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ABSTRACT 
 

During the development of floating-point signal 
processing systems, an efficient error analysis method is 
needed to guarantee the output quality. We present a novel 
approach to floating-point error bound analysis based on 
affine arithmetic. The proposed method not only provides 
a tighter bound than the conventional approach, but also is 
applicable to any arithmetic operation. The error 
estimation accuracy is evaluated across several different 
applications which cover linear operations, non-linear 
operations, and feedback systems. The accuracy decreases 
with the depth of computation path and also is affected by 
the linearity of the floating-point operations.  
 
 

1. INTRODUCTION 
 

With the constant advance in VLSI technology, more and more 
floating-point signal processing algorithms are being ported from 
software solutions, with virtually infinite precision, to hardware 
solutions where precision is highly limited by the low-power 
constraint. Custom floating-point format for video, audio and 
speech applications and its benefit in power saving are studied in 
[1-3]. In order to prevent numerical catastrophe and assist design 
decision making, a method that can keep track of floating-point 
error is needed during the system development. Unlike the case 
of fixed-point arithmetic, where the round-off error could be 
modeled as a white noise sequence independent of the input 
signal, the round-off error in floating-point arithmetic is strongly 
correlated with the signal magnitude determined only at run-
time, which complicates the error analysis.   

Research in floating-point error analysis has been going on for 
about three decades. Previous publications take approaches that 
fall into two categories. One is to predict statistical property of 
the computed signal, namely error variance, given the system 
transfer function H(z) [5-9]. The other is to estimate the error 
bound based on floating-point error propagation models [10]. 
However, both of them have limitations when applied to the 
current scenario. In [5], a floating-point round-off error variance 
model is introduced for digital filters, which requires H(z) and 
the autocorrelation matrix of the inputs. More recently, a 
simplified model is proposed in [9] based on the same 
methodology. The main drawback of these statistical approaches 

is that the derivation of the model is only applicable to vector 
inner products, and is not scalable to a larger set of signal 
processing algorithms involving operations such as division, 
square, square root, etc. Further, knowing only the error variance 
is not enough to avoid numerical failures coming from the worst 
case error. For example, in the IEEE standard for the 
implementation of Inverse Discrete Cosine Transform in image 
and video processing, both the peak error and the mean square 
error are considered [11]. On the other hand, error bound 
estimation presented in [10] employs interval arithmetic (IA) to 
build round-off error bound propagation models for not only 
addition and multiplication, but also for division and square 
root. Although its accuracy is not shown in the paper, it is very 
likely to lead to unacceptable overestimation given the fact that 
IA performs poorly when signals have correlations among each 
other.  

In this paper, we develop an error bound analysis method that 
not only gives a tighter bound than previous work regardless of 
correlations between signals, but also is applicable to more 
floating-point computations than just vector inner products. We 
present a novel approach based on affine arithmetic, a recent 
development in range arithmetic, and show its advantages over 
previous approaches in terms of accuracy and scalability.  

The remainder of the paper is organized as follows. In Section 
2, background on range arithmetic is briefly introduced. Based 
on the affine arithmetic (AA) model in range arithmetic, we 
present our AA-based floating-point error model in section 3. 
Section 4 provides experimental results to show the accuracy and 
applicability of the proposed method. More discussions about 
related issues are given in section 5. Finally, some concluding 
remarks are given in Section 6.   

 
2. BACKGROUND – RANGE ARITHMETIC 

 
Range arithmetic is widely used in approximate numerical 
computations. It also plays an important role in floating-point 
error analysis due to the following reasons. First, in order to 
keep track of the error bound of each quantity during 
computation, ideally, an accurate estimate of the quantity value 
is required, because the floating-point error bound strongly 
depends on the magnitude of the quantity [4]. However, such 
information is impossible to obtain prior to run-time. Therefore, 
a less accurate, but more practical feature - range of the quantity 
- is estimated and propagated through computations.  Second, 
estimated error can be expressed as either a single value (bound), 



or a range. By choosing range as a representation of error, we are 
able to model the error propagation more precisely, with the help 
of range arithmetic. 

