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Abstract 

Sketching is a natural way of input that provides an effective means of illustration.  

A sketch consists of multiple strokes that can be captured by pen-based devices to be 

stored in a database for future retrieval.  Linear browsing is not feasible when the number 

of sketches in the database becomes large.  Not only do we need a tool in retrieving 

sketches, but also we need an efficient system that can provide retrieval result with high 

recall and high precision.  In this thesis, we propose a novel approach that includes 

several aspects in improving the sketch retrieval performance.  Given a sketch, we 

propose to have multiform representations of this sketch in order to find at least one 

consistent representation when it is compared against other similar sketches under user 

variations.  We then propose to perform coarse-to-fine feature extraction in order to 

capture the characteristics of the sketch at various levels.  We build a classifier in shade 

region detection for hand-drawn sketches and for images. When two sketches are 

compared, we propose to have global and local matching that computes the similarity not 

only based on the shape information, but also based on other criteria such as spatial 

relations and the structures.  In addition, we propose to extend traditional single 

component relevance feedback to multiple component relevance feedback in order to 

refine the retrieval result based on the user feedback.  Finally, we will show our 

approaches for solving the partial matching problem.  In the last part of this thesis we will 

show several prototypes that we have been implementing in order to demonstrate how 

sketch retrieval can be applied in real applications. 
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1.  Introduction 

Pen computing has become more and more important in our society [40] due to 

the popularity of pen-based devices such as TabletPC [1] that recently came out.  Pen-

based devices provide users with a natural way of input for drawing sketches.  A sketch 

can consist of handwritten notes, symbols, free-form hand-drawings, annotations on a 

document etc.  It will be very useful to store the sketches in a database and then retrieve 

them later by providing a simple sketch query.  For example, in a classroom, the teacher 

may write and draw the lecture notes on the whiteboard that can be captured and stored in 

a database.  Later students can retrieve relevant lecture sketches from the database by 

drawing a sketch as the query.   

Query by sketch falls into the category of content-based image retrieval (CBIR).  

QBIC [14] was the first CBIR system and it also supports query by sketch.  Global 

features such as area, circularity, eccentricity, etc., are used in shape matching.    

Matusiak et al. [33] proposed another approach to sketch-based images database retrieval 

by using Curvature Scale Space (CSS) to match contours.  In Sciascio and Mongiello’s 

system [41], the Fourier descriptors are used for shape comparison and they use relevance 

feedback to improve the retrieval performance for content-based image retrieval over the 

web.  All the above systems assume that the query consists of a single shape.   

Lopresti et al. [29][30] reported their work on matching hand-drawn pictures that 

they call “pictograms”.  This approach has a drawback that it treats the same hand-

drawings with different stroke orders as a poor match.  In order to make the system less 
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sensitive to the stroke order, Lopresti and Tomkins [31][32] proposed to match the strings 

block by block.   However, poor match may still result if a stroke is drawn in reverse 

direction (i.e., when the start point and the end point of a stroke interchange).  Under 

these approaches, string matching is performed for the alignment based on the time 

sequence.  They may work well for handwritings or pen gestures [28] when the strokes 

have certain sequence pattern but may not be suitable for unstructured free-form hand-

drawings. 

The Query by Visual Example (QVE) reported by Kato et al. [19] used correlation 

of the corresponding blocks between the edge maps for evaluating similarity.  Due to the 

variations in drawing style, this correlation approach will hardly match two rough 

sketches.  Del Bimbo and Pala [11] proposed to use elastic matching to retrieve images 

from the database based on the user sketch.  However, this energy minimization 

technique may be too time consuming when it requires many iterations for the solution to 

converge.  

In our prior work [23], we proposed a retrieval method for hand-drawn sketches.  

It is based on string matching by the alignment of the spatial order among the boundaries 

of the minimum bounding rectangles of the strokes in each of the x and y projections.  In 

[24], we included the similarity in spatial relations between strokes in the computation of 

the overall similarity score.  We have introduced another application of query by sketch 

in trademark retrieval [25].   

The focus of this thesis is on finding an efficient sketch retrieval method to 

improve the retrieval performance in terms of archiving relevant materials from the 

database with minimum number of trials.  Specifically, we target on developing novel 
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approaches in different aspects of the retrieval system.  Given a sketch, we propose to 

create multiform representations of this sketch in order to find at least one consistent 

representation when it is compared against other similar sketches under user variations.  

We then propose to perform coarse-to-fine feature extraction in order to capture the 

characteristics of the sketch at various levels.  When two sketches are compared, we 

propose to perform global and local matching that computes the similarity not only based 

on the shape information, but also based on other criteria such as spatial relations and the 

structures.  Finally we propose to extend traditional single component relevance feedback 

to multiple component relevance feedback in order to refine the retrieval result based on 

the user feedback. 

