
CARNEGIE MELLON UNIVERSITY

REPRESENTATIONS, FEATURE EXTRACTION,
MATCHING AND RELEVANCE FEEDBACK FOR

SKETCH RETRIEVAL

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
for the degree

DOCTOR OF PHILOSOPHY

in
ELECTRICAL AND COMPUTER ENGINEERING

by

Howard Wing Ho Leung

Pittsburgh, Pennsylvania
June, 2003

Abstract

Sketching is a natural way of input that provides an effective means of illustration.

A sketch consists of multiple strokes that can be captured by pen-based devices to be

stored in a database for future retrieval. Linear browsing is not feasible when the number

of sketches in the database becomes large. Not only do we need a tool in retrieving

sketches, but also we need an efficient system that can provide retrieval result with high

recall and high precision. In this thesis, we propose a novel approach that includes

several aspects in improving the sketch retrieval performance. Given a sketch, we

propose to have multiform representations of this sketch in order to find at least one

consistent representation when it is compared against other similar sketches under user

variations. We then propose to perform coarse-to-fine feature extraction in order to

capture the characteristics of the sketch at various levels. We build a classifier in shade

region detection for hand-drawn sketches and for images. When two sketches are

compared, we propose to have global and local matching that computes the similarity not

only based on the shape information, but also based on other criteria such as spatial

relations and the structures. In addition, we propose to extend traditional single

component relevance feedback to multiple component relevance feedback in order to

refine the retrieval result based on the user feedback. Finally, we will show our

approaches for solving the partial matching problem. In the last part of this thesis we will

show several prototypes that we have been implementing in order to demonstrate how

sketch retrieval can be applied in real applications.

 ii

Acknowledgements

I would like to start by thanking my advisor Prof. Tsuhan Chen who has been so

supportive during my Master and my PhD programs. He provides me with good

guidance and leads me to explore different research directions. Under his supervision,

not only do I learn how to solve problems, but also learn how to solve them in an

efficient manner. In addition, he also has provided me a lot of feedback to improve my

presentation skills. Throughout our group and individual meetings, he teaches us how to

communicate effectively so that we can become good teachers ourselves. I have learnt

how to become a successful researcher and I hope to carry on to make contributions to

our community. I am very fortunate to become his student and join his group.

I would also like to thank Prof. B. V. K. Vijaya Kumar and Prof. Christos

Faloutsos, Prof. S. K. Chang and Dr. Zon-Yin Shae for spending their valuable time as

my thesis committee members. I would like to thank them for all the fruitful discussions

that improve the quality of this work. It was a great experience to have been in the

Electrical and Computer Engineering department at Carnegie Mellon University, in this

atmosphere where I have the opportunity to meet many great faculties, staff and students.

Besides, I would like to thank Dr. Belle Tseng for teaching me so many things during my

summer interns.

My current and previous group mates Fu Jie Huang, Ta-Chien Lin, Deepak

Turaga, Trista Chen, Xiaoming Liu, Cha Zhang, Claire Fang, Wende Zhang, Edward Lin,

Sam Chen, Jessie Hsu, Simon Lucey, Jack Yu, Kate Shim, Avinash Baliga and Michael

 iii

Kaye broaden my views through the exchange of research ideas. I have developed the

sense of belonging and I am proud to be in this AMP (Advanced Multimedia Processing)

group. In addition to my group, I also enjoyed hanging out and doing fun activities with

other ECE friends such as Pinky Pongbaipool, Poj Tangamchit, Wee-Seng Soh, Ece

Guran etc...

I would like to give my special thanks to my distant friends Kit Shan Li and Jenny

Li who have made me understand many things in life and have given me a lot of moral

support. In addition, I also thank Wai-Yee Chan, Apple Cheung, Elsa Luu and Quan

Tran for the encouragement especially when I was facing difficult moments. I cannot

possibly list all my friends’ names here but I would like to thank them all.

Finally, I would like to thank my family: my father, my mother and my brothers.

Although they live in other places, they have always been there for me to provide me

with support. I dedicate this thesis to my parents.

 iv

Table of Contents

1. Introduction... 1

1.1. Multiform Representations .. 3

1.2. Coarse-To-Fine Feature Extraction ... 4

1.3. Global And Local Matching .. 4

1.4. Multiple Component Relevance Feedback .. 5

2. Fundamentals of Sketch Retrieval .. 7

2.1. Capture Device for Sketches.. 8

2.1.1. Mouse and Monitor... 9
2.1.2. Tablet and Monitor ... 9
2.1.3. Wireless Pen and Paper Pad.. 10
2.1.4. Wireless Pen, Physical Whiteboard and Projector.. 11
2.1.5. Stylus and Touch Screen... 12

2.2. Storage Format for Shared Whiteboard ... 13

2.2.1. Image .. 13
2.2.2. Strokes .. 14

2.3. System Overview for Sketch Retrieval.. 14

2.3.1. Preprocessing Stage .. 16
2.3.2. Feature Extraction Stage... 16
2.3.3. Matching Stage ... 17
2.3.4. Refinement Stage.. 18

2.4. Data Collection .. 18

2.5. Experiment Setup... 20

2.6. Evaluation Criteria... 20

3. Multiform Representations ... 23

3.1. Resampling .. 24

3.2. Splitting.. 25

3.3. Merging.. 28

 v

3.4. Experiment and Result... 32

4. Coarse-To-Fine Feature Extraction .. 39

4.1. Shade Detection ... 40

4.1.1. Shade Detection Algorithm .. 41
4.1.2. Shade Detection Parameters ... 44

4.2. Stroke Hierarchy Construction .. 45

4.3. Hyper-Stroke Feature Extraction ... 47

4.4. Spatial Relations .. 49

4.5. Primitive Shape Feature Extraction ... 50

4.5.1. Line Likelihood and Features ... 51
4.5.2. Polygon Likelihood and Features ... 53
4.5.3. Circle Likelihood and Features... 56
4.5.4. Non-Primitive Shape Likelihood and Features... 58
4.5.5. Heuristic Scalar Weights .. 59

4.6. Appendices... 60

4.6.1. Appendix A: Simplified Shade Detection for Sketches.. 60
4.6.2. Appendix B: Shade Detection For Images.. 61

5. Global And Local Matching ... 65

5.1. Multiple Component Feature Correspondence .. 65

5.2. Similarity Functions... 69

5.2.1. Stroke Hierarchy Similarity .. 69
5.2.2. Hyper-Stroke Similarity.. 70
5.2.3. Spatial Relation Similarity.. 71
5.2.4. Shape Similarity.. 72
5.2.5. Overall Similarity ... 72

5.3. Experiment and Result... 75

6. Multiple Component Relevance Feedback... 80

6.1. Query Feature Movement .. 81

6.1.1. Object with Single Component... 81
6.1.2. Extension to Object with Multiple Components... 83

6.2. Weight Updating.. 85

6.3. Experiments and Results.. 86

 vi

7. Partial Matching.. 91

7.1. Matching Schemes... 93

7.1.1. Dynamic Programming... 93
7.1.2. Bistroke Matching .. 94

7.2. Experiment and Results ... 95

8. Applications .. 98

8.1. Sketch Retrieval for Virtual Whiteboard ... 98

8.2. Trademark Retrieval .. 99

9. Summary and Future Directions... 101

Bibliography ... 105

 vii

List of Tables

Table 1 Shade Detection Parameters .. 45
Table 2 Heuristic Scalar Weights ... 60

 viii

List of Illustrations
Figure 1 Tablet manufactured by WACOM .. 10
Figure 2 SmartPad manufactured by Seiko Instruments ... 11
Figure 3 mimio and the projected whiteboard display.. 12
Figure 4 Tablet PC manufactured by Acer .. 13
Figure 5 Block diagram of our sketch retrieval system... 15
Figure 6 All 37 classes of sketches ... 19
Figure 7 Some classes of sketches drawn by different people..................................... 20
Figure 8 Illustration of recall-precision evaluation criteria.. 21
Figure 9 Recall-precision graph .. 22
Figure 10 Equi-distance resampling... 25
Figure 11 System diagram for getting the signal used for dominant point detection

... 25
Figure 12 Flow chart for dominant point detection... 27
Figure 13 Example sketches after splitting... 28
Figure 14 Connectivity between a pair of strokes.. 28
Figure 15 Example strokes for demonstrate closed contour detection 31
Figure 16 Comparison between the multiform representations................................. 31
Figure 17 Retrieval performance with multiform representations 33
Figure 18 Multiform representations for some sketches in class 4 34
Figure 19 Retrieval performance for Class 4 ... 34
Figure 20 Multiform representations for some sketches in class 36 35
Figure 21 Retrieval performance for Class 36 ... 36
Figure 22 Multiform representations for some sketches in class 6 37
Figure 23 Retrieval performance for Class 6 ... 38
Figure 24 Different levels of features .. 39
Figure 25 Example sketches with shaded regions .. 40
Figure 26 Shaded region with part of the shade falls out of the boundary 43
Figure 27 Shaded regions with different sizes .. 45
Figure 28 A sketch and its corresponding stroke hierarchy 47
Figure 29 Relationship between a stroke hierarchy and a hyper-stroke 48
Figure 30 Spatial Relations .. 50
Figure 31 Example primitive shape features.. 50
Figure 32 Illustration of average inverse height ratio ... 51
Figure 33 Line likelihood values of some strokes... 53
Figure 34 Polygon likelihood of some strokes .. 54
Figure 35 Illustration of estimated radius .. 57
Figure 36 Circle likelihood values of some strokes .. 58
Figure 37 Feature space for deciding shaded vs. non-shaded region......................... 61
Figure 38 Example images with and without solid regions... 62
Figure 39 Example regions that are suitable for edge extraction and for thinning,

and their corresponding skeleton superimposed on the contour 63
Figure 40 Contour-skeleton classification criterion... 64
Figure 41 Matching between multiple components given the cost matrix 66

 ix

Figure 42 Example sketches to demonstrate spatial relations 67
Figure 43 Stroke hierarchy similarity... 70
Figure 44 Unified system with representation, feature extraction and matching..... 73
Figure 45 Comparison of retrieval performance with other approaches 75
Figure 46 Example Sketches in the Class “Sign – traffic light ahead” 77
Figure 47 Example Sketches in the Class “Sign below traffic light” 77
Figure 48 Comparison of retrieval performance for stroke hierarchy...................... 77
Figure 49 Sketches in the Class “Wall Socket” .. 78
Figure 50 Comparison of retrieval performance for hyper-stroke similarity........... 79
Figure 51 System diagram for relevance feedback .. 80
Figure 52 Relevance feedback for objects with a single component 83
Figure 53 Relevance feedback for objects with multiple components 85
Figure 54 Retrieval performance for relevance feedback with only weight updating

by varying number of iterations .. 87
Figure 55 Retrieval performance for relevance feedback with only query moving by

varying number of iterations ... 88
Figure 56 Retrieval performance for relevance feedback with both query moving

and weight updating by varying number of iterations .. 88
Figure 57 Retrieval performance for relevance feedback with only weight updating

by varying number of examples... 89
Figure 58 Retrieval performance for relevance feedback with only query moving by

varying number of examples.. 90
Figure 59 Retrieval performance for relevance feedback with both query moving

and weight updating by varying number of examples .. 90
Figure 60 Retrieval with whole matching ... 91
Figure 61 Retrieval with partial matching ... 92
Figure 62 Two example pages in the database ... 96
Figure 63 Retrieval performance for partial matching... 97
Figure 64 Prototype of free-form hand-drawn sketch retrieval system 98
Figure 65 Trademark retrieval user interface ... 100

 x

1. Introduction

Pen computing has become more and more important in our society [40] due to

the popularity of pen-based devices such as TabletPC [1] that recently came out. Pen-

based devices provide users with a natural way of input for drawing sketches. A sketch

can consist of handwritten notes, symbols, free-form hand-drawings, annotations on a

document etc. It will be very useful to store the sketches in a database and then retrieve

them later by providing a simple sketch query. For example, in a classroom, the teacher

may write and draw the lecture notes on the whiteboard that can be captured and stored in

a database. Later students can retrieve relevant lecture sketches from the database by

drawing a sketch as the query.

Query by sketch falls into the category of content-based image retrieval (CBIR).

QBIC [14] was the first CBIR system and it also supports query by sketch. Global

features such as area, circularity, eccentricity, etc., are used in shape matching.

Matusiak et al. [33] proposed another approach to sketch-based images database retrieval

by using Curvature Scale Space (CSS) to match contours. In Sciascio and Mongiello’s

system [41], the Fourier descriptors are used for shape comparison and they use relevance

feedback to improve the retrieval performance for content-based image retrieval over the

web. All the above systems assume that the query consists of a single shape.

Lopresti et al. [29][30] reported their work on matching hand-drawn pictures that

they call “pictograms”. This approach has a drawback that it treats the same hand-

drawings with different stroke orders as a poor match. In order to make the system less

 1

sensitive to the stroke order, Lopresti and Tomkins [31][32] proposed to match the strings

block by block. However, poor match may still result if a stroke is drawn in reverse

direction (i.e., when the start point and the end point of a stroke interchange). Under

these approaches, string matching is performed for the alignment based on the time

sequence. They may work well for handwritings or pen gestures [28] when the strokes

have certain sequence pattern but may not be suitable for unstructured free-form hand-

drawings.

The Query by Visual Example (QVE) reported by Kato et al. [19] used correlation

of the corresponding blocks between the edge maps for evaluating similarity. Due to the

variations in drawing style, this correlation approach will hardly match two rough

sketches. Del Bimbo and Pala [11] proposed to use elastic matching to retrieve images

from the database based on the user sketch. However, this energy minimization

technique may be too time consuming when it requires many iterations for the solution to

converge.

In our prior work [23], we proposed a retrieval method for hand-drawn sketches.

It is based on string matching by the alignment of the spatial order among the boundaries

of the minimum bounding rectangles of the strokes in each of the x and y projections. In

[24], we included the similarity in spatial relations between strokes in the computation of

the overall similarity score. We have introduced another application of query by sketch

in trademark retrieval [25].

The focus of this thesis is on finding an efficient sketch retrieval method to

improve the retrieval performance in terms of archiving relevant materials from the

database with minimum number of trials. Specifically, we target on developing novel

 2

approaches in different aspects of the retrieval system. Given a sketch, we propose to

create multiform representations of this sketch in order to find at least one consistent

representation when it is compared against other similar sketches under user variations.

We then propose to perform coarse-to-fine feature extraction in order to capture the

characteristics of the sketch at various levels. When two sketches are compared, we

propose to perform global and local matching that computes the similarity not only based

on the shape information, but also based on other criteria such as spatial relations and the

structures. Finally we propose to extend traditional single component relevance feedback

to multiple component relevance feedback in order to refine the retrieval result based on

the user feedback.

1.1. Multiform Representations

Different people may draw the same sketch in a different way due to variations in

style. Moreover, sometimes even the same person may draw the same sketch differently

due to user inconsistency. In some shape recognition approach, dominant points are

detected from the contour in order to be used as feature points. On the other hand, in

handwriting recognition, similar method has been proposed to split or merge the strokes

in order to have a better representation for improving the recognition result. However,

variations in general sketches are much more than a specific domain of handwritings

therefore it is unlikely to find a good criterion for splitting and merging the strokes to

form a single consistent representation. As a result, we propose to create multiform

representations for each sketch. From the original representation of a sketch, we try to

split the strokes into smaller stroke segments based on the dominant points to obtain the

split representation. Then from the split representation, the stroke segments are merged if

 3

they form a primitive shape to form the merged representation. We show that by

combining all three representations the retrieval performance is better than each single

representation.

1.2. Coarse-To-Fine Feature Extraction

We propose a to extract features in a coarse-to-fine manner. After preprocessing,

the stroke hierarchy is constructed to capture the structural information of the sketch.

The strokes are analyzed in order to detect for any shaded regions. We introduce a novel

concept of hyper-stroke that is defined by a group of strokes inside a region enclosed by a

boundary stroke. A hyper-stroke can be formed from strokes of a shaded region or it can

also be derived from the stroke hierarchy. Coarser features representing those of a group

of strokes are extracted from each hyper-stroke. On the other hand, finer features

represented by primitive shape features are extracted from each basic stroke.

1.3. Global And Local Matching

We propose to compare the features at different levels in order to match them

both globally and locally. While a sketch consists of multiple components and two

sketches may have different number of components, it is necessary to first find a

correspondence between the components in the two sketches. This correspondence is

determined from global matching by minimizing the total cost (or maximizing the total

similarity score) between components. Based on this correspondence, the similarity

score between the components can be computed. On the other hand, local matching that

compares attributes of only a few components independently can also be performed such

as the matching of stroke hierarchy and the spatial relations.