2.1 Interval Arithmetic 

Interval arithmetic (IA), also known as interval analysis, is 
invented in the 1960s by Moore [12] as a simple tool to solve 
range problems. The interval of quantity x is represented 
by ].,.[ hixloxx = , meaning that the “true” value of x is known to 
satisfy x.hi. xx.lo ≤≤  

For each operation f: Rm → R, there is a corresponding range 
extension RR: f m → . An important property of the range 
extension is the fundamental invariant: 

  )()(      xfxfxx ∈⇒∈  
The fundamental invariant guarantees that the operation output 
lies in the range estimated by the range extension. For example, 
the sum of two intervals x and 

y
 is computed as 

 (1)  ] .[  .hiy.hix.lo, ylox yx z ++=+=  
According to the fundamental invariant, the value of quantity z 
lies in the interval z . Analogous formulas can be derived for 
multiplication, division, square root, and all other common 
mathematical functions [13].   

The main problem of IA is overestimation, especially when 
intervals are correlated with each other. To illustrate the 
problem, suppose in (1) x = [-1, 1], y = [-1, 1], and the 
quantities x and y have the relation y = -x. According to (1), z = 
[-2, 2], while z = x + y ≡ 0! The effect of overestimation 
accumulates along the computation chain, and finally may result 
in range explosion.   

2.2 Affine Arithmetic  

Affine arithmetic (AA), or affine analysis, is developed as a 
solution to the overestimation in IA. It not only keeps track of 
intervals, but also preserves correlations between them. In affine 
arithmetic, a quantity x is represented by an affine form x̂ , which 
is a first-degree polynomial:  

1 1-    with  ...ˆ i22110 ≤≤++++= εεεε nnxxxxx       (2) 
Each noise symbol iε  stands for an independent component of 
the total uncertainty of the quantity x; the corresponding 
coefficient xi gives the magnitude of that component. The source 
of the uncertainty may be either “external” (due to variation of 
the quantity, numerical approximation), or “internal” (due to 
arithmetic round-off or other numerical errors committed in the 
computation of x̂ ) [13].  Similar to IA, affine arithmetic also has 
the fundamental invariant property.  

For the linear operations xaxayx ˆ and ,ˆ,ˆˆ ±± on affine 
forms yx ˆ,ˆ and real number a, the resulting affine forms are 
easily obtained by applying (2). For any other operation f: Rm → 
R, the resulting function ),...( 1

*
nf εε is no longer a linear 

combination of iε . In order to preserve the affine form of the 
result, we first select an approximate linear function 

),...( 1 n
af εε according to a certain rule, e.g. Chebyshev 

approximation theory, then a new noise term kε indicating the 
approximation error is estimated and added to the final affine 
form.  

The key feature of the AA model is that the same noise 
symbol may contribute the uncertainty of two or more quantities, 
indicating the correlations among them. This advantage of AA is 

especially noticeable in computations subject to range 
cancellation or of great arithmetic depth. In the example in 
Section 2.1, x and y have the following affine forms 

 εε 10ˆˆ  and   10ˆ −=−=+= xyx  
The resulting affine form yxz ˆˆˆ += = 0 perfectly agrees with 

the range that the quantity z actually falls in. To show the 
difference between IA and AA along a computation chain, we 
apply both on the Inverse Discrete Cosine Transform (IDCT), 
implemented according to the structure in [14] and fed by inputs 
generated in the range [-128, 128]. There are six stages along the 
computation path, including the inputs and the outputs. Fig. 1 
shows the range for each stage in a particular path. Thanks to the 
extra information embedded in the affine form about the 
correlations, the ranges estimated by AA grow much slower than 
those by IA.  

 
 
 
 
 
 
 
 
 
 

 
3. FLOATING-POINT ERROR MODELS USING 

AFFINE ARITHMETIC 
 
Floating-point representations are computer approximations of 
real numbers, with errors caused by input quantization, or 
rounding committed at each arithmetic operation. In this section, 
we first review a conventional model that people have been 
using to analyze floating-point error. We then develop a new 
model that nicely fits into the affine form for any arithmetic 
operation.  