1.1. Multiform Representations 

Different people may draw the same sketch in a different way due to variations in 

style.  Moreover, sometimes even the same person may draw the same sketch differently 

due to user inconsistency.  In some shape recognition approach, dominant points are 

detected from the contour in order to be used as feature points.  On the other hand, in 

handwriting recognition, similar method has been proposed to split or merge the strokes 

in order to have a better representation for improving the recognition result.  However, 

variations in general sketches are much more than a specific domain of handwritings 

therefore it is unlikely to find a good criterion for splitting and merging the strokes to 

form a single consistent representation.  As a result, we propose to create multiform 

representations for each sketch.  From the original representation of a sketch, we try to 

split the strokes into smaller stroke segments based on the dominant points to obtain the 

split representation.  Then from the split representation, the stroke segments are merged if 
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they form a primitive shape to form the merged representation.  We show that by 

combining all three representations the retrieval performance is better than each single 

representation. 

1.2. Coarse-To-Fine Feature Extraction 

We propose a to extract features in a coarse-to-fine manner.  After preprocessing, 

the stroke hierarchy is constructed to capture the structural information of the sketch.  

The strokes are analyzed in order to detect for any shaded regions.  We introduce a novel 

concept of hyper-stroke that is defined by a group of strokes inside a region enclosed by a 

boundary stroke.  A hyper-stroke can be formed from strokes of a shaded region or it can 

also be derived from the stroke hierarchy.  Coarser features representing those of a group 

of strokes are extracted from each hyper-stroke.  On the other hand, finer features 

represented by primitive shape features are extracted from each basic stroke.   

1.3. Global And Local Matching 

We propose to compare the features at different levels in order to match them 

both globally and locally.  While a sketch consists of multiple components and two 

sketches may have different number of components, it is necessary to first find a 

correspondence between the components in the two sketches.  This correspondence is 

determined from global matching by minimizing the total cost (or maximizing the total 

similarity score) between components.  Based on this correspondence, the similarity 

score between the components can be computed.  On the other hand, local matching that 

compares attributes of only a few components independently can also be performed such 

as the matching of stroke hierarchy and the spatial relations. 
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1.4. Multiple Component Relevance Feedback 

Traditionally, relevance feedback can be applied to update the query features of 

an object with a single component.  However, multiple components exist in a sketch 

representation therefore extension is required in order to perform relevance feedback for 

updating query features of an object with multiple components.  We also propose to 

update the weights for combining the matching results from the multiform 

representations in order to assign a higher weight for the better representation based on 

the user feedback. 

This thesis is organized as follows. Chapter 2 describes the fundamentals of 

sketch retrieval.  We will survey existing capture devices for sketches and the storage 

format.  Then we provide a block diagram for the sketch retrieval system.  Next we 

discuss our data collection and the experimental setup.  Finally we explain the evaluation 

criteria for the retrieval performance. 

Chapter 3 describes the multiform representation creation in our sketch retrieval 

system.  We obtain the split representation by detecting the dominant points of the 

strokes and then obtain the merged representation by combining spited strokes that are 

likely to form one of the primitive shapes.   

Chapter 4 introduces coarse-to-fine feature extraction, that tries to obtain semantic 

information in addition to low-level features.  Novel ideas about capturing the structures 

of the sketches with stroke hierarchy and grouping a set of strokes into a hyper-stroke are 

discussed.  We explain how classification is used to detect shade regions for both hand-

drawn sketches and for images. 
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Chapter 5 includes the description of the global and local matching.  The 

correspondence between multiple components is first determined and two approaches for 

solving this problem are analyzed.  The similarity functions for various levels of features 

are provided to perform matching globally and locally. 

Chapter 6 explains the multiple component relevance feedback.  We introduce the 

traditional relevance feedback approach for object with one component and extend this 

approach to handle objects with multiple components.  Moreover, we also describe our 

approach for updating the weight for combining similarity scores from multiform 

representations. 

Chapter 7 discusses the partial matching problem.  We introduce two matching 

schemes in order to find the correspondence between features.  The first approach is 

dynamic programming based on the alignment of the spatially ordered strokes and the 

second approach is bistroke matching based on searching the best match for each pair of 

strokes according to both shape and spatial relation similarity.  

Chapter 8 lists several applications based on our sketch retrieval system.  We 

present the prototypes that we have been implementing. 

We finally conclude with a summary of the contributions of the thesis and some 

future directions for research. 
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2. Fundamentals of Sketch Retrieval 

This chapter provides some background materials for sketch retrieval.  It outlines 

several important processes in handling sketches.  It describes how sketches can be 

captured, how they can be stored and how they can be retrieved.  We state the problems 

that we focus on solving along with the introduction of different stages in the retrieval 

process.  The data collection process, the experimental setup and the retrieval 

performance evaluation criteria are also discussed.   