 4

1.4. Multiple Component Relevance Feedback

Traditionally, relevance feedback can be applied to update the query features of

an object with a single component. However, multiple components exist in a sketch

representation therefore extension is required in order to perform relevance feedback for

updating query features of an object with multiple components. We also propose to

update the weights for combining the matching results from the multiform

representations in order to assign a higher weight for the better representation based on

the user feedback.

This thesis is organized as follows. Chapter 2 describes the fundamentals of

sketch retrieval. We will survey existing capture devices for sketches and the storage

format. Then we provide a block diagram for the sketch retrieval system. Next we

discuss our data collection and the experimental setup. Finally we explain the evaluation

criteria for the retrieval performance.

Chapter 3 describes the multiform representation creation in our sketch retrieval

system. We obtain the split representation by detecting the dominant points of the

strokes and then obtain the merged representation by combining spited strokes that are

likely to form one of the primitive shapes.

Chapter 4 introduces coarse-to-fine feature extraction, that tries to obtain semantic

information in addition to low-level features. Novel ideas about capturing the structures

of the sketches with stroke hierarchy and grouping a set of strokes into a hyper-stroke are

discussed. We explain how classification is used to detect shade regions for both hand-

drawn sketches and for images.

 5

Chapter 5 includes the description of the global and local matching. The

correspondence between multiple components is first determined and two approaches for

solving this problem are analyzed. The similarity functions for various levels of features

are provided to perform matching globally and locally.

Chapter 6 explains the multiple component relevance feedback. We introduce the

traditional relevance feedback approach for object with one component and extend this

approach to handle objects with multiple components. Moreover, we also describe our

approach for updating the weight for combining similarity scores from multiform

representations.

Chapter 7 discusses the partial matching problem. We introduce two matching

schemes in order to find the correspondence between features. The first approach is

dynamic programming based on the alignment of the spatially ordered strokes and the

second approach is bistroke matching based on searching the best match for each pair of

strokes according to both shape and spatial relation similarity.

Chapter 8 lists several applications based on our sketch retrieval system. We

present the prototypes that we have been implementing.

We finally conclude with a summary of the contributions of the thesis and some

future directions for research.

 6

2. Fundamentals of Sketch Retrieval

This chapter provides some background materials for sketch retrieval. It outlines

several important processes in handling sketches. It describes how sketches can be

captured, how they can be stored and how they can be retrieved. We state the problems

that we focus on solving along with the introduction of different stages in the retrieval

process. The data collection process, the experimental setup and the retrieval

performance evaluation criteria are also discussed.

In an office, a whiteboard can be used to sketch a plan, write down reminders or

illustrate an idea to visitors during an informal discussion. Some video conferencing

applications such as NetMeeting [34] incorporate an electronic shared whiteboard that

facilitates information sharing among users. The shared whiteboard allows multiple users

from different locations to do collaborative work. Traditionally, a whiteboard (or

blackboard) is used in a classroom for the teacher to write down course materials for the

students to learn. As a result, a shared whiteboard can be included in a multi-user virtual

environment so that it is suitable for distance learning. In addition, more than one shared

whiteboard can appear in a virtual environment and each whiteboard may be used for a

specific function that can be associated with the surroundings. For example, in a virtual

office building, users may use the whiteboard for checking important phone numbers or

appointment times in their offices or they may leave a message for other users on the

whiteboard in the corridor.

 7

Nowadays many commercial products target for this purpose in providing a

convenient way for users to draw sketches that can be interfaced with computers. Pen-

based devices become more popular recently since it provides a nature way of input. We

will list several technologies for capturing sketches and analyze their pros and cons.

After capturing the sketches, it is essential to store them in order to view them at a

later time. The two most common storage formats for sketches are images and strokes.

Their advantages and disadvantages will be discussed.

When the user needs to search for relevant sketches at a later time, a linear

browsing of the data is not feasible if the number of items in the database is large. As a

result, retrieval system is designed to solve this problem by providing the user a tool to

search for relevant items in the database easily and efficiently. We will give the

overview of a sketch retrieval system and associate with our proposed methods with the

system.

This chapter is organized as follows. Section 2.1 provides a survey of input

devices that can be used to capture sketches. Section 2.2 describes the storage format of

sketches. Section 2.3 introduces a general sketch retrieval system and identify which

parts of the retrieval problem we are attempting to solve. Section 2.4 introduces our data

collection process and Section 2.5 describes the experimental setup. Finally Section 2.6

provides an explanation of the evaluation criteria for retrieval performance.

2.1. Capture Device for Sketches

In a classroom, blackboard and chalk have long been essential tools for teachers

to convey the message to the students. In an office, the presence of a physical whiteboard

and markers allows people to sketch their ideas. In these scenarios, people need to copy

 8

down the writings or drawings on the whiteboard to their notebook in order to keep a

record. To remove the burden of the manual copying, a whiteboard session can be

captured electronically by using some capture devices at the same time as the content is

created. The capture devices usually consist of two components: an input device and a

visual feedback device. The input device allows the user to write and draw naturally and

its underlying electronic components capture the pen-down sample points. The visual

feedback device allows the user to see instantly what is on the board so that they can

continue to write or draw consistently. There exists various kinds of capture devices to

achieve this purpose and we will discuss them in the following sections.

2.1.1. Mouse and Monitor

The most common way of capturing pen strokes is to use a mouse and then

display the captured strokes on the monitor. Since mouse and monitor are standard

components of a computer, no extra hardware is required. The shared whiteboard

application simply captures mouse coordinates when the button is pressed. The problem

with this approach is that it is difficult to draw with a mouse because the user needs to

keep his/her hand steady. As a result, drawing or writing with a mouse is slow and the

resulting drawings may contain a lot of jittering.

2.1.2. Tablet and Monitor

The tablet is a pen-based device that can be attached to a computer and it allows

users to draw naturally on it. While the user is drawing on the tablet, the visual feedback

is provided on the monitor. But since the visual feedback area (monitor) is different from

the drawing area (tablet), it can be difficult to control the pen to start at the specific

 9

desired location after the user has a pause and then resumes drawing. Figure 1 illustrates

an example of a tablet called graphire2 manufactured by WACOM [50].

Figure 1 Tablet manufactured by WACOM

2.1.3. Wireless Pen and Paper Pad

With this setup, the user can draw with a special pen on regular paper attached to

a pad. This method is even more natural since the user is performing the same action as

jotting notes on regular paper. However, the drawback in this approach is that if the user

wants to erase something from the electronically captured content, he/she may need to

choose special function from the application and the resulting change will not reflect on

the regular paper. As a result, the content that is captured and the content that is actually

drawn on the regular paper may be out-of-sync after the user does some editing. Figure 2

illustrates an example of this kind of commercial product called SmartPad manufactured

by Seiko Instruments [42].

 10

Figure 2 SmartPad manufactured by Seiko Instruments

2.1.4. Wireless Pen, Physical Whiteboard and Projector

In this setting, a capture bar is mounted on the side of a physical whiteboard to

detect the coordinates of the wireless pen when the user uses it to draw or write on the

whiteboard. The wireless pen is inkless meaning that it does not leave any physical mark

on the whiteboard. Its tip has a switch and will be turned on while it is pressed towards

the whiteboard during writing, thus sending the coordinates of the wireless pen to the

capture bar. A projector is setup to project the resulting virtual ink back to the

whiteboard to give the user instant visual feedback. Calibration is required at the

beginning in order to map the cursor coordinates of the application to the physical

location of the wireless pen such that the projection will overlap correctly with the

designated drawing area of the whiteboard. Similar to the paper pad in the previous case,

the physical whiteboard is served as both drawing area and the visual feedback area. The

physical whiteboard provides a much bigger drawing area. However, this approach has

the drawback that occlusion may occur because the projection may be blocked by the

 11

user. There exist several commercial products for this kind of capture devices such as

mimio [49] or eBeam [13]. An example setup with mimio and the projected whiteboard

display is shown in Figure 3. A more detailed description about this particular setup used

with our virtual environment can be found in [46].

Figure 3 mimio and the projected whiteboard display

2.1.5. Stylus and Touch Screen

The user uses a stylus to write directly on top of a screen and whatever the user

writes will be displayed instantly on the same screen. The screen is pressure sensitive in

order to detect when and where the pen is down. The advantage of this setup is that the

drawing area and the visual feedback area are integrated into the same device so that the

inconsistency between drawing and displaying can be avoided. However, a touch screen

is more expensive compared with other kinds of capture devices. On the other hand, as

common to any typical new hardware, the cost is expected to decrease as time passes and

this approach will be more and more common to the general public. The new product

line Tablet PC that includes a pressure-sensitive tablet integrated into a laptop screen will

 12

make shared whiteboard applications much more convenient to use. An example Tablet

PC manufactured by Acer is shown in Figure 4 [1].

Figure 4 Tablet PC manufactured by Acer

2.2. Storage Format for Shared Whiteboard

The user may want to save the content of the whiteboard after being captured by

the input device so that he/she may review the content at a later time. There are two

common formats that the whiteboard content can be stored: as an image or as strokes.

2.2.1. Image

The content on the whiteboard can be saved as an image. The background

whiteboard may be represented by white pixels and the drawing or writing can be

represented by black pixels. Using this format, the memory required to store the

whiteboard content as a raw image is fixed since the total number of pixels on the

whiteboard is constant. The image may be compressed to reduce the space required for

storage. The image represents only the final outcome and the intermediate results are not

stored. Timing information is not included in the image format. One can save a

whiteboard session as a video, i.e., save the whiteboard image buffer at different time

instants, to show the progress over time. However, it will require a lot of storage space or

 13

else the resolution will be poor if compressed with low bit rate by standard video

compression techniques.

2.2.2. Strokes

An alternative solution to store the whiteboard content is to store them as strokes,

i.e., save the sequence of the x and y coordinates captured from the input devices over

time. Timing information is saved under this format therefore during playback the

whiteboard session at any time instant can be easily displayed. Another advantage for the

stroke format over the image format is the robustness to transformation. When an image

is under rotation or scaling, the quality of the transformed image may be poor due to

interpolation. However, since we are only transforming the stroke sample points while

maintaining their connectivity, the resulting display can still have high resolution.

2.3. System Overview for Sketch Retrieval

The reason for storing the sketches is to be able to archive it at a later time. The

relevant content needs to be archived according to what the user wants. Given a lot of

captured sketches, a database can be formed and it will be useful if we are able to search

through this database efficiently for relevant information according to our input query.

Retrieval based on sketches has several advantages:

1) Compared with keyword-based approach, retrieval based on sketches does not

require the users to understand the context of the object. In keyword-based approach,

each object first needs to be annotated which requires lots of manual labor. Moreover,

different people may assign different keywords to the same sketch and sometimes it is

difficult to describe something with words.

 14

2) Compared with image retrieval, retrieval based on sketches contains more

semantic information since each basic unit is a stroke instead of a pixel. This also means

that retrieval based on sketches can be more robust to local variations.

3) Compared with traditional handwriting recognition, retrieval based on

sketches provides a more flexible way of matching sketches. Handwriting recognition

tries to map handwritten characters to a set of alphabets using the information that

characters are drawn in certain order in time. On the other hand, a sketch is a more

general representation therefore it is language independent and does not make assumption

about the drawing order of the strokes.

A system overview of our sketch retrieval system is shown in Figure 5.

Input Query

Precomputed
Features

Feature Extraction

Matching

Entries in the database that
have the highest scores

Preprocessing

Refinement

Database

Input QueryInput Query

Precomputed
Features

Feature Extraction

Matching

Entries in the database that
have the highest scores

Preprocessing

Refinement

DatabaseDatabase

Figure 5 Block diagram of our sketch retrieval system

There are several stages in the sketch retrieval process: preprocessing stage,

feature extraction stage, matching stage and refinement stage. In the preprocessing stage,

image processing techniques are often applied in order to obtain a consistent

representation of the data. In the feature extraction stage, features that can well describe

 15

certain characteristics of the data are extracted. In the matching stage, the similarity

scores between the query sketch and each sketch in the database are computed. The

sketches in the database with the highest similarity scores are retrieved. In the refinement

stage, the user has the option to provide relevance feedback to the system by indicating

positive and negative examples. The system will retrieve new results after learning from

those examples. Now we introduce specific problems at each stage that we focus on

solving.

2.3.1. Preprocessing Stage

Raw data often contains useful information as well as unwanted noisy information

due to different kinds of variations. The goal of the preprocessing stage is to remove

some unwanted information in order to obtain a consistent representation of the data. In

sketch retrieval, the variation of the sketch raw data may be due to user style such that the

same sketch may be drawn in a different way by different people or the variation may be

due to capturing process such that even the sketch drawn by the same person may appear

differently at different times. Since there can be so many possibilities in terms of

variations, finding a unique representation that is consistent over all kinds of variations is

a difficult task, sometimes there may not be a solution. Therefore, instead of keeping

only one representation, we propose to use multiform representations for each sketch

such that it is more robust under different kinds of variations.

2.3.2. Feature Extraction Stage

After preprocessing, features that describe certain characteristics of the data are

extracted. The choice of features is often based on heuristics and it depends on the data.

 16

We propose a to extract features in a coarse-to-fine manner such that features at different

levels are considered. As a result, in addition to low-level features, we also extract high-

level semantic features from the representation after the preprocessing stage. For sketch

retrieval purpose, coarse-to-fine feature extraction can be conceptually considered as

looking at the sketch with different points of view. When coarse features are extracted, it

can be considered as the case when the sketch is being viewed far away and when fine

features are extracted, it can be considered as the case when the sketch is being viewed

nearby. We propose several strategies in the coarse-to-fine feature extraction. Firstly the

sketch is analyzed in order to detect for shaded regions since the strokes in a shaded

region are better treated as a single unit. Then we construct the stroke hierarchy of each

sketch to capture the structural information. We introduce a novel concept of hyper-

stroke that is composed of a group of strokes inside a region enclosed with a boundary

stroke. Shape features of basic strokes and spatial relations between strokes are also

extracted.

2.3.3. Matching Stage

The goal of the matching stage is to compare the features of the query with the

features of the items in the database and compute the similarity score between them. The

similarity scores are sorted and those items in the database with high scores are retrieved.

We propose to compare the features at different levels in order to match them both

globally and locally. While a sketch consists of multiple components and two sketches

may have different number of components, it is necessary to first find a correspondence

between the components in the two sketches. Based on this correspondence, the

similarity score between the matched components can be computed. In addition, spatial

 17

relations between strokes are also considered in addition to shape features when the

similarity is computed.

2.3.4. Refinement Stage

In the refinement stage, the user has the option to provide relevance feedback to

the system by indicating positive and negative examples. The challenge is to figure out

from the feedback examples what to update in order to increase the retrieval performance

and to adapt better to what the user needs. Current approaches include 1) modifying the

features of the query to make them closer to the positive examples and farther away from

the negative examples; and 2) updating the weights according to how much impact they

have on the feedback examples. We first propose to extend traditional query feature

movement approach to handle objects with multiple components. We also propose to

update the weights for combining the matching results from the multiform

representations in order to assign a higher weight for the better representation based on

the user feedback.

2.4. Data Collection

For the data collection, a PDA device (Compaq iPaq Pocket PC) is used to

capture the sketches. There are sketches from 11 people in our database. During each

session, each person draws 1 to 3 repetitions (depending on how fast they draw and how

much time they can allocate for the session) for each of the 37 classes of sketches. As

shown in Figure 6, the classes include Chinese characters, Korean characters, English

words, mathematical equations, chemical structure, flow diagram and free-form hand-

drawings such that they cover sketches in various domains.

 18

Figure 6 All 37 classes of sketches

Figure 7 shows a few examples of different classes of sketches drawn by several

people.

 19

Figure 7 Some classes of sketches drawn by different people

2.5. Experiment Setup

In the database, there are 703 sketches in total. For each of the 37 classes of

sketch, there are 19 sketches in the database that belong to that class. For each query, we

retrieve the elements from the database in the descending order of similarity scores. For

the experiment, each of the sketches in the database is used as the query to retrieve other

sketches within the same class and the retrieval results are averaged within each class.

