Type factor  

Fig. 5. Histogram of fraction width distribution 



all the variables). It is synthesized with the plug-in parametric FP 
arithmetic cores in our Verilog library and is measured the area 
and power consumption. We also implement an IEEE standard 
32-bit FP IDCT and a fixed-point IDCT for comparison. The bit-
width for fixed-point implementation is according to the 
optimization results in [4]. The area and power are compared in 
Table 3.  

 Area (um2) Power (mw) 

Fixed-point 36905 12.6 

Lightweight FP 66797 18.5 

Standard FP 200905 54.3 

 
 
As we can see from the table, there is significant savings 

(about 70%) in area and power when using lightweight FP units, 
instead of standard floating units. The power consumption of 
lightweight FP IDCT is only 1.5 times of that of the fixed-point 
IDCT, which makes FP IDCT possible for low-power mobile 
applications.  

 
5. REAL-WORLD APPLICATIONS 

 
We have also done experiments on some real-world signal 

processing applications. We notice that applications dealing with 
the modest-resolution human sensory data can actually tolerate 
some computation error in the intermediate or even final results, 
while giving the similar results. A H.263 video decoder and the 
Sphinx speech recognizer, both developed in CMU, are chosen to 
be our benchmarks. In these applications, the variable grouping is 
done in a naïve way that all variables are put in one group, so that 
we can plot the trends of precision degradation with bit-width 
reduction.   
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In a H.263 video decoder, FP operations only appear in the 

IDCT core. We use PSNR (Peak-Signal-to-Noise-Ratio) as an 
objective measure for video quality. As shown in Fig. 6, the 
fraction bit-width can be reduced down to 9 bits without 
noticeable degradation of PSNR. We also note that such reduction 
depends on the quantization step size. The larger the step size, the 
fewer fraction bits are needed, because more computational error 
can be hiden in the quantization noise.  

 In the Sphinx speech recognizer, FP has much more 
occurrence than in the video decoder. The word recognition error 
rate is chosen to be the performance measure. As we can see from 
Fig. 7, the fraction bit-width can be cut down to 4 bits without 
much negative impact on the recognition rate.  

15

20

25

30

23 20 17 14 11 8 5 2
Fraction width

E
rr

or
 %

 
 

 
6. CONCLUSION 

 
We proposed our lightweight FP system design flow of which 

the bit-width optimization engine is a core component. It takes 
both the hardware cost and the numerical performance into 
account, and finds the optimal bit-width configuration. Variable 
grouping enables the designer to give some hardware topology 
information to the optimizer so that the configuration result is 
easier to be mapped onto hardware design.   

Experiments on IDCT demonstrate the proposed design flow, 
including the optimization and hardware implementation. The 
power consumption of our lightweight IDCT is comparable to an 
optimized fixed-point design.  

With preliminary results in real-world applications such as 
video decoding and speech recognition, we believe that our 
lightweight FP design flow will bring more and more signal 
processing algorithms into low-power mobile devices. To apply 
variable grouping and the whole optimization algorithm to other 
applications is our future direction.  
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