In an office, a whiteboard can be used to sketch a plan, write down reminders or 

illustrate an idea to visitors during an informal discussion.  Some video conferencing 

applications such as NetMeeting [34] incorporate an electronic shared whiteboard that 

facilitates information sharing among users.  The shared whiteboard allows multiple users 

from different locations to do collaborative work.  Traditionally, a whiteboard (or 

blackboard) is used in a classroom for the teacher to write down course materials for the 

students to learn.  As a result, a shared whiteboard can be included in a multi-user virtual 

environment so that it is suitable for distance learning.  In addition, more than one shared 

whiteboard can appear in a virtual environment and each whiteboard may be used for a 

specific function that can be associated with the surroundings.  For example, in a virtual 

office building, users may use the whiteboard for checking important phone numbers or 

appointment times in their offices or they may leave a message for other users on the 

whiteboard in the corridor.   
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Nowadays many commercial products target for this purpose in providing a 

convenient way for users to draw sketches that can be interfaced with computers.  Pen-

based devices become more popular recently since it provides a nature way of input.  We 

will list several technologies for capturing sketches and analyze their pros and cons. 

After capturing the sketches, it is essential to store them in order to view them at a 

later time.  The two most common storage formats for sketches are images and strokes.  

Their advantages and disadvantages will be discussed. 

When the user needs to search for relevant sketches at a later time, a linear 

browsing of the data is not feasible if the number of items in the database is large.  As a 

result, retrieval system is designed to solve this problem by providing the user a tool to 

search for relevant items in the database easily and efficiently.   We will give the 

overview of a sketch retrieval system and associate with our proposed methods with the 

system. 

This chapter is organized as follows.  Section 2.1 provides a survey of input 

devices that can be used to capture sketches.  Section 2.2 describes the storage format of 

sketches.  Section 2.3 introduces a general sketch retrieval system and identify which 

parts of the retrieval problem we are attempting to solve.  Section 2.4 introduces our data 

collection process and Section 2.5 describes the experimental setup.  Finally Section 2.6 

provides an explanation of the evaluation criteria for retrieval performance.  

2.1. Capture Device for Sketches 

In a classroom, blackboard and chalk have long been essential tools for teachers 

to convey the message to the students.  In an office, the presence of a physical whiteboard 

and markers allows people to sketch their ideas.  In these scenarios, people need to copy 
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down the writings or drawings on the whiteboard to their notebook in order to keep a 

record.  To remove the burden of the manual copying, a whiteboard session can be 

captured electronically by using some capture devices at the same time as the content is 

created.  The capture devices usually consist of two components: an input device and a 

visual feedback device.  The input device allows the user to write and draw naturally and 

its underlying electronic components capture the pen-down sample points.  The visual 

feedback device allows the user to see instantly what is on the board so that they can 

continue to write or draw consistently.  There exists various kinds of capture devices to 

achieve this purpose and we will discuss them in the following sections. 

2.1.1. Mouse and Monitor 

The most common way of capturing pen strokes is to use a mouse and then 

display the captured strokes on the monitor.  Since mouse and monitor are standard 

components of a computer, no extra hardware is required.  The shared whiteboard 

application simply captures mouse coordinates when the button is pressed.  The problem 

with this approach is that it is difficult to draw with a mouse because the user needs to 

keep his/her hand steady.  As a result, drawing or writing with a mouse is slow and the 

resulting drawings may contain a lot of jittering. 

2.1.2. Tablet and Monitor 

The tablet is a pen-based device that can be attached to a computer and it allows 

users to draw naturally on it.  While the user is drawing on the tablet, the visual feedback 

is provided on the monitor.  But since the visual feedback area (monitor) is different from 

the drawing area (tablet), it can be difficult to control the pen to start at the specific 
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desired location after the user has a pause and then resumes drawing.  Figure 1 illustrates 

an example of a tablet called graphire2 manufactured by WACOM [50].  

 
Figure 1 Tablet manufactured by WACOM 

2.1.3. Wireless Pen and Paper Pad 

With this setup, the user can draw with a special pen on regular paper attached to 

a pad.  This method is even more natural since the user is performing the same action as 

jotting notes on regular paper.  However, the drawback in this approach is that if the user 

wants to erase something from the electronically captured content, he/she may need to 

choose special function from the application and the resulting change will not reflect on 

the regular paper.  As a result, the content that is captured and the content that is actually 

drawn on the regular paper may be out-of-sync after the user does some editing.  Figure 2 

illustrates an example of this kind of commercial product called SmartPad manufactured 

by Seiko Instruments [42].  
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Figure 2 SmartPad manufactured by Seiko Instruments 

