
FLOATING-POINT BIT-WIDTH OPTIMIZATION
FOR LOW-POWER SIGNAL PROCESSING APPLICATIONS

Fang Fang, Tsuhan Chen, and Rob A. Rutenbar

Dept. of Electrical and Computer Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{ffang, tsuhan, rutenbar}@ece.cmu.edu

ABSTRACT

To enable floating-point (FP) signal processing applications in
low-power mobile devices, we propose a lightweight FP design
flow that can optimize the bit-width configuration. The
optimization considers both the hardware cost and the numerical
precision. Variable grouping is used to reduce the complexity of
optimization by connecting software description and hardware
implementation. The optimization algorithm is able to avoid local
optima, and multiple-phase optimization helps to reduce the cost
further. We apply the proposed design flow to the design of
inverse discrete cosine transform (IDCT), and show that the
power consumption of our lightweight FP IDCT is comparable to
an optimized fixed-point design. In addition, promising results on
some real-world applications such as video coding and speech
recognition demonstrate that lightweight FP signal processing
will find more and more applications in low-power devices.

1. INTRODUCTION

Digital signal processing has been widely used in mobile

applications, such as video decoding, speech recognition. A lot of
effort must be made to manage the complexity, power
consumption and time-to-market of the modern signal processing
system-on-chip (SoC) designs. However, some DSP algorithms
are computationally intensive, rich in costly FP arithmetic
operations rather than simple logic. FP hardware offers a wide
dynamic range and high computation precision, yet occupies large
fractions of total chip area and energy budget. Therefore, its
usage in low-power applications is highly limited. Many
embedded microprocessors such as the StrongARM do not even
include a FP unit due to its unacceptable hardware cost.

In the real world, fixed-point hardware is used to reduce the
complexity and power consumption at the cost of degraded
precision. However, there is an obvious gap in the design flow:
software designers prototype these algorithms using high-
precision FP operations, while the silicon designers ultimately
implement these algorithms using integer-like hardware, or fixed-
point units. The translation from FP operations to fixed-point
operations often distorts the natural form of the algorithm and
even introduces perceptible artifacts. There is some previous
work studying such translation and fixed-point bit-width
optimization. In [1], it proposes an analytical approach to find the
minimum fixed-point bit-width by the control-dataflow graph, but
it needs the user to annotate the bit-widths of some variables. In
[2], a simulation based optimization algorithm is developed to
find the optimal bit-width configuration.

Even with such fixed-point optimization techniques, the
translation is often a time-consuming procedure and becomes the
bottleneck of the design flow. In order to speed up the design
cycle and broaden FP signal processing applications, we propose
a lightweight FP design flow, to enable the simulation,
optimization and fast implementation of variable bit-width FP

algorithms. As shown in Fig. 1, CMUfloat C++ class provides
the support for variable bit-width (32 bits or less) FP operations
so that the performance of the algorithm can be monitored during
the software simulation stage. The optimization engine configures
the bit-widths for both minimal hardware cost and acceptable
algorithm performance. Then the algorithm can be easily
developed into hardware with a library of variable bit-width FP
arithmetic cores that we have developed, using the standard ASIC
or FPGA flow.

In this paper, we focus on the bit-width optimization engine, as

it is the core of such automated design flow, freeing the designer
from the manual tuning of bit-widths. The cost function in this
optimization engine is related to hardware cost and power
consumption.

 IDCT (Inverse Discrete Cosine Transform) is chosen to
illustrate the effectiveness of the optimization engine and the
whole design flow. As a result, our lightweight FP IDCT
consumes comparable amount of power compared to a fixed-point
implementation as configured in [3].

The paper is organized as follows: Section 2 introduces briefly
the CMUfloat C++ class we use in the simulator and the
optimization engine. Section 3 describes the optimization
algorithm, and an optimization example of IDCT. Section 4
demonstrates the hardware implementation of the lightweight FP
IDCT. Comparisons are made among three implementations:
fixed-point, lightweight FP, and IEEE standard FP IDCT. Section
5 shows the impact of lightweight FP on two applications: video
decoding and speech recognition. Concluding remarks follow in
Section 6.

2. CUSTOMIZABLE CMUfloat C++ LIBRARY

Since the standard C++ does not include variable bit-width FP

data type, we create a customizable C++ library to support the
configuration of the bit-width, rounding modes and exception
handling as well. The data type is called ‘CMUfloat’ and
implemented by overloading existing C++ arithmetic operators
including +, -, *, /, etc. It allows direct operations, including
assignment between ‘CMUfloat’ and any C++ data types other
than char, as shown in Fig. 2. All the typical C++ features, such

Standard C++ FP algorithm

Bit-width optimization engine

C++ lightweight FP algorithm
with optimal bit-width

 CMUfloat
 C++ class

 FP arithmetic
Verilog library Lightweight FP hardware

Fig. 1. Lightweight FP system design flow

as pointer, reference, arrays, casting, and even I/O stream are also
supported. The bit-width of a ‘CMUfloat’ variable can vary from
3 to 32 including sign, fraction and exponent bits and can be
easily specified during variable declaration. In Fig. 3, we show
some examples of using ‘CMUfloat’.