2.6. Evaluation Criteria

To evaluate the retrieval performance, the precision and recall graph [47] is plotted

based on the ranks of those sketches from the same class as the query sketch. Figure 8

illustrates the concepts of recall and precision. The big circle indicates the retrieved

sketches that are similar to the query sketch. Recall is defined as the ratio between the

 20

number of relevant retrieved sketch and the total number of relevant sketches. Precision

is defined as the ratio between the number of relevant retrieved sketch and the total

number of retrieved sketch. When more items are retrieved, recall will be increased but

precision will be decreased. A graph can be plotted with these recall-precision pairs and

Figure 9 shows an example of such recall-precision graph. In each of our experiments,

many queries are used and the resulting graph is obtained by averaging over all the

queries. In a recall and precision graph, the higher the curve, the better the retrieval

performance since for the same recall value, a higher curve signifies a higher precision

value.

Retrieved Sketches
for query

Recall =

Precision =

Database

Relevant non-retrieved sketch

Non-relevant retrieved sketch

Relevant retrieved sketch
Retrieved Sketches
for query

Recall =

Precision =

Database

Relevant non-retrieved sketch

Non-relevant retrieved sketch

Relevant retrieved sketch

Relevant non-retrieved sketch

Non-relevant retrieved sketch

Relevant retrieved sketch

Figure 8 Illustration of recall-precision evaluation criteria

 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on
Approach 1
Approach 2

Figure 9 Recall-precision graph

 22

3. Multiform Representations

This chapter focuses on the multiform representations part of the sketch retrieval

system. The sketch is first resampled such that neighboring points in the same stroke

have equal distance. Then we obtain the split representation by detecting the dominant

points of the strokes and then obtain the merged representation by combining split strokes

that are likely to form one of the primitive shapes.

Different people may draw the same sketch in a different way due to variations in

style. Moreover, sometimes even the same person may draw the same sketch differently

due to user inconsistency. In some shape recognition approach [27][48], dominant points

are detected from the contour in order to be used as feature points. On the other hand, in

handwriting recognition [26][45], similar method has been proposed to split or merge the

strokes in order to have a better representation for improving the recognition result.

However, variations in general sketches are much more than a specific domain of

handwritings therefore it is unlikely to find a good criterion for splitting and merging the

strokes to form a single consistent representation. As a result, we propose to use

multiform representations for each sketch. From the original representation of a sketch,

we try to split the strokes into smaller stroke segments based on the dominant points to

obtain the split representation. Then from the split representation, we would like to

merge the stroke segments if they form a primitive shape to become the merged

representation. The connectivity of the strokes is first analyzed to divide the sketch into

 23

components. Then for each component we search for the stroke segments that are likely

to form a primitive shape.

The chapter is organized as follows. Section 3.1 explains the resampling process.

Section 3.2 describes how to find the split representation based on the dominant point

detection. Section 3.3 discusses how to find the merged representation by dividing the

sketch into connected components and then going through the connectivity of the strokes.

3.1. Resampling

The sketch, consisting of a single stroke or multiple strokes, is resampled such

that neighboring points in the same stroke have equal distance. Different people may

draw at a different pace and this resampling process reduces inconsistencies due to

different writing speed. For example, Figure 10 shows two sets of stroke samples for the

same stroke. In the first example on the left hand side, the user starts drawing slowly and

then draws faster. That’s why the captured stroke samples are sparser at the beginning

and become denser later. On the other hand, in the second example on the right hand side,

the user starts drawing fast and then draws slowly. That’s why the captured stroke

samples are denser at the beginning and become sparser later. In order to account for the

different drawing speed, the strokes are resampled so that after the resampling, successive

stroke samples have the same distance as shown in Figure 10.

 24

Resampling ResamplingResampling Resampling

Figure 10 Equi-distance resampling

3.2. Splitting

The stroke samples are analyzed in order to detect for dominant points [2] that are

points of interest indicating the locations of the stroke to be split. The signal that is used

for dominant point detection can be illustrated by the system diagram in Figure 11. The

resampled stroke samples (x[n],y[n]) are passed in parallel into two systems with impulse

responses h1[n] and h2[n]. The norm of their difference is calculated to get the output

signal that is the distance function d[n].

h1[n]

h2[n]

+
-

d[n]||•||







][
][

ny
nx

h1[n]

h2[n]

+
-

d[n]||•||







][
][

ny
nx

Figure 11 System diagram for getting the signal used for dominant point detection

Alternatively, the distance function d[n] can also be expressed mathematically by

equation (1):

() ()2
21

2
21][][][][][][][][][nhnynhnynhnxnhnxnd ⊗−⊗+⊗−⊗= (1)

The impulses responses h1[n] and h2[n] are Gaussian windows with different

window sizes W1 ,W2 and variances σ1 ,σ2 as specified in equation (2). As a result,

 25

convolving with h1[n] and h2[n] means that x[n] and y[n] are smoothed with two different

scales.













=

>

≤
−

= 1,2

 0

 2
2
1

][

2

2

i

Wn

Wn
n

e
Knh

i

i
i

iii

σ
πσ (2)

 1,2 2
2
1 2

2

=
−=

−
= ∑ i

W

Wm

m
eK

i

i

i

i
i

σ
πσ

 (3)

 The distance function thus measures how much each stroke sample is changed

between the two smoothing operations. Based on this distance function, we try to detect

the dominant points. The algorithm for detecting for the dominant points is illustrated by

the flow chart in Figure 12. The sample points that are close to the two end points will

never be considered as dominant points therefore we start with the sample far enough

from one of the end points. The distance function evaluated at this sample is compared

against a threshold. If it is greater than the threshold and if no dominant points were

detected before, then this sample is considered as a new dominant point. On the other

hand, if the distance is greater than the threshold but dominant points do exist, then the

current sample index will be compared with the sample index of the last detected

dominant point. If the two sample indices are very close, then only one of them will be

kept as the dominant point. In particular, the sample index with a larger distance will be

stored. Alternatively, if the two sample indices are not close, then the current sample

index will be considered as a new dominant point. Afterwards we consider the next

sample and continue this algorithm until the sample is close to the other end point.

 26

dpc = 0
j = MID

d[j] > TH ?

dpc = 0 ?

dpi[dpc-1]-j < MID ? dpc = dpc+1

d[j] > d[dpi[dpc-1]] ? dpi[dpc] = j

j ≤ N-MID ?

end

j = j+1

N

Y

N

Y

N

Y

Y

N

Y

N

j = sample index

d[j] = distance function at sample index j

dpc = dominant point count

dpi[k] = sample index of k-th dominant point

MID = Minimum Index Difference

N = number of samples in the stroke

TH = THreshold for distance

dpc = 0
j = MID

d[j] > TH ?

dpc = 0 ?

dpi[dpc-1]-j < MID ? dpc = dpc+1

d[j] > d[dpi[dpc-1]] ? dpi[dpc] = j

j ≤ N-MID ?

end

j = j+1

N

Y

N

Y

N

Y

Y

N

Y

N

dpc = 0
j = MID

d[j] > TH ?

dpc = 0 ?

dpi[dpc-1]-j < MID ? dpc = dpc+1

d[j] > d[dpi[dpc-1]] ? dpi[dpc] = j

j ≤ N-MID ?

end

j = j+1

N

Y

N

Y

N

Y

Y

N

Y

N

j = sample index

d[j] = distance function at sample index j

dpc = dominant point count

dpi[k] = sample index of k-th dominant point

MID = Minimum Index Difference

N = number of samples in the stroke

TH = THreshold for distance

Figure 12 Flow chart for dominant point detection

Figure 13 shows some example sketches after splitting. It can be seen that a

stroke indicated by the connected samples can be split into several stroke segments

indicated by different colors. From the first example of Figure 13, it can be seen that the

stroke is not only split on sharp corners, but is also split on points with smoother

direction change. Although the first and second examples in Figure 13 correspond to the

same sketch, they are drawn by different people and the variation in style is clearly

visible. The sketches after splitting allow a more consistent representation that facilitates

 27

matching at the later stage. The third and fourth examples in Figure 13 also provide other

example sketches after splitting.

Figure 13 Example sketches after splitting

3.3. Merging

After splitting, we would like to merge the stroke segments if they form a

primitive shape to become the merged representation. We define a primitive shape to be

a circle, a polygon or a line. The connectivity of the strokes is first analyzed to divide the

sketch into components. Then for each component we search for the stroke segments that

are likely to form a primitive shape.

Stroke 1
Stroke 2

E11

E12

E21

E22

C(E11,E21) = 0

C(E12,E22) = 1

C(E11,E22) = 0
C(E12,E21) = 0

Stroke 1
Stroke 2

E11

E12

E21

E22

C(E11,E21) = 0

C(E12,E22) = 1

C(E11,E22) = 0
C(E12,E21) = 0

Figure 14 Connectivity between a pair of strokes

Each stroke segment has two end points. For a pair of strokes as shown in Figure

14, let E11, E12 denote the end points of stroke 1 and E21, E22 denote the end points of

stroke 2. Further, let C(Ea,Eb) denotes the connectivity between the end points Ea and Eb,

 28

where C(Ea,Eb) = 1 means that Ea and Eb are connected and C(Ea,Eb) = 0 means that Ea

and Eb are not connected. Stroke 1 and stroke 2 are said to be merged if one of the

quantities from the set {C(E11,E21),C(E11,E22),C(E12,E21),C(E12,E22)} is equal to one.

Since the connectivity takes a binary value, and there are 4 quantities associated the

connectivity between the end points with a pair of strokes, therefore there are 24 ways of

connecting 2 strokes. Assume that there are N stroke segments in the split representation.

Then there are  pairs of stroke segments. As a result, there is a total of

ways of connecting N strokes. Since this number increases

exponentially as N increases, the search space for the merged representation will be huge

and it is not feasible to perform exhaustive search. As a result, we need to find an

efficient algorithm to search for a good merged representation.









2
N

())1(224 22 −








= NN
N

We can first divide a sketch into components based on the end point proximity.

Two strokes are considered as the same component if there exists a pair of end points

between these strokes that are close. There is a tradeoff in choosing the threshold for the

end point proximity. When the threshold is too small, then the number of strokes in the

same component will be smaller, thus reducing the complexity of the search space.

However, this also means that it is more sensitive to user variation since some people

may leave a larger space between neighboring strokes. On the other hand, when the

threshold is too large, it is less sensitive to user variation but at the same time the number

of strokes in the same component may be large such that it may defeat the purpose of

dividing the sketch into components.

 29

After grouping the strokes into components, we need to find out whether some

stroke segments can be merged to form a primitive shape. For examples, line segments

may be merged if they form a polygon or arc segments may be merged if they form a

circle. The polygon and circle primitive shapes are both characterized by a closed

contour. As a result, we perform the following 2 steps in order to decide which stroke

segments to be merged:

1) find stroke segments that form closed contours within a component

2) merge those stroke segments if the resulting closed contour is likely to be a

primitive shape

The likelihood of primitive shapes will be discussed in the Section 4.5. Here we

focus on step 1 and explains our algorithm for closed contour detection from a set of line

segments. First we determine the existence of closed contour within a set of stroke

segments. A closed contour composed of several stroke segments has the property that

each end point Ei1, Ei2 of each stroke segment is connected to an end point from another

stroke segment of this closed contour. As a result, given a set of stroke segments, in

order to detect for a closed contour, we first find a subset of stroke segments that have the

property that both end points of each stroke segment in this subset are connected to some

other end points. Then we discard those stroke segments whose neighboring stroke

segments are not in the subset. For example, as shown in Figure 15, there are six stroke

segments. Based on our closed contour detection algorithm described above, we pick up

a subset of stroke segments {stroke 1, stroke 2, stroke 3, stroke 5}of which both their end

points are connected to some other end points. We then discard stroke 5 from this subset

because at least one of its neighboring stroke (stroke 4 or stroke 6) is not in this subset.

 30

The modified subset becomes {stroke 1, stroke 2, stroke 3} which contains at least one

closed contour. After this step, the number of stroke segments is reduced and we can

trace the stroke segments in order to locate the closed contours.

Stroke 1 Stroke 2

E11

E12

E21

E22
E31 E32Stroke 3

Stroke 4

Stroke 5

E41

E52

E51

E42

E61

E62

Stroke 6

Stroke 1 Stroke 2

E11

E12

E21

E22
E31 E32Stroke 3

Stroke 4

Stroke 5

E41

E52

E51

E42

E61

E62

Stroke 6

Figure 15 Example strokes for demonstrate closed contour detection

Figure 16 shows the comparison between multiform representations. It can be

seen that a square is detected in the merged representation whereas it consists of 3 strokes

in the original representation and is broken down into 4 stroke segments in the split

representation.

(a) Original Representation (b) Split Representation (c) Merged Representation

Figure 16 Comparison between the multiform representations

 31

3.4. Experiment and Result

We perform an experiment to analyze the gain in the retrieval performance if we

use multiform representations instead of each representation alone. In this experiment,

shade detection specified in Section 4.1 is first applied to the sketch after resampling in

order to represent each shaded region by only one basic stroke such that the number of

strokes is reduced for each multiform representation. The shape features of the strokes

for each representation are then extracted according to Section 4.5. The correspondence

of the stroke features between the query and each sketch in the database is determined by

the Hungarian method specified in Section 5.1. With the correspondence, the similarity

score for that representation is computed by combining the shape feature similarity and

the spatial relation similarity as described in Section 5.2.5. Afterwards, the similarity

score for each representation is normalized according to the mean similarity score for that

representation and then the normalized similarity scores for all representations are

linearly combined to give the similarity score for multiform representations as described

in Section 5.2.5. Figure 17 shows the comparison of the retrieval performance for this

experiment. It can be seen that the retrieval performance is higher for multiform

representations than for each representation alone.

 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Comparison of Retrieval Performance for Multiform Represenations

Original Representation
Split Representation
Merged Represenation
Multiform Representation

Figure 17 Retrieval performance with multiform representations

In Figure 17, it can also be observed that the merged representation performs the

worst among the three representations in the overall sense as the result is obtained by

averaging over all classes of sketches. Now we provide some case studies to show that

each representation can perform well for a certain class of sketches.

Case 1: Example class that works well for the original representation

In Figure 18, the multiform representations for class 4 contain sketches of a

Chinese character. The color indicates the stroke connectivity. It can be seen that the

sketches in the original representation are more consistent (the sketches have similar

break points) since most of the subjects who created the sketches in our database know

the Chinese language and they follow the rules in writing the character. This explains

 33

why the retrieval performance is better for the original representation for this class as

indicated in Figure 19.

Original
Representation

Split
Representation

Merged
Representation

Figure 18 Multiform representations for some sketches in class 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retrieval Performance for Class 4

Original Representation
Split Representation
Merged Representation

Figure 19 Retrieval performance for Class 4

 34

Case 2: Example class that works well for the split representation

In Figure 20, the multiform representations for class 36 contain sketches of a

chemical structure “benzene”. It can be seen that the sketches in the original

representation are not so consistent (the hexagon can be formed from 1 stroke, 2 strokes,

or 6 strokes). On the other hand, the split representation becomes much more consistent

for this class after breaking the hexagon into line segments. This explains why the

retrieval performance is better for the split representation for this class as indicated in

Figure 21. The merged representation for this class also performs better than the original

representation but is slightly worse than the split representation. This is because

sometimes the hexagon is not detected when the distance between the stroke end points is

too big as indicated in the 4th column of Figure 20.

Original
Representation

Split
Representation

Merged
Representation

Figure 20 Multiform representations for some sketches in class 36

 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retrieval Performance for Class 36

Original Representation
Split Representation
Merged Representation

Figure 21 Retrieval performance for Class 36

Case 3: Example class that works well for the merged representation

In Figure 22, the multiform representations for class 6 contain sketches of a

Korean character. It can be seen that the sketches in the original representation are not so

consistent (the inverted V-shaped on the top left part sometimes consists of one stroke but

sometimes it is written as two strokes and sometimes it may even look different). Since

most of the subjects who created the sketches in the database do not know the Korean

language, the rules about writing Korean characters may not be followed so it explains

the inconsistency of the original representation as opposite to Case 1. On the other hand,

the split representation makes this inverted V-shaped more consistent by always breaking

it into 2 strokes. However, the circle at the bottom is also split into segments at various

 36

locations since it is an imperfect circle. After merging, the stroke segments are merged

back to form the circle again. This explains why the retrieval performance is better for

the merged representation but worse for the split representation for this class as indicated

in Figure 23.

Original
Representation

Split
Representation

Merged
Representation

Figure 22 Multiform representations for some sketches in class 6

 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retrieval Performance for Class 6

Original Representation
Split Representation
Merged Representation

Figure 23 Retrieval performance for Class 6

 38

4. Coarse-To-Fine Feature Extraction

This chapter focuses on the feature extraction module in a coarse-to-fine manner.