2.1.4. Wireless Pen, Physical Whiteboard and Projector 

In this setting, a capture bar is mounted on the side of a physical whiteboard to 

detect the coordinates of the wireless pen when the user uses it to draw or write on the 

whiteboard.  The wireless pen is inkless meaning that it does not leave any physical mark 

on the whiteboard.  Its tip has a switch and will be turned on while it is pressed towards 

the whiteboard during writing, thus sending the coordinates of the wireless pen to the 

capture bar.  A projector is setup to project the resulting virtual ink back to the 

whiteboard to give the user instant visual feedback.  Calibration is required at the 

beginning in order to map the cursor coordinates of the application to the physical 

location of the wireless pen such that the projection will overlap correctly with the 

designated drawing area of the whiteboard.  Similar to the paper pad in the previous case, 

the physical whiteboard is served as both drawing area and the visual feedback area.  The 

physical whiteboard provides a much bigger drawing area.  However, this approach has 

the drawback that occlusion may occur because the projection may be blocked by the 
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user.  There exist several commercial products for this kind of capture devices such as 

mimio [49] or eBeam [13].  An example setup with mimio and the projected whiteboard 

display is shown in Figure 3.  A more detailed description about this particular setup used 

with our virtual environment can be found in [46]. 

 

Figure 3 mimio and the projected whiteboard display 

2.1.5. Stylus and Touch Screen 

The user uses a stylus to write directly on top of a screen and whatever the user 

writes will be displayed instantly on the same screen.  The screen is pressure sensitive in 

order to detect when and where the pen is down.  The advantage of this setup is that the 

drawing area and the visual feedback area are integrated into the same device so that the 

inconsistency between drawing and displaying can be avoided.  However, a touch screen 

is more expensive compared with other kinds of capture devices.  On the other hand, as 

common to any typical new hardware, the cost is expected to decrease as time passes and 

this approach will be more and more common to the general public.  The new product 

line Tablet PC that includes a pressure-sensitive tablet integrated into a laptop screen will 

 12



make shared whiteboard applications much more convenient to use.  An example Tablet 

PC manufactured by Acer is shown in Figure 4 [1]. 

 
Figure 4 Tablet PC manufactured by Acer 

2.2. Storage Format for Shared Whiteboard 

The user may want to save the content of the whiteboard after being captured by 

the input device so that he/she may review the content at a later time.  There are two 

common formats that the whiteboard content can be stored: as an image or as strokes. 

2.2.1. Image 

The content on the whiteboard can be saved as an image.  The background 

whiteboard may be represented by white pixels and the drawing or writing can be 

represented by black pixels.  Using this format, the memory required to store the 

whiteboard content as a raw image is fixed since the total number of pixels on the 

whiteboard is constant.  The image may be compressed to reduce the space required for 

storage.  The image represents only the final outcome and the intermediate results are not 

stored.  Timing information is not included in the image format.  One can save a 

whiteboard session as a video, i.e., save the whiteboard image buffer at different time 

instants, to show the progress over time.  However, it will require a lot of storage space or 
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else the resolution will be poor if compressed with low bit rate by standard video 

compression techniques.     

2.2.2. Strokes 

An alternative solution to store the whiteboard content is to store them as strokes, 

i.e., save the sequence of the x and y coordinates captured from the input devices over 

time.  Timing information is saved under this format therefore during playback the 

whiteboard session at any time instant can be easily displayed.  Another advantage for the 

stroke format over the image format is the robustness to transformation.  When an image 

is under rotation or scaling, the quality of the transformed image may be poor due to 

interpolation.  However, since we are only transforming the stroke sample points while 

maintaining their connectivity, the resulting display can still have high resolution.     

2.3. System Overview for Sketch Retrieval 

The reason for storing the sketches is to be able to archive it at a later time.  The 

relevant content needs to be archived according to what the user wants.  Given a lot of 

captured sketches, a database can be formed and it will be useful if we are able to search 

through this database efficiently for relevant information according to our input query.   

Retrieval based on sketches has several advantages: 

1) Compared with keyword-based approach, retrieval based on sketches does not 

require the users to understand the context of the object.  In keyword-based approach, 

each object first needs to be annotated which requires lots of manual labor.  Moreover, 

different people may assign different keywords to the same sketch and sometimes it is 

difficult to describe something with words.  
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2) Compared with image retrieval, retrieval based on sketches contains more 

semantic information since each basic unit is a stroke instead of a pixel.  This also means 

that retrieval based on sketches can be more robust to local variations. 

3) Compared with traditional handwriting recognition, retrieval based on 

sketches provides a more flexible way of matching sketches.  Handwriting recognition 

tries to map handwritten characters to a set of alphabets using the information that 

characters are drawn in certain order in time. On the other hand, a sketch is a more 

general representation therefore it is language independent and does not make assumption 

about the drawing order of the strokes. 

A system overview of our sketch retrieval system is shown in Figure 5. 
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Figure 5 Block diagram of our sketch retrieval system 

There are several stages in the sketch retrieval process: preprocessing stage, 

feature extraction stage, matching stage and refinement stage.  In the preprocessing stage, 

image processing techniques are often applied in order to obtain a consistent 

representation of the data.  In the feature extraction stage, features that can well describe 
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certain characteristics of the data are extracted.  In the matching stage, the similarity 

scores between the query sketch and each sketch in the database are computed.  The 

sketches in the database with the highest similarity scores are retrieved.  In the refinement 

stage, the user has the option to provide relevance feedback to the system by indicating 

positive and negative examples.  The system will retrieve new results after learning from 

those examples.  Now we introduce specific problems at each stage that we focus on 

solving.  