Such implementation of customizable FP C++ class offers two

advantages. First, it provides a transparent mechanism to embed
‘CMUfloat’ numbers in an algorithm. As shown in the example,
designers can use ‘CMUfloat’ just as a standard C++ data type.
Therefore, the overall structure of the source codes can be
preserve. Second, the arithmetic operators are implemented by
bit-level manipulation that carefully emulates the hardware
implementation. Therefore the correspondence between algorithm
and final bit-level hardware is more exact than previous work
[5,6], which appears to have implemented the operators by simply
quantizing the result of standard FP operations into limited bit-
width. Our approach guarantees better consistency with the
hardware implementation. Hence, the numerical performance of
the system during the early algorithm simulation is more
trustworthy.

3. BIT-WIDTH OPTIMIZATION

With the support of CMUfloat, we can easily set the fraction

and exponent bit-widths to be variables, and then let the
optimization engine determine the configuration during the
simulation. Since the exponent width is determined by the
dynamic range, while the fraction width is related to the precision,
we can configure them separately. We notice that if two operands
have different exponent widths, there has to be an extra adder in
hardware to convert the format before the computation. Therefore
we simply choose a uniform exponent bit-width according to the
overall dynamic range observed by the simulation. We then
optimize the fraction width configuration as follows.

3.1 Problem description

The fraction width configuration can be formulated into an

optimization problem.
 minimize cost (f1, f2, …fn)
 under the constraints :

∈…
>=…

[1,23]

21

21

 f, , f f

nt requireme) f , , fe (fperformanc

n

n (1),

where f1, f2, …fn are fraction widths of the variables used in the
signal processing algorithm, and the cost function is a measure
related to the power consumption.

cost =

jj
j

j countexecutiontypeopwidthoppower _)_,_(×∑ (2),

where opj_width and opj_type represent the fraction width and the
type of the jth operation, respectively, and execution_countj is the
number of times this operation is executed. The power
consumption of jth FP operation is determined by opj_type and
opj_width that is the larger value of two operands’ fraction width.
This power model can be built upon the power measurement of
the FP hardware library. This term can be changed to any other
form representing the hardware cost.

Performance(f1, f2, …fn) is an objective measurement of the
numerical precision of the signal processing algorithm, usually in
terms of SNR (signal-to-noise ratio), or MSE (mean square
error).

3.2 Variable grouping

There are usually hundreds of FP variables in a signal

processing algorithm. If we assign a different fraction width to
every single variable, the complexity of the optimization problem
will be unacceptably enormous. Also the large variation among
the resulting fraction widths will make the hardware design more
complex. Signal processing applications usually run on embedded
DSPs or custom designed ASICs, both of which can only afford
one or very few types of FP formats. Therefore variable grouping
according to the hardware implementation topology can help
reduce the number of different fraction widths in the optimization
procedure. In this case, f1,f2…fn in (1) represent the fraction
widths of the variable groups. A variable grouping example will
be shown in 3.4.

3.3 Algorithm description

(a) For each fi , reduce fi to its minimal value that satisfy the

performance requirement, while keeping all the other variables
to be the full width, i.e., 23. Then set each fi at such minimal,
which gives the starting point for the following optimization
procedure.

(b) Check the performance requirement. If it is satisfied, then we
are done.

(c) Starting from the lower bound configuration obtained in (a),
choose the variable to increase the fraction width by one,
according to

>∆
∆

∆

0

 all amongbiggest theis
cos

eperformanc

f
t

eperformanc
i (3)

If none of fi satisfies (3), that means we have entered a local
optimum. No matter which fi we choose to increase by one,

eperformanc∆ is always negative. In this case, we take a big
step by increasing all the fi by one. Repeat (c), until the
performance requirement is satisfied.

(d) Starting from the result of (c), choose variable to decrease the
fraction width by one, according to

Fig. 2. Operators supported by CMUfloat

+
-
*
/

==
>= , >
<=, <
!=

Cmufloat
double
float
int
short

Cmufloat

=

Cmufloat
double
float
int
short

Cmufloat a(14,5,0.5); //14 bit fraction and 5 bit exponent
Cmufloat b=1.5; // Default Cmufloat is IEEE-standard float
Cmufloat c[2]; // Define an array
float fa;

c[1] = a + b; // Operation between Cmufloats
fa = a * b; // Assign the result to float
c[2] = fa + b; // Operation between float and Cmufloat
cout << c[1] << c[2] << endl; // I/O stream

 Fig. 3. Examples of CMUfloat

>=
<∆

∆

trequiremen performanc

 0 cos

 all amongbiggest theis |cos|

t
ift

 (4)

 If none of fi satisfies (4), we are done. Otherwise, repeat (d).