Coarse-to-fine feature extraction can be conceptually considered as looking at the sketch

at different points of view. When coarse features are extracted, it can be considered as

the case when the sketch is being viewed far away and when fine features are extracted, it

can be considered as the case when the sketch is being viewed nearby.

Figure 24 Different levels of features

The choice of features is often based on heuristics and it depends on the data. We

propose a to extract features in a coarse-to-fine manner such that features at different

levels are considered. As a result, in addition to low-level features, we also extract high-

level semantic features from the representation after the preprocessing stage. We propose

several strategies in the coarse-to-fine feature extraction that is illustrated in Figure 24.

First the strokes are analyzed in order to detect for shaded regions since the strokes in a

 39

shaded region are better treated as a single unit. Then we construct the stroke hierarchy

of each sketch to capture the structural information. We introduce a novel concept of

hyper-stroke that consists of a set of strokes smartly grouped together. We then approach

the sketch in a finer detail when the spatial relations between the strokes are considered.

Finally for basic strokes, we describe them with features of several primitive shapes: line,

polygon and circle. The likelihood of each stroke that falls into a primitive shape is

estimated.

The chapter is organized as follows. Section 4.1 describes the shade detection for

sketches. Section 4.2 explains how to construct the stroke hierarchy of a sketch. Section

4.3 introduces a novel concept of hyper-strokes that characterize groups of strokes.

Section 4.4 specifies what kind of spatial relations between the strokes to be considered

in our approach. Section 4.5 provides an explanation about the primitive shape features

of basic strokes. Section 4.6 shows a simplified algorithm for shade detection under

certain assumption and it also shows how the idea of shade detection can be applied for

images.

4.1. Shade Detection

Figure 25 Example sketches with shaded regions

 40

For a shaded region, a user may draw many strokes to describe the shade. It is

better to consider this shaded region as one unit instead of considering each stroke

separately. This is because two sets of strokes forming the same shaded region may not

look similar as explained before with the examples in Figure 25. As a result, a shaded

region is represented by a single unit containing features describing the shaded region. A

region is more likely to be a shaded region if the ink density of the strokes in that area is

high. Starting with this observation, we develop the algorithm for the shade detection

according to the following steps.

4.1.1. Shade Detection Algorithm

Step 1: Detect blocks with high ink density

 The canvas containing the sketch is divided into blocks of M×M pixels. For each

block, the number of stroke samples is counted. If this number is not smaller than a

certain threshold THnum_sample, then that block is considered to be with high ink density.

Step 2: Detect regions with large number of neighboring blocks with high ink density

 Neighboring blocks are combined in order to form a connected region. If the

number of blocks in a connected region is not larger than a certain threshold THnum_block,

then that connected region is ignored. Otherwise this region is considered to be with high

ink density.

Step 3: Find those strokes lying inside the convex hull of each connected region

For each connected region with high ink density, the convex hull of this

connected region CONV_HULLregion is constructed from the four corners of each of all

the blocks forming the connected region. Each stroke is being compared with the convex

 41

hull of the connected region. If the percentage of the stroke samples inside the convex

hull is greater than a certain threshold THpercent_sample_in_conv_hull, then that stroke is

considered to be inside the convex hull of that connected region.

Step 4: Classify the strokes into boundary or non-boundary strokes

 For each stroke that is inside the convex hull of a connected region, the distance

from each sample point of that stroke to the closest line segment of the convex hull

boundary is computed and the average distance over all stroke samples is calculated. If

this average distance is smaller than a certain threshold THaverage_distance, then that stroke

inside the convex hull is classified as a boundary stroke. Otherwise, it is classified as a

non-boundary stroke.

Step 5: Construct the convex hull of all boundary strokes and non-boundary strokes for

each region

 For each region, the convex hull CONV_HULLstroke containing all boundary

strokes and non-boundary strokes is constructed. Essentially this convex hull

CONV_HULLstroke refines the shaded region compared with the convex hull of the

connected region CONV_HULLstroke obtained in Step 3.

Step 6: Replace the points on the boundary of CONV_HULLstroke by the nearest point

from a boundary stroke if their distance is small enough

 For each corner of CONV_HULLstroke, the distance between this corner and the

nearest stroke sample of a boundary stroke is computed. If this distance is smaller than a

certain threshold THcorner_distance, then the corner is replaced by that nearest stroke sample

of the boundary stroke. This step takes care of the case when the boundary stroke exists

 42

for a shaded region but the shade is drawn such that some of the strokes fall outside the

boundary. An example of this case is shown in Figure 26. The boundary stroke that has

been drawn by the user is indicated in red and all other strokes for this shade are

indicated in cyan.

Figure 26 Shaded region with part of the shade falls out of the boundary

Step 7: Compute the percentage of stroke samples from each boundary stroke that

contribute to the modification of convex hull boundary.

If the percentage is less than a certain threshold THpercent_sample_in_boundary, then this

boundary stroke is not considered as boundary stroke any more and it will be labeled as a

non-boundary stroke. This step takes care about the case if there exist two or more

boundary strokes that are close to the same portion of the shaded region boundary, only

the nearest boundary stroke is considered to contribute to the true boundary.

Step 8: The final boundary stroke for that shaded region is replaced by the modified

convex hull boundary obtained from Step 6 and all remaining boundary strokes are

discarded.

Step 9: The resulting boundary stroke and non-boundary strokes can be considered as a

hyper-stroke and its hyper-stroke features are extracted as described in Section 4.3. In

 43

addition, the boundary stroke is treated as a basic stroke to extract the shape features as

described in Section 4.5.

The advantage of our algorithm is that it does not have the assumption that the

user must include a boundary when he/she draws a shaded region. Nevertheless, if this

assumption is valid, then we have a simplified algorithm for the shade detection as

described in the Appendix A in Section 4.6.1. In addition, the idea of shade detection can

also be applied to images and the extension is provided in the Appendix B in Section

4.6.2.

4.1.2. Shade Detection Parameters

Since the size of the shade region varies, therefore we apply the algorithm

specified in the previous section using 3 sets of parameters in order to detect the shade at

different scales. The parameters are shown in Table 1. Each column represents a set of

parameters at one scale. The ink density of the block at the threshold for deciding high

vs. low ink density can be calculated by with equation (4):

MM
TH

TH samplenum
densityink ×

= _
_ (4)

For the first set of parameters , THnum_sample = 0.63. For the second set of

parameters, THnum_sample = 0.31 and for the third set of parameters, THnum_sample = 0.11.

On the other hand, the threshold of the number of neighboring high ink density blocks

THnum_block, for deciding whether a connected region has high ink density, is the smallest

for the first set and is the largest in the third set. As a result, it can be seen that the first

set of parameters is used to detect for shade at a finer scale by looking for small regions

 44

with very high ink density. On the other hand, the third set of parameters is used to

detect for shade at a coarser scale by looking at larger regions with a more relaxed

constraint of high ink density measure. The second set of parameters is used to detect for

shade at a medium scale in-between the first set and the third set. Some examples of

shade regions with different sizes are shown in Figure 27.

Parameter Value for
the 1st Scale

Value for
the 2nd Scale

Value for
the 3rd Scale

M 4 4 8
THnum_sample 10 5 7
THnum_block 0 3 13

THpercent_sample_in_conv_hull 65% 65% 65%
THaverage_distance 5.0 5.0 7.0
THcorner_distance 9.0 9.0 9.0

THpercent_sample_in_boundary 70% 70% 70%

Table 1 Shade Detection Parameters

Sketch

Detected Shade
Regions

Figure 27 Shaded regions with different sizes

4.2. Stroke Hierarchy Construction

Representing a sketch by a stroke hierarchy can be treated as a multiple scale

representation. In [20], multiple scale representation is obtained by applying successive

morphological operations (opening or closing) to tumor shapes and the morphological

 45

distance is computed by combining distances at different scales. The wavelet

representation in [16] can also be considered as a hierarchy in the spatial frequency

domain. Here the difference in wavelet coefficients is used as a distance measure. The

hierarchical representation in our system is based on the spatial hierarchy of the strokes.

Each stroke is considered as one component and the matching is performed in a stroke-

by-stroke basis in order to better tolerate local variations. Furthermore, a clustering

method such as ACE (Aggregation Clustering with Exceptions) [52] may be used to

extract an effective storage structure given the instance relationships from the stroke

hierarchy.

Now we introduce our approach for building a stroke hierarchical representation

for a sketch. The relationship between a parent stroke and a child stroke is that the child

stroke is inside the parent stroke. The stroke hierarchy describes the structural

relationship between the strokes in a sketch. For example, in drawing a house, the

windows and the door are drawn inside the front part of the house; and the doorknob is

drawn inside the door. As a result, the corresponding stroke hierarchy is the one shown

in Figure 28. In the actual implementation of this module, a quick bounding box test will

be first performed between every pair of strokes to determine whether their bounding

boxes overlap. If there is a significant amount of overlap between their bounding boxes,

then a further convex hull test will proceed. In the convex hull test between two strokes,

if most of the samples of a stroke fall inside the convex hull bounding the other stroke,

then the first stroke is considered to be inside the second stroke. Under this rule, when

there are two overlapping strokes, it is possible for each stroke to be considered inside the

other stroke simultaneously. In this case, we will cancel out their effect by removing the

 46

“inside” relationships on both sides. After getting the “inside” relationship between the

strokes, these relationships are examined to get the hierarchical information. For

example, if stroke 3 and stroke 4 are both inside stroke 2; and if stroke 4 is also inside

stroke 3, then stroke 2 is considered as the parent stroke of stroke 3; and stroke 3 will be

considered as the parent stroke of stroke 4. A sketch of house and its corresponding

stroke hierarchy are shown in Figure 28.

Figure 28 A sketch and its corresponding stroke hierarchy

4.3. Hyper-Stroke Feature Extraction

Under traditional image processing, a pyramid representation of an image with

multiple levels of detail can be obtained by filtering the image several times. For

sketches, instead of using the filtering techniques that rely on preprocessing low-level

features, we propose to obtain multiple levels of detail by considering groups of strokes

(thus in a higher semantic level) in addition to the basic strokes alone. We define hyper-

stroke as a group of strokes such that there exists one basic stroke describing the

boundary and all the strokes (at least one) inside the region enclosed by the basic stroke.

Based on this definition, the shaded region described in Section 4.1 can also be

represented by a hyper-stroke where the basic stroke of the hyper-stroke is the boundary

stroke of the shaded region and there exists at least one non-boundary stroke enclosed by

 47

the boundary stroke in the shaded region. In addition, a hyper-stroke can also be derived

from the stroke hierarchy. Given the stroke hierarchy of a sketch, a hyper-stroke is

formed by a parent stroke with all its descendent strokes with the parent stroke as the

basic stroke. A hyper-stroke should contain at least one descendent stroke therefore the

stroke at a leaf node that does not enclose any other strokes is not a hyper-stroke. The

relationship between the stroke hierarchy and a hyper-stroke is illustrated in Figure 29.

The hyper-stroke features are extracted for all the strokes inside the region enclosed by

the basic stroke. We extract the hyper-stroke features as the Hu moments [15] and the

histogram of edge directions that are commonly used region-based features. As a result,

hyper-stroke features provide an overall description about a region in a sketch. This is

analogous to the region-based approaches used for image retrieval [6][17].

Sketch

Stroke Hierarchy A Hyper-Stroke

Stroke
Feature

Group
Feature

Sketch

Stroke Hierarchy A Hyper-Stroke

Stroke
Feature

Group
Feature

Figure 29 Relationship between a stroke hierarchy and a hyper-stroke

 48

4.4. Spatial Relations

Several approaches exist for describing spatial relations between two components

of an object. One approach is to compare the spatial ordering using some reference

locations such as the centroid or a corner of the bounding rectangle of the components

[51]. Another approach is to consider the relationship between the intervals defined by

the bounding rectangle of the components [35]. The above approaches both quantize the

spatial relations into a few discrete states, therefore there may be a big jump in spatial

relations even when the actual change in spatial location of a component is small. As a

result, we propose to model the spatial relation with a continuous function to avoid non-

proportional change between spatial relation and spatial locations.

We compute the displacement vector between the two distances of the

corresponding stroke pairs as a measure of spatial relations. For example, as shown in

Figure 30, the corresponding strokes for s11 and s12 of sketch 1 are s21 and s22 of sketch 2

respectively. The spatial relation between strokes s11 and s12 can be denoted by R1 that is

defined by the horizontal and vertical displacements (dx1, dy1) between the center of s11

and the center of s12. Similarly, the spatial relation between strokes s21 and s22 can be

denoted by R2 that is defined by the horizontal and vertical displacements (dx2, dy2)

between the center of s21 and the center of s22. The spatial relation similarity between R1

and R2 is modeled as a function of dxSPATIAL = distance(dx1, dx2) and dySPATIAL =

distance(dy1, dy2).

 49

s11
s12

s21
s22

dy1 dx1

dy2

dx2

Sketch 1 Sketch 2

R1 = Spatial Relation between s11 and s12 : (dx1, dy1)
R2 = Spatial Relation between s21 and s22 : (dx2, dy2)

s11
s12

s21
s22

dy1 dx1

dy2

dx2

Sketch 1 Sketch 2

s11
s12

s21
s22

dy1 dx1

dy2

dx2

Sketch 1 Sketch 2

R1 = Spatial Relation between s11 and s12 : (dx1, dy1)
R2 = Spatial Relation between s21 and s22 : (dx2, dy2)

Figure 30 Spatial Relations

4.5. Primitive Shape Feature Extraction

As mentioned earlier, the choice of features is often based on heuristics and it

depends on the data. For each basic stroke, we would like to extract semantic

information therefore we compare the basic stroke with some primitive shapes in order to

understand how likely that stroke falls into a given primitive shape category. In [3], the

geometry is used to recognize strokes into some primitive shapes. The geometry

information is easily accessible since we are dealing with sketches in the stroke domain

and not in the pixel domain as the case for images. Different geometric features are used

to determine the likelihood that each stroke falls in each primitive shape: line, circle and

polygon. Some examples of these features are illustrated in Figure 31.

L

d

L
d

p
A

p
Aπ2

A

hullconvex Area
A LL

line circle polygon

sides#

L

d

L
d

p
A

p
Aπ2

A

hullconvex Area
A LL

line circle polygon

sides#

Figure 31 Example primitive shape features

 50

Assume that a stroke with N samples is denoted by the sequence of 2-D

coordinates (xi,yi), i = 1,2,…,N. We would like to calculate the shape likelihood and the

shape features for each stroke. Essentially the shape likelihood is used to describe the

general characteristics of a primitive shape and the shape features are used to distinguish

between the strokes that belong to similar primitive shape. The features that are used to

calculate the shape likelihood and the features that are used in matching for each

primitive shape are described in the following subsections.

4.5.1. Line Likelihood and Features

The features that are used for calculating the line likelihood are given as follows:

1) Average inverse height ratio









−= ∑

−

=

1

2

1 1 ,0max
N

i

i
line d

hL (5)

where
d
A

h i
i

2
= (6)

2
1

2
1)()(yyxxd NN −+−= (7)

)(
2
1

1111 NNiNNiiii yxyxyxyxyxyxA −+−+−= (8)

d

hi
Ai

d

hi
Ai

Figure 32 Illustration of average inverse height ratio

 51

 As illustrated in Figure 32, in each triangle formed by the end points and each of

the non-end point samples, the height hi is first computed by dividing the area of that

triangle Ai by the distance d between the end points. The height ratio is obtained by

further dividing hi by d. The height ratio is averaged over all non-end point samples

and then the inverse is calculated. If the result is less than 0, then this value is

replaced with 0. Essentially this is a measure for the line primitive shape because if

the stroke is very close to a line, then hi is very small compared with d and the

average inverse height ratio will thus be large.

2) Ratio between distance between end points and stroke length

L
dLline =

2 (9)

where d is given by equation (7) and L is given by equation (12). This ratio is very

close to 1 if the stroke is very close to a line.

The overall line likelihood is obtained by the following equation (10)

() () 2
2

1
1 line

line
line

lineline LLL λλ
•= (10)

where and are fixed scalar weights. 1
lineλ 2

lineλ

Figure 33 shows the line likelihood of some stroke examples.

 52

(a) Lline = 0.9953 (b) Lline = 0.4958 (c) Lline = 0

Figure 33 Line likelihood values of some strokes

The features for the line primitive shape that are used for matching are given as

follows:

1) Estimated Slope









−
−

= −

1

11tan
xx
yy

N

Nα (11)

 This is exactly equal to the slope if the stroke is a line.