2.3.1. Preprocessing Stage 

Raw data often contains useful information as well as unwanted noisy information 

due to different kinds of variations.  The goal of the preprocessing stage is to remove 

some unwanted information in order to obtain a consistent representation of the data.  In 

sketch retrieval, the variation of the sketch raw data may be due to user style such that the 

same sketch may be drawn in a different way by different people or the variation may be 

due to capturing process such that even the sketch drawn by the same person may appear 

differently at different times.  Since there can be so many possibilities in terms of 

variations, finding a unique representation that is consistent over all kinds of variations is 

a difficult task, sometimes there may not be a solution.  Therefore, instead of keeping 

only one representation, we propose to use multiform representations for each sketch 

such that it is more robust under different kinds of variations. 

2.3.2. Feature Extraction Stage 

After preprocessing, features that describe certain characteristics of the data are 

extracted.  The choice of features is often based on heuristics and it depends on the data.  
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We propose a to extract features in a coarse-to-fine manner such that features at different 

levels are considered.  As a result, in addition to low-level features, we also extract high-

level semantic features from the representation after the preprocessing stage.  For sketch 

retrieval purpose, coarse-to-fine feature extraction can be conceptually considered as 

looking at the sketch with different points of view.  When coarse features are extracted, it 

can be considered as the case when the sketch is being viewed far away and when fine 

features are extracted, it can be considered as the case when the sketch is being viewed 

nearby.  We propose several strategies in the coarse-to-fine feature extraction.  Firstly the 

sketch is analyzed in order to detect for shaded regions since the strokes in a shaded 

region are better treated as a single unit.  Then we construct the stroke hierarchy of each 

sketch to capture the structural information.  We introduce a novel concept of hyper-

stroke that is composed of a group of strokes inside a region enclosed with a boundary 

stroke.  Shape features of basic strokes and spatial relations between strokes are also 

extracted. 

2.3.3. Matching Stage 

The goal of the matching stage is to compare the features of the query with the 

features of the items in the database and compute the similarity score between them.  The 

similarity scores are sorted and those items in the database with high scores are retrieved.  

We propose to compare the features at different levels in order to match them both 

globally and locally.  While a sketch consists of multiple components and two sketches 

may have different number of components, it is necessary to first find a correspondence 

between the components in the two sketches.  Based on this correspondence, the 

similarity score between the matched components can be computed.  In addition, spatial 

 17



relations between strokes are also considered in addition to shape features when the 

similarity is computed. 

2.3.4. Refinement Stage 

In the refinement stage, the user has the option to provide relevance feedback to 

the system by indicating positive and negative examples.  The challenge is to figure out 

from the feedback examples what to update in order to increase the retrieval performance 

and to adapt better to what the user needs.  Current approaches include 1) modifying the 

features of the query to make them closer to the positive examples and farther away from 

the negative examples; and 2) updating the weights according to how much impact they 

have on the feedback examples.  We first propose to extend traditional query feature 

movement approach to handle objects with multiple components.  We also propose to 

update the weights for combining the matching results from the multiform 

representations in order to assign a higher weight for the better representation based on 

the user feedback.   

2.4. Data Collection 

For the data collection, a PDA device (Compaq iPaq Pocket PC) is used to 

capture the sketches.  There are sketches from 11 people in our database.  During each 

session, each person draws 1 to 3 repetitions (depending on how fast they draw and how 

much time they can allocate for the session) for each of the 37 classes of sketches.  As 

shown in Figure 6, the classes include Chinese characters, Korean characters, English 

words, mathematical equations, chemical structure, flow diagram and free-form hand-

drawings such that they cover sketches in various domains.   
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Figure 6 All 37 classes of sketches 

Figure 7 shows a few examples of different classes of sketches drawn by several 

people. 
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Figure 7 Some classes of sketches drawn by different people 

2.5. Experiment Setup 

In the database, there are 703 sketches in total.  For each of the 37 classes of 

sketch, there are 19 sketches in the database that belong to that class.  For each query, we 

retrieve the elements from the database in the descending order of similarity scores.  For 

the experiment, each of the sketches in the database is used as the query to retrieve other 

sketches within the same class and the retrieval results are averaged within each class.   