We have studied some fixed-point bit-width optimization

techniques, as indicated in [3]. The best algorithm they have
proved by experiments is called “min+1bit,” which is integrated
into Steps (a), (b), (c) of our algorithm as shown above.
Compared to the algorithm in [3], Step (c) considers both the
hardware cost and the precision performance when choosing the
best fi, instead of only the precision. Also it has some mechanism
to avoid local optima. Step (d) helps to reduce the cost further
while maintaining the performance.

3.4 Optimization of fraction widths on IDCT

To be comparable with previous work [4] on fixed-point

optimization, we choose a multiplier-adder-based topology for
IDCT. As shown in Fig. 4, the diagram is a straightforward
mapping from the source code. In the source code, there are 56 FP
variables that can be divided into 10 groups according to the
implementation diagram.

In the optimization algorithm, we use the MSE (mean square

error) as a performance measure. The maximum allowable MSE
is 0.02, according to the IEEE Standard 1180-1990 [7]. The cost
of each operator is simplified to be type_factor *
operator_fraction_width * execution_count, where the
type_factor is ADD_F for an adder, and MUL_F for a multiplier,
respectively. We will show how the variable grouping and
type_factor affect the optimal configuration.

The first set of experiments is for the variable grouping. We
set ADD_F = ADD_M = 1. Three types of variable grouping are
compared:

Grouping_A : No variable grouping, i.e., each variable can
have a different bit-width.

Grouping_B : 6 groups {a, b}, {c, d}, {e},{g}, {f, h}, {i, j}
Grouping_C: 4 groups {a, b}, {c, d}, {e, g, f, h}, {i, j}
For Grouping_A, fraction widths are distributed from 8 to 13.

The distribution histogram is shown in Fig. 5. It is really hard to
configure the hardware design given such a wide distribution.

0
2
4
6
8

10
12
14
16
18
20

8 9 10 11 12 13
Fraction w idth

 The results for Grouping_B and Grouping_C are reasonably
distinguished. Grouping_C has more uniform bit-width than
Grouping_B because it tries to group more variables together.

Grouping_B: {a, b}, {c, d}, {e}, {g}, {f, h}, {i, j}
 Bit-width : 10 11 10 11 12 11

 Grouping_C: {a, b}, {c, d}, {e, g, f, h}, {i, j}
 Bit-width : 11 11 11 11

So the point of variable grouping is to give some hardware

topology information to the optimization algorithm. If the
hardware has lots of resource reusing, then more variables should
be grouped together.

The second set of experiments is regarding the type_factor.
This time we choose Grouping_C as the variable grouping and
ADD_F = 1. The comparison of two MUL_F’s is shown in Table
2. When the hardware cost of a multiplier is three times of an
adder of the same bit-width, then it tries to use fewer bits for the
multiplier at the cost of more bits for the adder.

 MUL_F = 1 : {a, b}, {c, d}, {e, g, f, h}, {i, j}
 Bit-width : 11 11 11 11

 MUL_F = 3 : {a, b}, {c, d}, {e, g, f, h}, {i, j}
 Bit-width : 10 11 12 11

The variable grouping and the power consumption related cost

function enable the designer to optimize the hardware cost at the
early design stage. Since the simulation is much faster on the
software level, it is beneficial to determine the optimum bit-width
configuration during the software simulation.

4. HARDWARE IMPLEMENTATION OF LIGHTWEIGHT

FP IDCT

In order to demonstrate the efficiency of our lightweight FP

design flow, and the power reduction by narrowing the bit-width,
we design a IDCT according to the diagram and the bit-width
configuration in Section 3 (5 exponent bits + 11 fraction bits for

for (i = 0; i < 4; i++) { // upper half
 dout[i] = 0 ;
 for (j = 0; j< 4; j++) {
 dout[i] += Coeff[i][j] * din[j];
 }
 }
 for (i = 0; i < 4; i++) { // lower half
 dout[4+i] = 0 ;
 for (j = 0; j< 4; j++) {
 dout[4+i] += Coeff[4+i][j] * din[4+j];
 }
 }
 // post-processing
 for(i = 0 ; i < 4 ; i++)
 y[i] = (dout[i] + dout[i+4])/2 ;
 for(i = 0 ; i < 4 ; i++)
 y[7-i] = (dout[i] - dout[i+4])/2 ;
 a

b

d

c

e

f

h

g
j

Fig. 4. Source code and diagram of IDCT

Table 1. Results of Variable grouping

Table 2. Type factor

Fig. 5. Histogram of fraction width distribution

all the variables). It is synthesized with the plug-in parametric FP
arithmetic cores in our Verilog library and is measured the area
and power consumption. We also implement an IEEE standard
32-bit FP IDCT and a fixed-point IDCT for comparison. The bit-
width for fixed-point implementation is according to the
optimization results in [4]. The area and power are compared in
Table 3.