2) Stroke length

∑
−

=
++ −+−=

1

1

2
1

2
1)()(

N

i
iiii yyxxL (12)

4.5.2. Polygon Likelihood and Features

The features that are used for calculating the polygon likelihood are given as

follows:

1) Area ratio between the stroke area and the area of its convex hull

A
Lpolygon

hullconvex theof area1 = (13)

where () (







−+−= ∑

−

=
++ NN

N

i
iiii yxyxyxyxA 11

1

1
112

1) (14)

 This measure is large if the stroke is close to a convex polygon.

 53

2) Inverse percentage of number of stroke samples in the convex hull and the

original number of stroke samples

N
Lpolygon

hullconvex in the samples #12 −= (15)

A polygon requires a relatively few number of points (ideally equal to the number

of vertices) to form the convex hull that surrounds all the stroke samples. As a result,

this inverse percentage is large if the stroke is close to a convex polygon.

 The overall polygon likelihood is obtained by the following equation (16):

() () 2
2

1
1 polygon

polygon
polygon

polygonpolygon LLL λλ
•= (16)

where and are fixed scalar weights. 1
polygonλ 2

polygonλ

Figure 34 shows the polygon likelihood of some stroke examples.

(a) Lpolygon = 0.9772 (b) Lpolygon = 0.5390 (c) Lpolygon = 0

Figure 34 Polygon likelihood of some strokes

The features for the polygon primitive shape that are used for matching are given

as follows:

1) Number of sides

 54

First consider the turn angle that is the amount of angle change at each sample

point. As a result, the turn angle is 0 along a line since the angle does not change.

The turn angle is computed by the following equation (17):

2
1

2
1

2
1

2
1

11111

)()()()(
))(())((cos

−−++

−+−+−

−+−−+−

−−+−−
=

iiiiiiii

iiiiiiii
i

yyxxyyxx
yyyyxxxxβ (17)

The number of sides is estimated by first removing those sample points (xi,yi) that

have small turn angles and then counting how many stroke segments are left with

remaining stroke samples.

2) Area ratio between the stroke area and the area of its convex hull

This feature is exactly the same measure that is used for computing part of the

polygon likelihood given by equation (13).

3) Closeness

p
Lc = (18)

where dLp += (19)

L is the stroke length given by equation (12) and d is the distance between end

points given by equation (7). Therefore p is the perimeter of shape formed by the

stroke. Essentially this closeness measures how close the end points are since when

the end points are close, d is very small and c is close to 1.

4) Perimeter efficiency

 55

p
Ak π2

= (20)

This feature measures much the shape is close to a circle since k = 1 implies that

the shape is a circle. In addition, this feature can also be used to distinguish between

polygons since a polygon with more sides tend to have a higher value of k since it is

more similar to a circle. For example, for a regular triangle, k = 0.79; for a regular

square, k = 0.89; for a regular pentagon, k = 0.93.

4.5.3. Circle Likelihood and Features

The features that are used for calculating the polygon likelihood are given as

follows:

1) Perimeter efficiency

kLcircle =
1 (21)

 k is given by equation (20). As mentioned before, k = 1 implies that the shape is a

circle.

2) Average of estimated radius

 

 

()jj

N

j
j

circle r

r
N

L
max

3/
1 3/

12
∑
== (22)

where rj is the estimated radius of a circle that can be constructed from three

stroke sample points. We divide the stroke samples into 3 sets and each time we pick

one sample from each set in order to estimate the radius. As illustrated in Figure 35,

 56

given three sample stroke points (xj1,yj1), (xj2,yj2) and (xj3,yj3), we first find out where

is the center by constructing perpendicular bisector for the line segment from (xj1,yj1)

to (xj2,yj2) and from (xj2,yj2) to (xj3,yj3). Then the radius can be computed by

calculating the distance between the center to any of the stroke sample point.

rj
(xj1, yj1)

(xj2, yj2)

(xj3, yj3)
rj

(xj1, yj1)

(xj2, yj2)

(xj3, yj3)

Figure 35 Illustration of estimated radius

3) Total turn angle

πβ

πβ

β

π

β
π

2

2

,2

,
2
1

1

2

1

2

1

2

1

2

3

>

<=















=

∑

∑

∑

∑

−

=

−

=

−

=

−

=

N

i
i

N

i
i

N

i
i

N

i
i

circleL (23)

where βi is the turn angle given by equation (17). The total turn angle is 2π for a

circle. This measure increases as the total turn angle goes from 0 to 2π, reaches the

maximum at 2π, and then decreases as the total turn angle continues to increase.

 The overall polygon likelihood is obtained by the following equation (16):

() () () 3
3

2
2

1
1 circle

circle
circle

circle
circle

circlecircle LLLL λλλ
••= (24)

where , and are fixed scalar weights. 1
circleλ 2

circleλ 3
circleλ

 57

Figure 36 shows the circle likelihood of some stroke examples.

(a) Lcircle = 0.8536 (b) Lcircle = 0.6806 (c) Lcircle = 0.273

Figure 36 Circle likelihood values of some strokes

The features for the circle primitive shape that are used for matching are given as

follows:

1) Area ratio between the stroke area and the area of its convex hull

This is the same measure as the one given in equation (13).

2) Total turn angle

This is similar to the one given in equation (23) where βi is still the turn angle

given by equation (17).

∑
−

=

=
1

22
1 N

i
iβπ

γ (25)

3) Perimeter efficiency

This is the same feature as given in equation (20).

4.5.4. Non-Primitive Shape Likelihood and Features

When the stroke does not look like any of the primitive shapes, we have another

likelihood and another set of features to take care of this case. The non-primitive shape

likelihood is given by equation (26).

 58

() () () circle
circle

polygon
polygon

line
linenone LLLL µµµ

−•−•−= 111 (26)

where , and are fixed scalar weights. lineµ polygonµ circleµ

The features for the non-primitive shape that are used for matching are given as

follows. These features are chosen because they provide a more general description

about a shape as we do not have specific knowledge about a non-primitive shape.

1) Stroke area

This is the same feature as given in equation (14).

2) Area ratio between the stroke area and the area of its convex hull

This feature is exactly the same measure that is used for computing part of the

polygon likelihood given by equation (13).

3) Closeness

This is the same feature as given in equation (18).

4.5.5. Heuristic Scalar Weights

All the scalar weights are determined by heuristics and they are provided in the

following table:

Shape Type Weight Value
1
lineλ 1.0

Line 2
lineλ 1.0

1
polygonλ 0.10

Polygon 2
polygonλ 0.45
1
circleλ 0.33 Circle
2
circleλ 1.0

 59

 3
circleλ 0.33

lineµ 0.25

polygonµ 0.25 Non-primitive Shape

circleµ 0.25

Table 2 Heuristic Scalar Weights

4.6. Appendices

4.6.1. Appendix A: Simplified Shade Detection for Sketches

As mentioned in Section 4.1, a region is more likely to be a shaded region if the

ink density of the strokes in that area is high. Further, if we assume that the user always

draw a boundary enclosing the shaded region, then we can use the following method to

perform shade detection. In order to determine whether a region has high ink density, we

consider the total stroke length (the sum of the length of all the descendent strokes) and

the convex hull area of the parent stroke. We plot these features from a set of training

data in Figure 37, where the shaded region is characterized by large total stroke length

with small convex hull area. The training data consists of shaded and non-shaded regions

with both large and small areas as shown in Figure 37. The decision boundary is

selected as follows:

CByAyx ++
<
> 2

shaded-non

shaded
 (27)

where x is the stroke length; y is the convex hull area; A, B and C are parameters

determined from the training data. A second order function is chosen as the decision

boundary because the training data cannot be well separated by a linear function.

With this approach, the strokes forming the shaded region can still be considered

as a hyper-stroke since under the assumption, the user draws a boundary that can be

 60

considered as the basic stroke and there exist other strokes inside the boundary forming

the shade.

Figure 37 Feature space for deciding shaded vs. non-shaded region

4.6.2. Appendix B: Shade Detection For Images

The idea of shade detection in sketches can also be applied for images because

sometimes an image can be described a combination of solid regions and edges. For each

region, thinning or edge extraction may be applied since one method is preferred to the

other under different situations. For example, if edge extraction alone is used to extract

the contour, then both the images in Figure 38(b) and Figure 38(c) are considered to be

the same as the image in Figure 38(a) although they have different solid regions. If

 61

thinning alone is used to extract the skeleton, then the image in Figure 38(d) is considered

to be very similar to the image in Figure 38(a). This gives us the motivation of

classifying a region with contour vs. skeleton representation. After the contour-skeleton

classification, stroke tracing is performed to extract the sketch. The user can provide a

query sketch that will be compared with those extracted sketches from the database

trademark images in order to retrieve similar images.

(a) (b) (c) (d)

Figure 38 Example images with and without solid regions

For each region, either edge extraction is performed to extract the contour or

thinning is performed to extract the skeleton. It is advantageous to use different methods

under different situations. For example, for a solid region in which the shape conveys a

lot of visual information, it is better to perform edge extraction to that region to extract

the contour. On the other hand, for a region that contains curves, thinning should be

performed to that region to extract the skeleton that is a better representation.

To determine whether contour or skeleton is a better representation for a region,

we compute the thickness that is the distance between each pixel of the skeleton and the

nearest pixel of the contour. For example, we would like to perform thinning for a region

if the thickness is small and if it does not vary too much across different skeleton pixel

values as shown in Figure 39(b). On the other hand, if there is a large variation in the

thickness, then edge extraction is preferred to extract the contour as shown in Figure

39(a). As a result, the mean and variance of the thickness is used for classifying a region

 62

into skeleton-best or contour-best representation. After performing edge extraction or

thinning for all the regions, the strokes are traced by examining the pixel connectivity

starting from the end points. This results in two types of strokes: contour strokes which

are obtained by edge extraction and skeleton strokes which are obtained by thinning.

(a) Region that is
suitable for edge

extraction

(b) Region that is
suitable for thinning

Figure 39 Example regions that are suitable for edge extraction and for thinning,
and their corresponding skeleton superimposed on the contour

We analyze the performance of our classifier for deciding whether a contour or a

skeleton should be extracted for each region. First we need to train the classifier to

obtain the decision boundary. As mentioned in the previous section, the mean and

variance of the thickness are used as the input features for the classifier. We compute

these features for about 600 ground truth trademark images that we know which are good

for contour stroke representation and which are good for skeleton stroke representation.

The resulting distribution of the mean and variance of the thickness are shown in Figure

40. The decision boundary is based on the Mahalanobis distances from the input feature

vector to the mean feature of each of the two classes. Assume that x is the input feature

vector, i.e., x = [mean(thickness) var(thickness)]T, ms and Σs represent the mean and the

covariance matrix of the feature vector for the trademark images that are best represented

by skeleton strokes and mc and Σc represent the mean and the covariance matrix of the

 63

feature vector for the trademark images that are best represented by contour strokes.

Then the classification criterion is given as follows:

() () () () () ()det(ln)det(ln 11
ccc

T
c

skeleton

contour

sss
T

s mxmxmxmx Σ−−Σ−−
<
>

Σ−−Σ−− −−)

 (28)
The resulting decision boundary is shown in Figure 40.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Thickness Mean

Th
ic

kn
es

s
V

ar
ia

nc
e

Contour-vs-Skeleton Classification Criterion based on Thickness mean and variance

Images to be represented by contour strokes
Images to be represented by skeleton strokes

decision
boundary

Figure 40 Contour-skeleton classification criterion

 64

5. Global And Local Matching

This chapter describes the global and local matching of features at different

levels. While a sketch consists of multiple components and two sketches may have

different number of components, it is necessary to first find a correspondence between

the components in the two sketches. This correspondence is determined from global

matching by minimizing the total cost (or maximizing the total similarity score) between

components. Based on this correspondence, the similarity score between the components

can be computed. On the other hand, local matching that compares attributes of only a

few components independently can also be performed such as the matching of stroke

hierarchy and the spatial relations.

This chapter is organized as follows: Section 5.1 introduces the multiple

component feature correspondence problem and discuses two ways of approaching the

problem. Section 5.2 provides the similarity score computation for matching different

levels of features in order to compare both global and local information. Section 5.3

presents the experimental result by comparing the proposed approach with two other

approaches.

5.1. Multiple Component Feature Correspondence

A sketch consists of multiple components therefore in the feature space, it can be

represented by a set of feature points. The number of components in a sketch depends on

its complexity hence two sketches may contain different number of components. As a

 65

result, when two sketches are being matched, we need to first determine the

correspondence between the components before the similarity score can be computed.

As illustrated in Figure 41, assuming that we know the cost matrix whose entry is the

matching cost between each component of sketch 1 and each component of sketch 2,

determining the correspondence between the components is to find a matching such that

the total cost is minimized. In graph theory, this corresponds to the bipartite graph

matching problem [5][10]. It can also be considered as the marriage problem where

there are M men and M women, and the goal is to find the best way of arranging the M

couples based on their scores on each candidate. This problem can be solved by the

Hungarian method [21]. In our sketch retrieval problem, we need to find a set of

correspondence between M feature points from one sketch with N feature points from

another sketch. The cost matrix can be constructed by considering the inverse of the

similarity between each pair of feature points. However, since the Hungarian method

requires the cost matrix to be square, some dummy rows or columns need to be appended

to the cost matrix.

2410

367

981

2410

367

981A

B

C

1 2 3
A

B

C

1

2

3

Cost Matrix

Sketch 1 Sketch 2

A

B

C

1 2 3
A

B

C

1

2

3

A

B

C

1

2

3

Cost Matrix

Sketch 1 Sketch 2

Figure 41 Matching between multiple components given the cost matrix

 66

From the Hungarian method, the correspondence between multiple strokes can be

assigned according to the shape information between strokes. In this case, in Figure 42,

the triangles in sketch 2 and sketch 3 are corresponding strokes to the triangle in sketch 1

and the rectangles in these two sketches are corresponding strokes to the rectangle in

sketch 1. If the similarity is entirely based on shape, then sketch 2 and sketch 3 are both

similar to sketch 1. On the other hand, if the spatial relation between the strokes is also

considered, then we can make a further distinction that sketch 2 is more similar than

sketch 3 with respect to sketch 1. There are two ways of including the spatial relations

into consideration: 1) use the spatial relations in addition to shape information when

determining the stroke correspondence; or 2) keep using only shape information when

determining the stroke correspondence, but includes the spatial relations in the similarity

computation after the correspondence is found.

Sketch 1 Sketch 2 Sketch 3

Figure 42 Example sketches to demonstrate spatial relations

In the first way, the spatial relations are also considered in determining the stroke

correspondence. There exist some methods [38][43] that try to achieve this goal by

matching shape and spatial relations at the same time. Petrakis and Faloutsos [38] used

attributed relational graphs (ARG) for matching medical images under the assumption

that the number of feature points of the query is less than or equal to the number of

 67

feature points of a database sketch. Smith and Chang [43] integrated the spatial and

shape features by using the 2D string matching technique proposed in [8] that maintains a

consistent order for the x-projection and the y-projection of all matched components.

Assume that the orders of the strokes are preserved in determining the correspondence.

In Figure 42, in the horizontal direction, the stroke correspondence of the sketches is the

same as the previous case when only shape information is considered. However, in the

vertical direction, only one of the object pairs (the triangle pair and the rectangle pair) can

be corresponding strokes for sketch 2 and sketch 3 with respect to sketch 1 but not both

because the two object pairs have conflicting orders in the vertical direction. The object

pair to be selected as the corresponding strokes depends on the shape similarity of the

object pairs. For example, if the triangle pair has a larger similarity score than the

rectangle pair, then the triangles will be the only corresponding strokes in the vertical

direction. The horizontal and vertical directions are considered separately for the stroke

correspondence and then the similarity score is the combined result in both directions.

In the second way, the correspondence is determined solely based on shape

information, and then spatial relations are used in the similarity computation. In [35][36],

the spatial relation between multiple objects is used for similarity computation assuming

that the object correspondence is given. In this case, when considering the example in

Figure 42, the stroke correspondence between sketch 1 and sketch 2 is the same as that

between sketch 1 and sketch 3. However, if we include spatial relations in the similarity

computation, then the similarity score between sketch 1 and sketch 2 will still be higher

than that between sketch 1 and sketch 3 since sketch 1 and sketch 2 are more similar in

terms of spatial relations.