2.6. Evaluation Criteria 

To evaluate the retrieval performance, the precision and recall graph [47] is plotted 

based on the ranks of those sketches from the same class as the query sketch.  Figure 8 

illustrates the concepts of recall and precision.  The big circle indicates the retrieved 

sketches that are similar to the query sketch.  Recall is defined as the ratio between the 
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number of relevant retrieved sketch and the total number of relevant sketches.  Precision 

is defined as the ratio between the number of relevant retrieved sketch and the total 

number of retrieved sketch.  When more items are retrieved, recall will be increased but 

precision will be decreased.  A graph can be plotted with these recall-precision pairs and 

Figure 9 shows an example of such recall-precision graph.  In each of our experiments, 

many queries are used and the resulting graph is obtained by averaging over all the 

queries.  In a recall and precision graph, the higher the curve, the better the retrieval 

performance since for the same recall value, a higher curve signifies a higher precision 

value. 
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Figure 8 Illustration of recall-precision evaluation criteria 
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Figure 9 Recall-precision graph 
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3. Multiform Representations 

This chapter focuses on the multiform representations part of the sketch retrieval 

system.  The sketch is first resampled such that neighboring points in the same stroke 

have equal distance.  Then we obtain the split representation by detecting the dominant 

points of the strokes and then obtain the merged representation by combining split strokes 

that are likely to form one of the primitive shapes. 

Different people may draw the same sketch in a different way due to variations in 

style.  Moreover, sometimes even the same person may draw the same sketch differently 

due to user inconsistency.  In some shape recognition approach [27][48], dominant points 

are detected from the contour in order to be used as feature points.  On the other hand, in 

handwriting recognition [26][45], similar method has been proposed to split or merge the 

strokes in order to have a better representation for improving the recognition result.  

However, variations in general sketches are much more than a specific domain of 

handwritings therefore it is unlikely to find a good criterion for splitting and merging the 

strokes to form a single consistent representation.  As a result, we propose to use 

multiform representations for each sketch.  From the original representation of a sketch, 

we try to split the strokes into smaller stroke segments based on the dominant points to 

obtain the split representation.  Then from the split representation, we would like to 

merge the stroke segments if they form a primitive shape to become the merged 

representation.  The connectivity of the strokes is first analyzed to divide the sketch into 
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components.  Then for each component we search for the stroke segments that are likely 

to form a primitive shape.  

The chapter is organized as follows.  Section 3.1 explains the resampling process. 

Section 3.2 describes how to find the split representation based on the dominant point 

detection.  Section 3.3 discusses how to find the merged representation by dividing the 

sketch into connected components and then going through the connectivity of the strokes.  

3.1. Resampling 

The sketch, consisting of a single stroke or multiple strokes, is resampled such 

that neighboring points in the same stroke have equal distance. Different people may 

draw at a different pace and this resampling process reduces inconsistencies due to 

different writing speed. For example, Figure 10 shows two sets of stroke samples for the 

same stroke. In the first example on the left hand side, the user starts drawing slowly and 

then draws faster. That’s why the captured stroke samples are sparser at the beginning 

and become denser later. On the other hand, in the second example on the right hand side, 

the user starts drawing fast and then draws slowly. That’s why the captured stroke 

samples are denser at the beginning and become sparser later.  In order to account for the 

different drawing speed, the strokes are resampled so that after the resampling, successive 

stroke samples have the same distance as shown in Figure 10.   
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Figure 10  Equi-distance resampling  

3.2. Splitting 

The stroke samples are analyzed in order to detect for dominant points [2] that are 

points of interest indicating the locations of the stroke to be split. The signal that is used 

for dominant point detection can be illustrated by the system diagram in Figure 11.  The 

resampled stroke samples (x[n],y[n]) are passed in parallel into two systems with impulse 

responses h1[n] and h2[n].  The norm of their difference is calculated to get the output 

signal that is the distance function d[n].  
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Figure 11  System diagram for getting the signal used for dominant point detection 

Alternatively, the distance function d[n] can also be expressed mathematically by 

equation  (1): 

( ) ( )2
21

2
21 ][][][][][][][][][ nhnynhnynhnxnhnxnd ⊗−⊗+⊗−⊗=  (1) 

The impulses responses h1[n] and h2[n] are Gaussian windows with different 

window sizes W1 ,W2 and variances σ1 ,σ2 as specified in equation (2).  As a result, 

 25



convolving with h1[n] and h2[n] means that x[n] and y[n] are smoothed with two different 

scales. 
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  The distance function thus measures how much each stroke sample is changed 

between the two smoothing operations.  Based on this distance function, we try to detect 

the dominant points.  The algorithm for detecting for the dominant points is illustrated by 

the flow chart in Figure 12.  The sample points that are close to the two end points will 

never be considered as dominant points therefore we start with the sample far enough 

from one of the end points.  The distance function evaluated at this sample is compared 

against a threshold.  If it is greater than the threshold and if no dominant points were 

detected before, then this sample is considered as a new dominant point.  On the other 

hand, if the distance is greater than the threshold but dominant points do exist, then the 

current sample index will be compared with the sample index of the last detected 

dominant point.  If the two sample indices are very close, then only one of them will be 

kept as the dominant point.  In particular, the sample index with a larger distance will be 

stored.  Alternatively, if the two sample indices are not close, then the current sample 

index will be considered as a new dominant point.  Afterwards we consider the next 

sample and continue this algorithm until the sample is close to the other end point. 
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Figure 12 Flow chart for dominant point detection 

 

Figure 13 shows some example sketches after splitting.  It can be seen that a 

stroke indicated by the connected samples can be split into several stroke segments 

indicated by different colors. From the first example of Figure 13, it can be seen that the 

stroke is not only split on sharp corners, but is also split on points with smoother 

direction change.  Although the first and second examples in Figure 13 correspond to the 

same sketch, they are drawn by different people and the variation in style is clearly 

visible.  The sketches after splitting allow a more consistent representation that facilitates 
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matching at the later stage.  The third and fourth examples in Figure 13 also provide other 

example sketches after splitting. 