3.1 Conventional error models 

Throughout the paper, we assume that floating-point numbers 
are stored in the form (sign)·µ·2ν, where ν is called the exponent, 
and µ, with the value between 1 and 2, is called the mantissa.. 
For each input quantity x, xf  denotes its floating-point 
approximation. The notation fl(·) is the floating-point 
approximation for an operation. The approximations by input 
quantization and rounding (real rounding is assumed in the 
paper) are modeled as the following [4, 5]:     
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, where the error variables βα , are usually assumed to be 
uniformly distributed within [-2-q, 2-q], where q is the number 
bits used in the mantissa.  

3.2 AA-based error models  

If the quantity x is distributed in a range and represented by an 
affine form 110 εxxx += , from (3) we can see that the error of x 
is bounded by max(|x|)·2-q. In this case, xf  can be written in the 
affine form 

4498 
1913 
 

IA: range explosion 

AA: tighter interval 

Fig. 1 Estimated range growth in a computation path in 
IDCT 



  ]1 ,1[,   ,2|)max(| ˆ 111110 −∈⋅⋅++= − δεδε q
f xxxx   (5) 

We call 1ε the variation symbol and 1δ  the error symbol 
according to their different causes.   

For any operation f: Rm → R, the output quantity z can also 
have an affine form. Here we use a binary operation 

)( yxfz o= to illustrate. According to (4), the error of z has a 
bound of max(|z|)·2-q. Therefore the affine form for zf is  

1] [-1,    ,2|)max(|)ˆˆ(ˆ ∈⋅⋅+= − δδq
fff zyxz o ,     (6) 

As discussed in the last section, the first term )ˆˆ( ff yx o  is 
either in a precise affine form, or an approximate affine form, 
depending on the linearity of the operation. Combining (5) and 
(6), for any quantity (input, output, or intermediate result) during 
floating-point computations, it can be represented in an affine 
form  

 ]1 ,1[,     ,ˆ 0 −∈∑ ∑++= iii
i i

iiif wvuu δεδε  
, where the variation symbol iε  denotes the variations from all 
related input quantities, and the error symbol iδ represents the 
errors from input quantization, rounding, and affine 
approximation.  

If two or more quantities share the same error symbol, it is 
possible for them to be cancelled during computation. Hence, 
error analysis using AA is more accurate than using IA. 
Differences between them on the same example, IDCT, are 
shown in Fig. 2. Six vertical bars are the estimated error range 
for each stage along a computation path. The error ranges 
estimated by AA are much tighter than those by IA.  

 
 
 
 
 
 
 
 

 
 

4. EXPERIMENTAL RESULTS 
 
Based on the AA floating-point error model, we build a C++ 
library that automatically keeps track of the floating-point errors. 
We test the applicability and accuracy of the proposed error 
analysis method on several frequently-used signal processing 
tasks, among which Walsh-Hadmard Transform (WHT), FIR and 
IDCT are all essentially linear transforms, or vector inner 
products. To show that the AA error analysis is also applicable 
to non-linear operations, we conduct an experiment on the 
Gaussian distribution distance calculation task 
( ∑ −=

i
ii vmxy /)( 2 ) commonly used in pattern recognition 

algorithms. In addition, IIR filter is evaluated as an example of 
feedback systems.  

4.1 Accuracy  

To evaluate the AA-based error analysis, we define 
  Accuracy = real error / estimated error 

, where the real error is obtained by measuring the maximum 
difference between a 64-bit double precision result and a 16-bit 
custom floating-point result, simulated using Cmufloat custom 
floating-point library [1, 2].  

Since the estimated error provides an error bound, it is always 
expected to be larger than the real error. The closer this 
measurement is to 1, the more accurate the error analysis. 