 68

The first way has the advantage that shape and spatial relations are considered

simultaneously therefore the matched result can be more accurate under full search.

However, the stroke correspondence problem becomes much more complex when trying

to match both shape and spatial relations simultaneously thus full search is not feasible.

It is thus necessary to reduce the search space by limiting the search paths. As a result,

error can still be introduced under the first way. On the other hand, in the second way,

the stroke correspondence is a much simpler problem since only shape information is

considered and the Hungarian method provides an efficient way of solving this problem.

Assume that there are not too many similar sets of strokes within the same sketch such

that there are not too many mistakes in the stroke correspondence, then the spatial

relations are helpful in computing the similarity score to adjust the ranks of the retrieved

result properly. As a result, we propose to use the second way to determine the multiple

component feature correspondence by considering only the shape similarity and then

include spatial relations in the similarity computation.

5.2. Similarity Functions

We introduce the similarity functions that we use for matching different levels of

features in order to compare both global and local information.

5.2.1. Stroke Hierarchy Similarity

The similarity in the stroke hierarchical structures is determined by counting how

many corresponding stroke pairs also preserve the parent-child relationship in the stroke

hierarchies. For example, two stroke hierarchies are shown in Figure 43 where nodes

with the same numbers are corresponding strokes. Between these two stroke hierarchies,

 69

three corresponding stroke pairs (2-5; 2-6 and 3-4) are also parent-child strokes in both

hierarchies. As a result, the similarity in the stroke hierarchical structure in this case is 3.

3=HierarchySIM

1 2

3

4

5 6

1 2

3

4

5 6

Stroke Hierarchy
for Sketch 2

Stroke Hierarchy
for Sketch 1

3=HierarchySIM

1 2

3

4

5 6

1 2

3

4

5 6

1 2

3

4

5 6

1 2

3

4

5 6

Stroke Hierarchy
for Sketch 2

Stroke Hierarchy
for Sketch 1

Figure 43 Stroke hierarchy similarity

5.2.2. Hyper-Stroke Similarity

We first show how to compute the similarity between two hyper-strokes. Then

we will describe how to compute the similarity between two sets of hyper-strokes where

each set of hyper-strokes is generated from one sketch.

We use the Mahalanobis distance between the hyper-stroke features F1 and F2 as

the feature distance measure as shown in equation (29)

() ()21
1

2121),(FFFFFFd T
HYPER −Σ−= − (29)

where Σ is the covariance matrix of the hyper-stroke features pre-determined from

the sketches in the database.

The hyper-stroke similarity between two hyper-strokes is computed as the inverse

of the hyper-stroke feature distance.

A set of hyper-strokes can be generated from one sketch. As a result, given two

sketches, we need to compare two sets of hyper-strokes by first determining the

 70

correspondence so that we know which hyper-stroke from one sketch is matched with

which hyper-stroke from another sketch. In determining the correspondence, first the

similarity table is constructed where each element represents the similarity between a

hyper-stroke from sketch 1 and a hyper-stroke from sketch 2. Then the correspondence

between the two sets of hyper-strokes is determined by the greedy algorithm. The

element in the table with the maximum score is selected and the associated row index and

column index of that element indicates a pair of corresponding hyper-strokes. The row

and the column associated with that element are removed from the table. The maximum

score is searched again from the remaining table and this process is repeated until the

table becomes empty. The resulting similarity score between the two sets of hyper-

strokes is computed as the sum of the similarity scores of the selected elements.

5.2.3. Spatial Relation Similarity

Recall in Section 4.4, the spatial relation is defined by the displacement vector

between the centers of two strokes within a sketch. Using the notations illustrated in

Figure 30, the spatial relation similarity between R1 and R2 is modeled as a function of

dxSPATIAL = distance(dx1, dx2) and dySPATIAL = distance(dy1, dy2) defined by equation (30).

||||
21),(SPATIALSPATIAL dydx eeRRSim −− += (30)

An exponential function is used as the spatial relation similarity. Since it is a

continuous function, there will not be a big jump in the spatial relation similarity when

the location of a stroke is changed a little bit as opposed to the case of using the spatial

ordering or the interval relationship by quantizing the spatial relations into discrete steps.

 71

5.2.4. Shape Similarity

As described in Section 4.5, there are features for three primitive shapes and a

non-primitive shape for each stroke. The shape similarity is computed by first calculating

the similarity scores across all shapes and then picking the maximum score.

In [45], equation (31) is proposed to be used as the similarity function. We also

use equation (31) to match two features Fi1j and Fi2j, which are the j-th feature of the i-th

shape (3 primitive shapes + 1 non-primitive shape) for strokes s1 and s2.

),max(
),min(

),(
21

21
21

jiji

jiji
jiji FF

FF
ssSim = (31)

If the feature spans a large range, then it is not suitable to use equation (31) as the

similarity function any more since the decay may be too fast as the feature distance

increases. As a result, we propose another similarity function as shown in equation (32)

to compare features that span a large range. This is essentially the ratio between the

geometric mean and the arithmetic mean thus the score lies between 0 and 1.

2/)(

)(
),(

21

21
21

jiji

jiji
jiji FF

FF
ssSim

+

•
= (32)

The resulting shape similarity score between two strokes s1 and s2 is given by

equation (33).









= ∏

j
jijiiiiSHAPE ssSimsLsLssSIM),()()(max),(212121 (33)

5.2.5. Overall Similarity

Figure 44 provides a unified system by how the representation stage, the feature

extraction stage and the matching stage are combined. The numbers in the brackets

 72

denote which section the underlying blocks are described. This provides a summary of

how Chapter 3, Chapter 4 and Chapter 5 are bonded together to form the framework.

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 1

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 2

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Hyper-Stroke Similarity
(5.2.2)

Stroke Hierarchy Similarity
(5.2.1)

Overall Similarity
(5.2.5)

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 1

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 1

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 2

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Resampling
(3.1)

Merging
(3.3)

Splitting
(3.2)

Shade
Detection (4.1)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Hyper-Stroke Feature
Extraction (4.3)

Stroke Hierarchy
Construction (4.2)

Basic
Strokes

Shade
Strokes

Original
Rep.

Split
Rep.

Merged
Rep.

Descendent
strokes

Sketch 2

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Shape Feature
Extraction (4.5)

Spatial Relation
Computation (4.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Hyper-Stroke Similarity
(5.2.2)

Stroke Hierarchy Similarity
(5.2.1)

Overall Similarity
(5.2.5)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Hyper-Stroke Similarity
(5.2.2)

Stroke Hierarchy Similarity
(5.2.1)

Overall Similarity
(5.2.5)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Stroke Correspondence
(5.1)

Shape Similarity
(5.2.3)

Spatial Similarity
(5.2.4)

Hyper-Stroke Similarity
(5.2.2)

Stroke Hierarchy Similarity
(5.2.1)

Overall Similarity
(5.2.5)

Figure 44 Unified system with representation, feature extraction and matching

Now we provide a description about how to compute the similarity scores for

different levels of features between two sketches. The blocks in the center column in

Figure 44 corresponds to the matching stage. The hyper-stroke similarity between the

two sets of hyper-stroke features from sketch 1 and sketch 2 is computed according to

Section 5.2.2. The stroke hierarchies from the two sketches are also compared according

to Section 5.2.1. Then for each of the multiform representations (original, split, merged),

the similarity of the basic strokes between the two sketches is computed. This is done by

first determining the correspondence between the basic strokes with the Hungarian

method specified in Section 5.1. The shape similarity between each corresponding stroke

pair between two sketches is computed according to 5.2.4. The spatial relation similarity

 73

is computed between a pair of strokes in sketch 1 and the pair of corresponding strokes in

sketch 2 according to Section 5.2.3. The similarity between the two sketches in each

multi-form representation is then computed by combining the shape and spatial similarity

functions as follows:

[]∑ ∑
−

= +=
+ +=

1

1 1
212121),(),(),()2Sketch ,1Sketch (

n

p

n

pq
qqpppqpqSPATIALSHAPE ssSimssSimRRSimSIM

(34)

where s1p and s2p are the p-th corresponding strokes between sketch 1 and sketch 2, R1pq

and R2pq are the spatial relations between the p-th and the q-th corresponding strokes in

Sketch 1 and Sketch 2 respectively, and n is the number of corresponding strokes

between the two sketches. This equation assumes that there are at least two strokes in

each sketch. In case there is only a single stroke in one of the sketches, then only the

shape similarity is considered without using the spatial relation similarity.

We now describe how to compute the overall similarity score from the similarity

scores for different levels of features. For each of the three multi-form representations,

the shape and spatial relation similarity scores between the query sketch and each sketch

in the database are computed. Then the mean of these scores for each representation is

calculated. Afterwards the shape and spatial similarity scores of each representation are

normalized by dividing themselves by the mean score of that representation. The

resulting scores are then combined linearly with certain weights that are initialized with

equal values and can be updated with the relevance feedback method described in Section

6.2 . The final overall similarity score is obtained by another linear combination of the

shape and spatial relation similarity of the multi-form representations with the hyper-

stroke feature similarity and the stroke hierarchy similarity.

 74

HIERARCHYHIERARCHYHYPERHYPERSPATIALSHAPESPATIALSHAPEOVERALL SIMwSIMwSIMwSIM •+•+•= ++

 (35)

5.3. Experiment and Result

Figure 45 shows the retrieval performance of our proposed approach compared

with two other approaches. The weights that we used in this experiment are

05.0,05.0,9.0 ===+ HIERARCHYHYPERSPATIALSHAPE www . The first approach uses the Hu

moment invariants [15] as features and the second approach uses the wavelet coefficients

[16]. It can be seen that by using our proposed approach, the result is better than the

previous two approaches. We also compare our performance with the result obtained by

using the linear combination of the two approaches. Although the performance improves

after combining the two approaches, our approach still outperforms this combined result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Overall Retrieval Performance Compared with Other Approaches

Proposed Approach
Combination of Wavelet and Moment
Moment Feature Matching
Wavelet [Salesin 1995]

Figure 45 Comparison of retrieval performance with other approaches

 75

Now we perform other experiments to show the gain in retrieval performance

with respect to individual module. The gain in retrieval performance by combining the

matching results from multiform representations has already been shown in Section 3.4.

We perform another experiment to compare the retrieval performance with and without

stroke hierarchy similarity. To make the dataset more challenging, we add two new

classes of sketches whose examples are shown in Figure 46 and in Figure 47. The

example sketches shown in Figure 46 illustrate the sign showing traffic light ahead

whereas the example sketches shown in Figure 47 illustrate that there is a sign below the

traffic light. It should be noted that these two classes of sketches contain strokes of the

same shape, yet the fact that the traffic light is drawn inside or above the diamond shape

gives two different meanings. As a result, we expect the stroke hierarchy to be able to

help in the retrieval. In this setup, the retrieval performance using only the original

representation is compared with the retrieval performance using the original

representation with stroke hierarchy similarity. The overall similarity score used in the

former case is obtained by setting 0,0,1 ===+ HIERARCHYHYPERSPATIALSHAPE www

5.0

 and the

resulting similarity score used in the latter case is obtained by setting

,0,5.0 ===+ HYPERSPATIALSHAPE www HIERARCHY . Figure 48 shows the retrieval

performance using the “Sign – traffic light ahead” sketches as the query. It can be seen

that the performance is better when stroke hierarchy similarity is considered.

 76

Figure 46 Example Sketches in the Class “Sign – traffic light ahead”

Figure 47 Example Sketches in the Class “Sign below traffic light”

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Original Representation
Original Representation + Stroke Hierarchy

Figure 48 Comparison of retrieval performance for stroke hierarchy

 77

We perform another experiment to compare the retrieval performance with and

without hyper-stroke similarity. We use a new class of sketches shown in Figure 49 as

the queries. These sketches illustrate different kinds of wall sockets but they are

considered as one class. The challenge about this class of sketch is that the shapes

between different kinds of wall sockets are quite different. However, all of them have the

property that it has three holes that are indicated by the three shaded regions. As a result,

we expect the hyper-stroke to be able to help in the retrieval. In this setup, the retrieval

performance using only the original representation is compared with the retrieval

performance using the original representation with hyper-stroke similarity. The overall

similarity score used in the former case is obtained by setting

0,0,1 ===+ HIERARCHYHYPERSPATIALSHAPE www and the resulting similarity score used in the

latter case is obtained by setting 0.0,5.0,5.0 ===+ HIERARCHYHYPERSPATIAL wwSHAPEw .

Figure 50 shows the retrieval performance and it can be seen that the performance is

better when hyper-stroke similarity is considered.

Figure 49 Sketches in the Class “Wall Socket”

 78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Recall

P
re

ci
si

on

Original Representation
Original Representation + Hyper-Stroke Similarity

Figure 50 Comparison of retrieval performance for hyper-stroke similarity

 79

6. Multiple Component Relevance

Feedback

Sometimes the system may not provide satisfactory retrieval results after the user

provides a query. Relevance feedback has been proposed to refine the retrieval by asking

the user to provide positive and negative examples from the retrieval result. The system

then learns from these examples and hopefully the new retrieval result is closer to what

the user wants.

Matching for
Original Representation

Matching for
Split Representation

Matching for
Merged Representation

Combining Scores
and Ranking

Retrieval Result

Features Features Features

Relevance Feedback

Positive examples
Negative examples

Updating
Weights

Moving
Query

Matching for
Original Representation

Matching for
Split Representation

Matching for
Merged Representation

Combining Scores
and Ranking

Retrieval Result

Features Features Features

Relevance Feedback

Positive examples
Negative examples

Updating
Weights

Moving
Query

Relevance Feedback

Positive examples
Negative examples

Updating
Weights

Moving
Query

Figure 51 System diagram for relevance feedback

 80

We propose to employ two strategies in the relevance feedback for the sketch

retrieval: query feature movement and weight updating. The resulting system diagram

for the relevance feedback is shown in Figure 51. The similarity scores from the

matching of the multiform representations are combined and the sketches are retrieved

based on the ranks of the scores. After the user provides some positive and negative

examples, the system updates the features of the query in order to make them more

similar to the features of the positive examples and dissimilar to the features of the

negative examples. In addition, the system determines which of the multiform

representations provides high ranks to the positive examples and low ranks to the

negative examples and then increases the weight for the corresponding representation in

combining the similarity scores.

This chapter is organized as follows. Section 6.1 starts with the strategy in query

feature movement. It first introduces the traditional approach for performing relevance

feedback using query feature movement for objects with single component. Next we

provide an extension to handle query feature movement for objects with multiple

components. Section 6.2 discusses the weight updating approach for relevance feedback.

Section 6.3 presents the experimental results using the proposed relevance feedback

strategies.

6.1. Query Feature Movement

6.1.1. Object with Single Component

If each object consists of a single component, then in the feature space, each

object can be represented by one feature point. One way of performing relevance

feedback is to modify the feature point of the query to be closer to the feature points of

 81

the positive examples and farther away from the feature points of the negative examples

[48].

Assume
)(i

QF be the i-th feature of the query,
)(i

Pj
F be the i-th feature of the j-th positive example,

)(i
N k

F be the i-th feature of the k-th negative example,
where i = 1,2,…,D ; j = 1,2,…,nP ; k = 1,2,…, nN

 D is the feature dimension
 nP is the number of positive examples
 nN is the number of negative examples

The features of the query can be modified by the following equation [35]:

∑∑
==

−+=
N

k

P

j

n

k

i
N

n

j

i
P

i
oldQ

i
newQ FFFF

1

)(

1

)()(
)(

)(
)(βα for i = 1,2,…,D (36)

where α and β are some scaling factors

It can be observed that the final modification of the feature point of the query is

obtained by combining the contribution of the feature point from each of the positive and

negative examples. Figure 52 illustrates the relevance feedback for objects with a single

component.

Chang and Li proposed an algorithm called Maximizing Expected Generalization

Algorithm (MEGA) [7] and Tong and Chang proposed to use Support Vector Machine

Active Learning [44] to learn the concepts from the relevance feedback for image

retrieval. Each object in the database processes a set of concepts that take binary values

and the algorithms try to learn which concepts better describe the query such that they

will be used as criteria for searching the database. In the sketch retrieval application, it is

not intuitive to come up with meaningful concepts to describe a stroke.