 
Figure 13 Example sketches after splitting 

3.3. Merging 

After splitting, we would like to merge the stroke segments if they form a 

primitive shape to become the merged representation.  We define a primitive shape to be  

a circle, a polygon or a line.  The connectivity of the strokes is first analyzed to divide the 

sketch into components.  Then for each component we search for the stroke segments that 

are likely to form a primitive shape. 
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Figure 14 Connectivity between a pair of strokes 

Each stroke segment has two end points.  For a pair of strokes as shown in Figure 

14, let E11, E12 denote the end points of stroke 1 and E21, E22 denote the end points of 

stroke 2.  Further, let C(Ea,Eb) denotes the connectivity between the end points Ea and Eb, 
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where C(Ea,Eb) = 1 means that Ea and Eb are connected and C(Ea,Eb) = 0 means that Ea 

and Eb are not connected.  Stroke 1 and stroke 2 are said to be merged if one of the 

quantities from the set {C(E11,E21),C(E11,E22),C(E12,E21),C(E12,E22)} is equal to one.  

Since the connectivity takes a binary value, and there are 4 quantities associated the 

connectivity between the end points with a pair of strokes, therefore there are 24 ways of 

connecting 2 strokes.  Assume that there are N stroke segments in the split representation.  

Then there are   pairs of stroke segments.  As a result, there is a total of 

ways of connecting N strokes.  Since this number increases 

exponentially as N increases, the search space for the merged representation will be huge 

and it is not feasible to perform exhaustive search.  As a result, we need to find an 

efficient algorithm to search for a good merged representation. 
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We can first divide a sketch into components based on the end point proximity.  

Two strokes are considered as the same component if there exists a pair of end points 

between these strokes that are close.  There is a tradeoff in choosing the threshold for the 

end point proximity.  When the threshold is too small, then the number of strokes in the 

same component will be smaller, thus reducing the complexity of the search space.  

However, this also means that it is more sensitive to user variation since some people 

may leave a larger space between neighboring strokes.  On the other hand, when the 

threshold is too large, it is less sensitive to user variation but at the same time the number 

of strokes in the same component may be large such that it may defeat the purpose of 

dividing the sketch into components.  
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After grouping the strokes into components, we need to find out whether some 

stroke segments can be merged to form a primitive shape.  For examples, line segments 

may be merged if they form a polygon or arc segments may be merged if they form a 

circle.  The polygon and circle primitive shapes are both characterized by a closed 

contour.  As a result, we perform the following 2 steps in order to decide which stroke 

segments to be merged: 

1) find stroke segments that form closed contours within a component 

2) merge those stroke segments if the resulting closed contour is likely to be a 

primitive shape 

The likelihood of primitive shapes will be discussed in the Section 4.5. Here we 

focus on step 1 and explains our algorithm for closed contour detection from a set of line 

segments.  First we determine the existence of closed contour within a set of stroke 

segments. A closed contour composed of several stroke segments has the property that 

each end point Ei1, Ei2 of each stroke segment is connected to an end point from another 

stroke segment of this closed contour.   As a result, given a set of stroke segments, in 

order to detect for a closed contour, we first find a subset of stroke segments that have the 

property that both end points of each stroke segment in this subset are connected to some 

other end points.  Then we discard those stroke segments whose neighboring stroke 

segments are not in the subset.    For example, as shown in Figure 15, there are six stroke 

segments.  Based on our closed contour detection algorithm described above, we pick up 

a subset of stroke segments {stroke 1, stroke 2, stroke 3, stroke 5}of which both their end 

points are connected to some other end points.  We then discard stroke 5 from this subset 

because at least one of its neighboring stroke (stroke 4 or stroke 6) is not in this subset.  
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The modified subset becomes {stroke 1, stroke 2, stroke 3} which contains at least one 

closed contour.  After this step, the number of stroke segments is reduced and we can 

trace the stroke segments in order to locate the closed contours. 
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Figure 15 Example strokes for demonstrate closed contour detection 

Figure 16 shows the comparison between multiform representations.  It can be 

seen that a square is detected in the merged representation whereas it consists of 3 strokes 

in the original representation and is broken down into 4 stroke segments in the split 

representation. 