 Area (um2) Power (mw)

Fixed-point 36905 12.6

Lightweight FP 66797 18.5

Standard FP 200905 54.3

As we can see from the table, there is significant savings

(about 70%) in area and power when using lightweight FP units,
instead of standard floating units. The power consumption of
lightweight FP IDCT is only 1.5 times of that of the fixed-point
IDCT, which makes FP IDCT possible for low-power mobile
applications.

5. REAL-WORLD APPLICATIONS

We have also done experiments on some real-world signal

processing applications. We notice that applications dealing with
the modest-resolution human sensory data can actually tolerate
some computation error in the intermediate or even final results,
while giving the similar results. A H.263 video decoder and the
Sphinx speech recognizer, both developed in CMU, are chosen to
be our benchmarks. In these applications, the variable grouping is
done in a naïve way that all variables are put in one group, so that
we can plot the trends of precision degradation with bit-width
reduction.

27

31

35

39

581114172023

Fraction width

PS
N

R Quantization
step size = 4

Quantization
step size = 8

Quantization
step size = 16

In a H.263 video decoder, FP operations only appear in the

IDCT core. We use PSNR (Peak-Signal-to-Noise-Ratio) as an
objective measure for video quality. As shown in Fig. 6, the
fraction bit-width can be reduced down to 9 bits without
noticeable degradation of PSNR. We also note that such reduction
depends on the quantization step size. The larger the step size, the
fewer fraction bits are needed, because more computational error
can be hiden in the quantization noise.

 In the Sphinx speech recognizer, FP has much more
occurrence than in the video decoder. The word recognition error
rate is chosen to be the performance measure. As we can see from
Fig. 7, the fraction bit-width can be cut down to 4 bits without
much negative impact on the recognition rate.

15

20

25

30

23 20 17 14 11 8 5 2
Fraction width

E
rr

or
 %

6. CONCLUSION

We proposed our lightweight FP system design flow of which

the bit-width optimization engine is a core component. It takes
both the hardware cost and the numerical performance into
account, and finds the optimal bit-width configuration. Variable
grouping enables the designer to give some hardware topology
information to the optimizer so that the configuration result is
easier to be mapped onto hardware design.

Experiments on IDCT demonstrate the proposed design flow,
including the optimization and hardware implementation. The
power consumption of our lightweight IDCT is comparable to an
optimized fixed-point design.

With preliminary results in real-world applications such as
video decoding and speech recognition, we believe that our
lightweight FP design flow will bring more and more signal
processing algorithms into low-power mobile devices. To apply
variable grouping and the whole optimization algorithm to other
applications is our future direction.

7. REFERENCES

[1] M.Willems, V. Bursgens, H. Keding, T. Grotker and H. Meyr,

“System level fixed-point design based on an interpolative
approach”, DAC, 1997. Proceedings of the 34th, pp 293-298

[2] K. Kum, J. Kang and W. Sung, “AUTOSCALER for C: An
optimizing FP to integer C program converter for fixed-point
digital signal processors,” IEEE Trans. Circuits. Syst., vol. 47,
Sep.2000, pp 840-848

[3] M-A. Cantin, Y. Savaria, D. Prodanos and P. Lavoie, “An
automatic word length determination method”, Circuits and
Systems, 2001. ISCAS, vol. 5, pp 53 -56

[4] S. Kim; K. Kum, and W. Sung, “Fixed-point optimization
utility for C and C++ based digital signal processing
programs”,
Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Trans., vol 45, Nov. 1998, pp 1455-1464

[5] D.M. Samanj, J. Ellinger, E.J. Powers, E.E. Swartzlander,
“Simulation of variable precision IEEE floating point using
C++ and its application in digital signal processor design,”
Circuits and Systems, Proceedings of the 36th Midwest
Symposium on, 1993, pp.1509-1514

[6] R. Ignatowski, E.E. Swartzlander, “Creating new algorithm
and modifying old algorithms to use the variable precision
floating point simulator,”� Signals, Systems and Computers,
1994 Conference Record of the Twenty-Eighth Asilomar
Conference on , vol. 1 , 1994, pp152-156

[7] “IEEE-standard specifications for the implementations of 8X8
inverse discrete cosine transform,” IEEE Std 1180-1990,
Institute of Electrical and Electronics Engineers, Inc, 1990

Table 3. Comparison of three IDCTs

Fig. 7. Bit-width reduction for Sphinx speech recognizer

Fig. 6. Bit-width reduction for video decoder