 82

Query

Positive Examples

Negative Examples

Don’t Care Examples

Object
Feature space

One feature point corresponds to an
object that has single component

Query

Positive Examples

Negative Examples

Don’t Care Examples

Object
Feature space

One feature point corresponds to an
object that has single component

Figure 52 Relevance feedback for objects with a single component

6.1.2. Extension to Object with Multiple Components

The problem will get more complicated when an object may have multiple

components. From the relevance feedback, the user will only give positive or negative

examples of the objects, and then the system needs to figure out what features from

which components are responsible for characterizing the objects that the user wants. We

now describe our approach for extending the relevance feedback from objects with one

component to objects with multiple components in the next section.

If each object consists of multiple components, then in the feature space, each

object can be represented by a variable number of feature points equal to the number of

components of that object. Again, relevance feedback can be performed by modifying

the feature points of the query to be closer to the feature points of the positive examples

and farther away from the feature points of the negative examples. The final

modification of the feature point of the query is also be obtained by combining the

contribution of the feature point from each of the positive and negative examples.

However, there is an additional problem that needs to be solved: which feature point

 83

(component) of a positive or negative example should contribute to the modification of a

feature point of the query? In the previous section, it is assumed that the features of the

query and the features of the positive and negative examples all have the same dimension

D. However, in our system, a query is a sketch that can contain multiple strokes and so

are the positive and negative examples. The number of strokes for the query sketch and

the number of strokes for each positive and negative example sketch may not be the

same. This means that the features of the query and the features of the positive and

negative examples can have different dimensions. As a result, equation (36) needs to be

modified to account for this situation. Let , , denote the number of feature

points in the query, the number of feature points in the j-th positive example and the

number of feature points in the k-th negative example respectively. In this case, when we

compute the similarity between two sketches that have different number of strokes, the

stroke correspondence is first determined and the features of the corresponding strokes

are compared. Similarly, by using this stroke correspondence, the features of the query

can be modified by considering only the contribution from corresponding strokes if they

exist.

QD
jPD

kND

() ()∑∑∑∑
= == =

−+=
N

k

kN

k

P

j

jP

j

n

k

q
N

D

q

q
N

i
Q

n

j

p
P

D

p

p
P

i
Q

i
oldQ

i
newQ FFFMFFFMFF

1

)(

1

)()(

1

)(

1

)()()(
)(

)(
)(, , βα

 for i = 1,2,…,DQ (37)

With this extension, the query feature movement for multiple components can be

described by equation (37). Compared with equation (36), it can be observed that there

are additional terms ())()(, p
P

i
Q j

FFM and ())()(, q
N

i
Q k

FFM that specify the feature point

correspondence. For example, if the i-th feature point of the query matches with the p-th

 84

feature point of j-th positive example, then ()=)()(, p
P

i
Q j

FFM

()q
N

i
Q FF

k
 ,1,)()(≤

1. It should also be noted that

for each feature point of the query, a maximum of one match is allowed from each

example. As a result, there is an underlying constraint given by (38):

Ske

Ske

E2

F2 Positi

Negativ

Ske

Ske

E2

F2 Positi

Negativ

() Q

D

q

D

p

p
P

i
Q DiMFFM

kNjP

j
,...,2,1 , 1,

11

)()(=≤ ∑∑
==

 (38)

 Figure 53 illustrates the relevance feedback for objects with multiple

components.

Query

Stroke
Feature space

tch A Sketch B

tch C Sketch D

A1

B1

B2

B3

D1

Q1
Q2

Q3

C1

C2

C1

C2
C1

C2

C1

C2

Q2

Q3

A1

B1

B2
D1

E1

F3

Sketch E

E1

E2

Sketch F

F3

F2

F4

F1

F4

F1

B3

Database

ve Example

e Example Don’t care

Don’t care Don’t care

Don’t care

Q1

Query

Stroke
Feature space

Sketch E

E1

E2

Sketch F

F3

F2

tch A Sketch B

tch C Sketch D

A1

B1

B2

B3

D1

Q1
Q2

Q3

Q2

Q3

A1

B1

B2
D1

E1

F3

F4

F1

F4

F1

B3

Database

ve Example

e Example Don’t care

Don’t care Don’t care

Don’t care

Q1

Figure 53 Relevance feedback for objects with multiple components

6.2. Weight Updating

The similarity scores of the multiform representations between two sketches are

combined linearly. At first the weights are initialized with equal values and we would

like to use the user feedback in order to adjust the weights such that we will increase the

weight corresponding to the representation that provides a better retrieval performance.

Let Pi denotes the i-th positive examples and Ni denotes the i-th negative examples from

the user feedback. nP is the total number of positive examples and nN is the total number

 85

of negative examples. Let j be the index for the j-th representation: j = 1 denotes the

original representation; j = 2 denotes the split representation; j = 3 denotes the merged

representation. The quantity Rj given in (39) is directly proportional to the sum of ranks

of the negative examples and inversely proportional to the sum of ranks of the positive

examples. Essentially Rj is a measure of retrieval performance for the user feedback

examples since when Rj is large, the negative examples have low ranking (rank has large

value) and the positive examples have high ranking (rank has small value), showing that

this representation leads to good performance. On the other hand, when Rj is small, the

negative examples have high ranking (rank has small value) and the positive examples

have low ranking (rank has large value), showing that this representation does not lead to

good performance. The max operator is present to take care of the case when no

example has been provided (for example, when there is no negative example, i.e., nN=0,

the numerator will be set to be equal to 1 instead of 0). The weights Wj are updated by

normalizing Rj as given in (40).



















=

∑

∑

=

=

1,)(max

1,)(max

1

1

P

N

n

i
ij

n

i
ij

j

Prank

Nrank
R 3,2,1=j (39)

∑
=

= 3

1i
j

j
j

R

R
W 3,2,1=j (40)

6.3. Experiments and Results

Figure 54, Figure 55 and Figure 56 show the retrieval performance of the

proposed relevance feedback algorithm with weight updating only, with query moving

 86

only and with both query moving and weight updating respectivly by varying the number

of iterations of user feedback. Iteration 0 is the initial retrieval performance when no

feedback is applied. It can be seen that as the number of iteration increases, the retrieval

performance is also increased. The result converges after the 2 iterations. It can also be

seen that the gain with the query moving as shown in Figure 55 is more than the gain

with weight updating as shown in Figure 54. By combining both methods, the

performance is further improved as shown in Figure 56.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Relevance feedback with weight updating

Recall

P
re

ci
si

on

No feedback
iteration 1
iteration 2
iteration 3

Figure 54 Retrieval performance for relevance feedback with only weight updating

by varying number of iterations

 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Relevance feedback with query moving

Recall

P
re

ci
si

on

No feedback
iteration 1
iteration 2
iteration 3

Figure 55 Retrieval performance for relevance feedback with only query moving by

varying number of iterations

Figure 56 Retrieval performance for relevance feedback with both query moving

and weight updating by varying number of iterations

 88

Figure 57, Figure 58 and Figure 59 show the retrieval performance of the

proposed relevance feedback algorithm with weight updating only, with query moving

only and with both query moving and weight updating respectively by varying the

number of feedback examples after 1 iteration. The feedback examples are taken as the

top retrieved results at iteration 0 therefore they may include both positive or negative

examples. It can be seen that the retrieval performance is increased if more examples are

used for the relevance feedback. It can also be seen that the gain with the query moving

as shown in Figure 58 is more than the gain with weight updating as shown in Figure 57.

By combining both methods, the performance is further improved as shown in Figure 59.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Relevance feedback with weight updating

Recall

P
re

ci
si

on

No feedback
iteration 1 with 6 examples
iteration 1 with 9 examples
iteration 1 with 12 examples
iteration 1 with 15 examples
iteration 1 with 18 examples

Figure 57 Retrieval performance for relevance feedback with only weight updating

by varying number of examples

 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Relevance feedback with query moving

Recall

P
re

ci
si

on

No feedback
iteration 1 with 3 examples
iteration 1 with 6 examples
iteration 1 with 9 examples
iteration 1 with 12 examples
iteration 1 with 15 examples
iteration 1 with 18 examples

Figure 58 Retrieval performance for relevance feedback with only query moving by

varying number of examples

Figure 59 Retrieval performance for relevance feedback with both query moving

and weight updating by varying number of examples

 90

7. Partial Matching

This chapter describes our work in partial matching that has a different problem

setup from whole matching. Whole matching is suitable for applications such as

trademark retrieval with query by sketch [24], i.e., when the query sketch and the relevant

sketch in the database have roughly the same number of strokes as shown in Figure 60.

The algorithm is also robust to distortion when there are missing strokes. However, in

the case of partial matching as shown in Figure 61, the query sketch may be only a

portion of the sketch in the database. In this case, there are much more strokes in a

sketch from the database than the query sketch so it is more likely to find a set of strokes

that are matched based on the shape. This may lead to a high similarity score even for

irrelevant sketches, thus reducing the retrieval precision.

Query DatabaseQuery Database

Figure 60 Retrieval with whole matching

 91

Query

Database

Query

Database

Figure 61 Retrieval with partial matching

As a result, we consider the spatial relation together with shape features when we

try to find the stroke correspondence. Specifically, we discuss two approaches that we

have considered along this direction. The first approach transforms the stroke

correspondence problem into the string matching problem and then uses dynamic

programming to solve it. The second approach uses the nearest-neighbor method to find

the correspondence between bistroke feature points that consist of shape features of two

strokes and the spatial relation between them.

Sketch retrieval with partial matching is useful to find relevant information after

jotting and storing notes with a pen-based device. For example, in a classroom, the

teacher may write and draw the lecture notes on the whiteboard that can be captured and

stored page by page. Later students can retrieve relevant pages from the lecture sketch

database by drawing a simple query. For example, a student can draw the chemical

structure of benzene as the query and then the system will retrieve the page that contains

a similar chemical structure with the associated description about its name, chemical

formula and properties. With the partial retrieval capability, it is not necessary to

perform segmentation of a page into sketches before the matching, i.e., we do not need to

 92

know which regions of the page form a unit and then decide which regions to be matched

with the query.

This chapter is organized as follows. Section 7.1 provides the explanation of two

matching schemes we have considered in determining the correspondence of the features.

The first approach is dynamic programming and the second approach is bistroke feature

matching. Section 7.2 presents the experimental results for partial matching.

7.1. Matching Schemes

7.1.1. Dynamic Programming

By projecting the strokes in the horizontal and in the vertical direction, the strokes

can be ordered to form a 1D sequence in each direction. If we denote each stroke by an

alphabet, then essentially the stroke correspondence problem can be transformed into the

string matching problem. Specifically, we represent each stroke by two alphabets in each

direction, and then sort the alphabets according to the x or y coordinates of its boundaries.

For a sketch, in each direction, we obtain a string that is a sequence of alphabets sorted

according to the spatial locations of the boundaries of the underlying strokes. Now we

need to determine the matching (stroke correspondence) between two strings in each

direction. String matching can be solved using the dynamic programming technique.

First the similarity score table is constructed between every element of the first string and

every element of the second string based on the shape similarity between the two

underlying strokes. Then starting from the bottom right corner, each element in the

similarity score table is updated according to the path that returns a higher gain in score.

After constructing updating the entire table, we search for the element in the table with

the maximum score and then backtrack to find the path ending in this element. The

 93

resulting path specifies the stroke correspondence and the maximum score in the table is

used as the similarity score between two sketches.

7.1.2. Bistroke Matching

A bistroke feature consists of stroke features of a pair of strokes together with the

spatial relation between them. As a result, the query with N strokes will correspond to a

set of 

 points in the bistroke feature space. The goal of the bistroke feature

matching is to find a correspondence between the set of points of the query and the set of

points of the page in the bistroke feature space. We can use the following algorithm to

find the one-to-one correspondence between the bi-stroke features. Assume that there are

N strokes in the query sketch and M strokes in the page, the similarity matrix will contain

× elements. We search for the element in the similarity matrix with the highest

score and then its row index and its column index will indicate the corresponding stroke

feature points between the query and the page. The similarity matrix is updated by

removing the row and the column containing that element. This process is repeated until

the similarity matrix is empty. However, the complexity of the bistroke feature matching

will becomeO which is too

computation intensive. As a result, instead of finding a one-to-one correspondence

between the sets of bistroke feature points, we will simply find the nearest bistroke

feature point in the page for each of the bistroke feature point in the query. The

complexity of the bistroke feature matching is thus reduced to O .





2
N









2
M









2
N

((MNMNOMNMN loglog2log2log22
22 +=














 





+


















2
N



 









))

()22
2 MNOM =






 94

Although it is now possible for multiple bistroke feature points from the query to

correspond to a single bistroke feature point from the page, it is unlikely for this to

happen too often since there are relatively large number of bistroke feature points located

in a high dimensional space. As a result, the requirement of the one-to-one

correspondence for bistroke feature matching may not be as strict as the case for stroke

feature matching.

7.2. Experiment and Results

 For the experiment, we use those sketches that consist of at least two strokes as

the queries. The objective of this experiment is to evaluate the retrieval performance of

our proposed algorithm for partial matching. Each element in the database is constructed

by combining sketches from different classes to form a page. In each page, we randomly

select seven sketches belonging to different classes from the initial collection and put

them together by translation and scaling to form a page. It should be noted that the query

sketches and the pages of sketches in the database are collected at a different time in

order to simulate an actual retrieval scenario in which the database is collected first and

then retrieval is performed at a later time. In this database, there are 100 pages in total.

For each class of sketch, there are 20 pages in the database that contain a sketch from that

class. Figure 62 shows two example pages in the database that contain a sketch from the

class “fish”. For each query, we retrieve the elements from the database in the

descending order of similarity scores.

 95

Figure 62 Two example pages in the database

We compare our retrieval result with several other approaches. From Figure 63, it

can be seen that the retrieval performance using the dynamic programming approach is

very low. With the seven Hu moment invariants [15] as features, the retrieval

performance is also very low because these features are more suitable for global

matching. By matching the histogram of edge directions, the result is better than the

previous approaches. Stroke feature matching only uses the shape features without the

spatial relations to find the correspondence. With this approach, there is a significant

improvement in the retrieval performance. By using the bistroke feature matching, the

retrieval performance is further improved compared with the stroke feature matching.

Quantitatively, the stroke feature matching shows an improvement of 62% increase in

terms of the average precision compared with the edge histogram matching while the

bistroke feature matching shows an additional gain of 56% over the stroke feature

matching.

 96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retrieval Performance for Partial Matching

Bistroke feature matching
Stroke feature matching
Moment feature matching
Edge Histogram matching
Dynamic Programming

Figure 63 Retrieval performance for partial matching

 97

8. Applications

This chapter provides two example applications that perform retrieval based on

sketches. Section 8.1 introduces our prototype in sketch retrieval on virtual whiteboard.

Section 8.2 describes our prototype in trademark retrieval.

8.1. Sketch Retrieval for Virtual Whiteboard

We have implemented a prototype for free-form hand-drawn sketch retrieval as

shown in Figure 64. The user can sketch a query on the whiteboard, and then the system

will retrieve those sketches from the database that look similar to the query sketch.

User sketches a query

User retrieves similar sketches from the database

Query
Sketch

Similar
Sketch

Page stored in
Database

Figure 64 Prototype of free-form hand-drawn sketch retrieval system

 98

8.2. Trademark Retrieval

Our trademark retrieval interface is shown in Figure 65. After the user selects a

database a trademarks, he/she can browse through the trademarks. A window will pop up

after the user right clicks on the trademark image and the corresponding sketch extracted

for that trademark will be shown. Moreover, he/she can click on the trademark to select

that trademark to be the query and then the trademarks in the database that are similar to

the query will be retrieved. The query is shown on the frame in the left hand side. The

twelve trademarks that have the highest ranks according to the similarity score are shown

on the frame in the right hand side. In addition to trademark image, the user is also able

to provide a sketch as a query, and the trademarks whose corresponding extracted

sketches similar to the query sketch are retrieved and ranked as shown in Figure 65. Note

that the query is merely a rough sketch yet the system is able to retrieve all the relevant

trademarks with the highest similarity scores.

 99

Figure 65 Trademark retrieval user interface

 100

9. Summary and Future Directions

All the work in this thesis is finding an efficient sketch retrieval method to

improve the retrieval performance in terms of archiving relevant materials from the

database with minimum number of trials. We propose novel approaches along different

stages of the retrieval system. Specifically, we target on creating multiform

representations of a sketch in order to find at least one consistent representation when it is

compared against other similar sketches under user variations. We also target on coarse-

to-fine feature extraction in order to capture the characteristics of the sketch at various

levels. Our next target is on global and local matching in order to compare various levels

of features. Our final target is on multiple component relevance feedback in order to

refine the retrieval result based on the user feedback.