 

  # of  adds # of mults AA  accuracy 

WHT4 3 0 0.958 
WHT64 63 0 0.799 

FIR (4-tap) 3 4 0.777 
FIR (25-tap) 24 25 0.564 

IDCT8 13 6 0.473 

Dist.  calc. 11 4 0.39 

 Table 1. Accuracy of  AA-based error analysis 

In Table 1, we show the accuracy of six benchmarks. Their 
accuracy is affected by the number of arithmetic operations 
along the computation path and the linearity of the operations. 
Comparing WHT and FIR, we can see that multiplications 
reduce the accuracy more than additions because of the affine 
approximations taken in multiplications [13]. Gaussian distance 
calculation has the lowest accuracy since it involves non-linear 
operations.  

We also obtain the error analysis accuracy of IDCT using IA-
based method. The AA-based error analysis is significantly 
better (124%) than the IA-based method due to a large number 
of correlations. For example, in the IDCT structure shown in 
Fig. 3, two quantities denoted by the grey dots are correlated 
because they are both dependent on x1.  This is where 
overestimate in the IA-based method takes place.  
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4.2 Applying to feedback systems   

Results by IA 

Fig. 2 Estimated error ranges in a computation path in IDCT 
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Fig. 3 Structure of IDCT 

Fig. 4 Accuracy of error analysis on IIR filters 



As the error estimation accuracy decreases with the depth of the 
computation chain, one may ask whether this method is suitable 
for a feedback system which can be viewed as having infinite 
computation depth. We conduct the experiment on an IIR filter 
with poles inside the unit circle. It's specified by 

)2( 2
2

1 −− +−−= nnnn yyxy ρρ . We find that after a sufficient 
amount of time, the estimated error converges (the error range 
stops growing). The accuracy of the asymptotic error and the 
convergence time depends on the location of the poles, as 
depicted in Fig. 4. The larger the ρ, the past computations have 
more influence on the present computation. Therefore it takes 
longer to converge and results in worse accuracy.   

 
5. DISCUSSION 

 
In all the experiments above, the inputs are generated according 
to uniform distribution assumption. A different distribution of 
real application data will certainly worsen the error estimation. 
In the same IDCT experiment, if the inputs are from a Gaussian 
distribution, the accuracy is decreased from 0.473 to 0.304. The 
performance can be boost by feeding a histogram, not just a 
range of the inputs. The result is a histogram of error in this case. 
The final error bound is chosen to cover 90% confidence 
interval. From Table 2, we show the accuracy is improved to 
0.987 by having a 5-bin histogram. However, the runtime grows 
exponentially with the number of bins. Hence, it's not worth 
having even more complicated histogram. 
 

 Accuracy runtime (sec) 

Simple analysis 0.304 0.03 

3-bin histogram 0.822 5 

5-bin histogram 0.987 13889 

    Table 2. AA error analysis with histogram inputs 

The AA-based error estimation can also be used in floating-
point custom format optimization. In the optimization algorithm 
proposed in [2], it relies on simulation to evaluate the goodness 
of the current format setting. This time-consuming step can be 
replaced by static error estimation. Although it does not have 
100% accuracy, the final format can be achieved by a little local 
tuning after the optimization. Further, by using AA-based error 
estimation, it is very easy to determine which quantity 
contributes the most in the final error, and hence where to 
allocate more bits in the next iteration during the optimization.  

Finally, we want to point out that similar fixed-point error 
models can also be built upon affine arithmetic. Since the 
quantization and round-off error in fixed-point arithmetic is 
independent on the magnitude of the quantity, the AA-based 
fixed-point error models will be simpler than floating-point 
arithmetic.  

 
6.  CONCLUSION 

 
In this paper we have described a novel approach to 

analyze floating-point propagation errors using affine 
arithmetic. A general affine form is developed for floating-
point error bound estimation independent of the type of 

operations.  We have shown that the advantage of this 
method is significant when a large number of correlations 
are involved in the intermediate computations. However, 
the accuracy decreases with the computation complexity 
and is also affected by the linearity of the computations. It 
is also applicable to feedback systems, with convergence 
time and accuracy dependent on the pole positions. In case 
of non-uniform distributed inputs, the accuracy can be 
boost by feeding histogram inputs. 

Armed with the AA-based error model, we can 
integrate error analysis and custom format optimization 
together for both floating-point and fixed-point arithmetic, 
and ultimately provide a powerful developing environment 
for signal processing algorithms.  
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