The first contribution of this thesis is in preprocessing the sketches for creating

multiform representations in order to have certain degree of consistency under each

representation. From the original representation of a sketch, we split the strokes into

smaller stroke segments based on the dominant points to obtain the split representation.

Then from the split representation, we merge the stroke segments if they form a primitive

shape to become the merged representation. Since there can be so many possibilities in

terms of variations, finding a unique representation that is consistent over all kinds of

variations is a difficult task, sometimes there may not be a solution. Therefore, instead of

keeping only one representation, we propose to use multiform representations for each

sketch such that it is more robust under different kinds of variations. We have shown that

 101

by keeping the multiform representations, the sketch retrieval performance is higher than

any of the representation used alone.

The second contribution of this thesis is in extracting high-level features for

associating them with semantic meaning. We propose to detect shaded regions and

represent them in a coarse level by treating them as one unit. We have built a classifier in

this shade detection problem for both hand-drawn sketches and for images. We also

propose to construct a stroke hierarchy to keep the structural information of the sketch.

By making use of the stroke hierarchy, we introduce a novel concept of hyper-stroke that

consists of a group of strokes inside a region enclosed by a boundary stroke. Finer

features such as shape features of basic strokes and spatial relations between strokes are

also extracted. In addition, we propose to analyze the strokes into primitive shapes. This

coarse-to-fine feature extraction can be conceptually considered as looking at the sketch

at different points of view. When coarse features are extracted, it can be considered as

the case when the sketch is being viewed far away and when fine features are extracted, it

can be considered as the case when the sketch is being viewed nearby. We realize that

comparing features at different levels allows matching to be performed both globally and

locally. While a sketch consists of multiple components and two sketches may have

different number of components, we transform the multiple component correspondence

problem into the bipartite graph matching problem. We analyze two ways in how this

correspondence problem can be solved. We have shown which similarity functions to

use for different levels of features and how to combine them to give the overall similarity

score.

 102

Another contribution of this thesis is in extending traditional relevance feedback

approach from objects with single component to objects with multiple components. We

have proposed to use the correspondence in order to move the query feature to make

them closer to the positive examples and farther away from the negative examples

provided by the user. We have also proposed to update the weights for the similarity

scores from the multiform representations according to how much impact they have on

the feedback examples. We have shown that the relevance feedback converges at the 2nd

iteration and the retrieval performance increases with more examples feedback to the

system.

We have considered two matching schemes, dynamic programming and bistroke

correspondence, in order to find the correspondence between features for partial matching

applications. We have shown that bistroke matching results in 56% gain in the retrieval

performance in terms of the average precision compared with stroke matching where

spatial relation is not considered in determining the correspondence.

Several prototypes of sketch retrieval system have been implemented targeting on

different applications. One prototype system is for the retrieval of hand-drawn sketches

on a virtual whiteboard. The scenario is that the teacher first draws the lecture notes on

the virtual whiteboard and later a student can retrieve relevant materials by drawing a

sketch query so that this application is suitable for distance learning. Another prototype

system is for the trademark retrieval. The scenario is that when a person wants to register

a new trademark, the clerk in the patent and trademark office can draw a query sketch of

the design and use it to search from the trademark database to verify whether similar

trademark has already been registered.

 103

There are several possible extensions for the work described in this thesis. It

would be interesting to study how to extract more semantic information from a sketch so

that we will be able to associate sketches with abstract ideas and retrieve them. In terms

of multiform representations, currently we have three representations for a sketch. It may

be extended to allow more representations in order to further increase the robustness

during matching. Eventually if the computation becomes so fast that perhaps a

continuous representation can be built for each sketch and a consistent representation

between two sketches can be searched in real time during matching. In our system, the

feature extraction mainly focuses on the geometric features. It may be extended to

include color features so that it may be more beneficial when trying to retrieve images.

Currently the query feature movement strategy in the relevance feedback only operates

on the shape features. It can be extended to update other features such as the stroke

hierarchy and the hyper-stroke features. It would be interesting to examine how this

approach can be further extended to update spatial relations.

 104

Bibliography

[1] Acer Inc., Tablet PC, http://aac.acer.com/.

[2] Ansari N. and Delp E. J. “On detecting dominant points”. Pattern Recognition, Vol.

24, no. 5, pp. 441-451, 1991.

[3] Apte A., Vo V. and Kimura T. D. “Recognizing Multistroke Geometric Shapes: An

Experimental Evaluation”. In ACM Symposium on User Interface Software and

Technology, pp. 121-128, 1993.

[4] Aref W., Barbara D., Lopresti D. and Tomkins A. “Ink as a first-class datatype in

multimedia databases”. In S. Jajodia and V. S. Subrahmanian, editors, Multimedia

Databases. Springer-Verlag, New York, 1995.

[5] Burkard R.E. and Cela E.. “Linear Assignment Problems and Extensions”. In P.M.

Pardalos and D.-Z. Du, editors, Handbook of Combinatorial Optimization,

Dordreck: Kluwer Academic Publishers, pp. 75-149, 1999.

[6] Carson C., Thomas M., Belongie S., Hellerstein J.M. and Malik J. “Blobworld: A

system for region-based image indexing and retrieval”. In 3rd Intl. Conf. On Visual

Information Systems, Amsterdam, Netherlands, pp.509-516, Springer, 1999.

[7] Chang E. and Li B. “MEGA - The Maximizing Expected Generalization Algorithm

for Learning Complex Query Concepts”. ACM Transaction on Information Systems

(final revision), 2002.

 105

http://aac.acer.com/

[8] Chang S. K., Shi Q. Y. and Yan C.W. “Iconic indexing by 2-D Strings”. In IEEE

Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, pp. 413-

428, May 1987.

[9] Chang S.-K. Principles of Pictorial Information Systems Design, Prentice Hall

Intern. Editions, 1989.

[10] Cheng Y.-Q., Wu V., Collins R.T., Hanson A.R. and Riseman E.M., “Maximum-

weight bipartite matching technique and its applications in image feature

matching”, In SPIE Conference on Visual Communication and Image Processing,

1996.

[11] Del Bimbo, A and Pala, P. “Visual image retrieval by elastic matching of user

sketches”. In IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 19,

No. 2, pp. 121-132, February 1997.

[12] Egenhofer M. J. and Al-Taha K. K. “Reasoning About Gradual Changes of

Topological Relationships”. In Theories and Methods of Spatio-Temporal

Reasoning in Geographic Space, Frank A. U., Campari I. And Formentini U., eds.,

Lecture Notes in Computer Science no. 693, pp. 196-219, Springer-Verlag, 1992.

[13] Electronics Imaging Inc., E-Beam, http://www.e-beam.com/.

[14] Faloutsos C., Barber R., Flickner M., Niblack W., Petkovic D. and Equitz W.

“Efficient and Effective Querying by Image Content”. In Journal of Intelligent

Information Systems, 3:231-262, 1994.

[15] Hu M. “Visual Pattern Recognition by Moment Invariants”. IRE Trans. on

Information Theory, vol. IT-8, 1962.

 106

http://www.e-beam.com/

[16] Jacobs, C. E., Finkelstein A., and Salesin D. H. “Fast Multiresolution Image

Querying”. Proceedings of SIGGRAPH '95, pp. 277-286, 1995.

[17] Jing F., Li M., Zhang L., Zhang H.-J. and Zhang B. “Learning in Region-Based

Image Retrieval”. Proc. Intl. Conf. on Image and Video Retrieval, 2003.

[18] Kamel I. and Barbara D. “Retrieving Electronic Ink by Content”. In Proc. of the

Intl. Workshop on Multimedia Database Management Systems, pp. 54-61, 1996.

[19] Kato T., Kurita T., Otsu N. and Hirata K. “A Sketch Retrieval Method for Full

Color Image Database”. In Proc. of the 11th Intl. Conf. On Pattern Recognition, pp.

530-533. The Hgues, The Neitherlands, August 1992.

[20] Korn F., Sidiropoulos N., Faloutsos C., Siegel E. and Protopapas Z., “Fast and

Effective Similarity Search in Medical Tumor Databases using Morphology”. SPIE

Proceedings Vol. 2916, Boston MA, Nov. 1996.

[21] Kuhn, H. W., “The Hungarian Method for the Assignment Problem”, Naval

Research Logistics Quarterly, Vol. 2, 1955, pp. 83-97.

[22] Lam L., Lee S.-W. and Suen, C.Y.. “Thinning methodologies – a comprehensive

survey”. IEEE Tran. on Pattern Analysis and Machine Intelligence, Vol. 14: 9, pp.

869-885, September 1992.

[23] Leung W. H. and Chen T. “Retrieval of Sketches Based on Spatial Relations

Between Strokes”. IEEE Intl. Conf. on Image Processing, Vol. 1, pp. 908-911,

Rochester, NY, September 2002.

[24] Leung W. H. and Chen T. “Trademark Retrieval with Contour vs Skeleton

Classification”. IEEE Intl. Conf. on Multimedia and Expo., Lausanne, Switzerland,

August 2002.

 107

[25] Leung W. H. and Chen T. “User-Independent Retrieval of Free-Form Hand-Drawn

Sketches”. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Vol. 2,

pp. 2029-2032, Orlando, FL, May 2002.

[26] Liu C.-L., Kim I.-J. and Kim J H. “Model-based stroke extraction and matching for

handwritten Chinese character recognition”. Pattern Recognition, 34, pp. 2339-

2352, 2001.

[27] Loncaric S. “A survey of shape analysis techniques”. In Pattern Recognition, 31(8),

pp. 983-1001, 1998.

[28] Long A. C., Landay, J. A., Rowe, L. A. and Michiels J. “Visual similarity of pen

gestures”. In CHI 2000, ACM Conf. on Human factors in Computing Systems, 2(1),

pp. 360-367, April 2000.

[29] Lopresti D. and Tomkins A. “Approximate Matching of Hand-Drawn Pictograms”.

In Proc. Third Int. Work. Frontiers Handwriting Recognition, pages 102-111. May

1993.

[30] Lopresti D. and Tomkins A. “On the searchability of electronic ink”. In Proc. of the

Fourth Intl. Workshop on Frontiers in Handwriting Recognition, pp. 156-165,

December 1994.

[31] Lopresti D. and Tomkins A. “Temporal domain matching of hand-drawn pictorial

queries”. In Proc. of the Seventh Conf. of The Intl. Graphonomics Society, pp. 98-

99. August 1995.

[32] Lopresti D., Tomkins A. and Zhou J. “Algorithms for matching hand-drawn

sketches”. In Proc. of the Fifth Intl. Workshop on Frontiers in Handwriting

Recognition, pp. 233-238, September 1996.

 108

[33] Matusiak S., Daoudi M. and Blu T. “Sketch-Based Images Database Retrieval”. In

Proc. of the Fourth Intl. Workshop on Multimedia Information Systems (MIS’98),

pp. 185-191, Istanbul, Turkey, September 1998.

[34] Microsoft, NetMeeting 3, videoconferencing software,

http://www.microsoft.com/windows/netmeeting/..

[35] Nabil M., Ngu A. H. H. and Shepherd J. “Picture Similarity Retrieval Using the 2D

Projection Interval Representation”. In IEEE Trans. on Knowledge and Data

Engineering, Vol. 8, No. 4, pp. 533-539, August 1996.

[36] Nabil M., Shepherd J. and Ngu A. H. H. “2D Projection Interval Relationships: A

Symbolic Representation of Spatial Relationships”. In Advances in Spatial

Databases: Fourth Int’l Symp., SSD ’95, Lecture Notes in Computer Science no.

951, pp. 292-309, Springer-Verlag, 1995.

[37] Pentland, A., Picard, R. W., Sclaroff, S., “Photobook: Content-Based Manipulation

of Image Databases”. SPIE Storage and Retrieval Image and Video Databases II,

1994.

[38] Petrakis E. G.M. and Faloutsos C. “Similarity Searching in Medical Image

Databases”. IEEE Trans. on Knowl. and Data Eng., 9(3):435–447, May/June 1997.

[39] Rocchio, J. J. “Relevance Feedback in Information Retrieval”. In The SMART

Retrieval System, Experiments in Automatic Document Processing, pages 313–323.

Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971.

[40] Schomaker, L. “From handwriting analysis to pen-computer applications”. In

Electronics & Communication Engineering Journal, Vol. 10: 3, pp. 93-102, June

1998.

 109

http://www.microsoft.com/windows/netmeeting/

[41] Sciascio E. D. and Mongiello M. “Query by Sketch and Relevance Feedback for

Content-Based Image Retrieval over the Web”. In Journal of Visual Languages and

Computing, 10(6), pp. 565-584, 1999.

[42] Seiko Instruments USA Inc., SmartPad,

http://www.seikosmart.com/products/sp580.html.

[43] Smith J. R. and Chang S.-F. “Integrated Spatial and Feature Image Query”.

Multimedia Systems, 7:129–140, 1999.

[44] Tong S. and Chang E. “Support Vector Machine Active Learning for Image

Retrieval”. ACM international Conference on Multimedia, October 2001.

[45] Tsay Y. and Tsai W.. “Attributed string matching by split and merge for on-line

Chinese character recognition”. In Pattern Recognition and Machine Analysis, Vol.

7, pp. 453-462, 1985.

[46] Tseng B., Shae, Z.-Y., Leung W. H. and Chen, T., "Immersive Whiteboards in a

Networked Collaborative Environment", IEEE Intl. Conf. on Multimedia and Expo.,

Tokyo, August 2001.

[47] van Rijsbergen C. J. Information Retrieval, Butterworths, London, 1979.

[48] Veltkamp R.C. and Hagedoom M. “State of the Art in Shape Matching”. Technical

Report UU-CS-1999-27, Ultrecht University, the Netherlands, 1999.

[49] Virtual Ink Inc., Mimio, Virtual Ink Corporation, mimio. [Online]. Available:

http://www.mimio.com/.

[50] WACOM Technology co., graphire2 tablet, http://www.wacom.com/graphire/.

 110

http://www.seikosmart.com/products/sp580.html
http://www.seikosmart.com/products/sp580.html
http://www.mimio.com/
http://www.mimio.com/
http://www.wacom.com/graphire/

[51] Wang Y.-H. “Image indexing and similarity retrieval based on A new Spatial

Relation Model”. In Intl. Conf. on Distributed Computing Systems Workshop, pp.

16-19, April 2001.

[52] Y. Hara, A. M. Keller, G. Wiederhold, “Implementing Hypertext Database

Relationships through Aggregations and Exceptions”. Proc. of 3rd ACM

Conference on Hypertext, pp. 75-90, San Antonio, Texas, Dec 15-18, 1991.

 111

	Introduction
	Multiform Representations
	Coarse-To-Fine Feature Extraction
	Global And Local Matching
	Multiple Component Relevance Feedback

	Fundamentals of Sketch Retrieval
	Capture Device for Sketches
	Mouse and Monitor
	Tablet and Monitor
	Wireless Pen and Paper Pad
	Wireless Pen, Physical Whiteboard and Projector
	Stylus and Touch Screen

	Storage Format for Shared Whiteboard
	Image
	Strokes

	System Overview for Sketch Retrieval
	Preprocessing Stage
	Feature Extraction Stage
	Matching Stage
	Refinement Stage

	Data Collection
	Experiment Setup
	Evaluation Criteria

	Multiform Representations
	Resampling
	Splitting
	Merging
	Experiment and Result

	Coarse-To-Fine Feature Extraction
	Shade Detection
	Shade Detection Algorithm
	Shade Detection Parameters

	Stroke Hierarchy Construction
	Hyper-Stroke Feature Extraction
	Spatial Relations
	Primitive Shape Feature Extraction
	Line Likelihood and Features
	Polygon Likelihood and Features
	Circle Likelihood and Features
	Non-Primitive Shape Likelihood and Features
	Heuristic Scalar Weights

	Appendices
	Appendix A: Simplified Shade Detection for Sketches
	Appendix B: Shade Detection For Images

	Global And Local Matching
	Multiple Component Feature Correspondence
	Similarity Functions
	Stroke Hierarchy Similarity
	Hyper-Stroke Similarity
	Spatial Relation Similarity
	Shape Similarity
	Overall Similarity

	Experiment and Result

	Multiple Component Relevance Feedback
	Query Feature Movement
	Object with Single Component
	Extension to Object with Multiple Components

	Weight Updating
	Experiments and Results

	Partial Matching
	Matching Schemes
	Dynamic Programming
	Bistroke Matching

	Experiment and Results

	Applications
	Sketch Retrieval for Virtual Whiteboard
	Trademark Retrieval

	Summary and Future Directions
	Bibliography