   

(a) Original Representation (b) Split Representation (c) Merged Representation

Figure 16 Comparison between the multiform representations 
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3.4. Experiment and Result 

We perform an experiment to analyze the gain in the retrieval performance if we 

use multiform representations instead of each representation alone.  In this experiment, 

shade detection specified in Section 4.1 is first applied to the sketch after resampling in 

order to represent each shaded region by only one basic stroke such that the number of 

strokes is reduced for each multiform representation.  The shape features of the strokes 

for each representation are then extracted according to Section 4.5.  The correspondence 

of the stroke features between the query and each sketch in the database is determined by 

the Hungarian method specified in Section 5.1.  With the correspondence, the similarity 

score for that representation is computed by combining the shape feature similarity and 

the spatial relation similarity as described in Section 5.2.5.  Afterwards, the similarity 

score for each representation is normalized according to the mean similarity score for that 

representation and then the normalized similarity scores for all representations are 

linearly combined to give the similarity score for multiform representations as described 

in Section 5.2.5.  Figure 17 shows the comparison of the retrieval performance for this 

experiment.  It can be seen that the retrieval performance is higher for multiform 

representations than for each representation alone.   
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Figure 17 Retrieval performance with multiform representations 

In Figure 17, it can also be observed that the merged representation performs the 

worst among the three representations in the overall sense as the result is obtained by 

averaging over all classes of sketches.  Now we provide some case studies to show that 

each representation can perform well for a certain class of sketches. 

Case 1: Example class that works well for the original representation 

In Figure 18, the multiform representations for class 4 contain sketches of a 

Chinese character.  The color indicates the stroke connectivity.  It can be seen that the 

sketches in the original representation are more consistent (the sketches have similar 

break points) since most of the subjects who created the sketches in our database know 

the Chinese language and they follow the rules in writing the character.  This explains 
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why the retrieval performance is better for the original representation for this class as 

indicated in Figure 19. 
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Figure 18 Multiform representations for some sketches in class 4 
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Figure 19 Retrieval performance for Class 4 
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Case 2: Example class that works well for the split representation 

In Figure 20, the multiform representations for class 36 contain sketches of a 

chemical structure “benzene”.  It can be seen that the sketches in the original 

representation are not so consistent (the hexagon can be formed from 1 stroke, 2 strokes, 

or 6 strokes).  On the other hand, the split representation becomes much more consistent 

for this class after breaking the hexagon into line segments.  This explains why the 

retrieval performance is better for the split representation for this class as indicated in 

Figure 21.  The merged representation for this class also performs better than the original 

representation but is slightly worse than the split representation.  This is because 

sometimes the hexagon is not detected when the distance between the stroke end points is 

too big as indicated in the 4th column of Figure 20. 
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Figure 20 Multiform representations for some sketches in class 36 
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Figure 21 Retrieval performance for Class 36 

Case 3: Example class that works well for the merged representation 

In Figure 22, the multiform representations for class 6 contain sketches of a 

Korean character.  It can be seen that the sketches in the original representation are not so 

consistent (the inverted V-shaped on the top left part sometimes consists of one stroke but 

sometimes it is written as two strokes and sometimes it may even look different).  Since 

most of the subjects who created the sketches in the database do not know the Korean 

language, the rules about writing Korean characters may not be followed so it explains 

the inconsistency of the original representation as opposite to Case 1.  On the other hand, 

the split representation makes this inverted V-shaped more consistent by always breaking 

it into 2 strokes.  However, the circle at the bottom is also split into segments at various 
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locations since it is an imperfect circle.  After merging, the stroke segments are merged 

back to form the circle again.  This explains why the retrieval performance is better for 

the merged representation but worse for the split representation for this class as indicated 

in Figure 23.   
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Figure 22 Multiform representations for some sketches in class 6 

 37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retrieval Performance for Class 6

Original Representation
Split Representation   
Merged Representation  

 
Figure 23 Retrieval performance for Class 6 
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4. Coarse-To-Fine Feature Extraction 

This chapter focuses on the feature extraction module in a coarse-to-fine manner.  

Coarse-to-fine feature extraction can be conceptually considered as looking at the sketch 

at different points of view.  When coarse features are extracted, it can be considered as 

the case when the sketch is being viewed far away and when fine features are extracted, it 

can be considered as the case when the sketch is being viewed nearby.   

 
Figure 24 Different levels of features 

The choice of features is often based on heuristics and it depends on the data.  We 

propose a to extract features in a coarse-to-fine manner such that features at different 

levels are considered.  As a result, in addition to low-level features, we also extract high-

level semantic features from the representation after the preprocessing stage.  We propose 

several strategies in the coarse-to-fine feature extraction that is illustrated in Figure 24.  

First the strokes are analyzed in order to detect for shaded regions since the strokes in a 
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shaded region are better treated as a single unit.  Then we construct the stroke hierarchy 

of each sketch to capture the structural information.  We introduce a novel concept of 

hyper-stroke that consists of a set of strokes smartly grouped together.  We then approach 

the sketch in a finer detail when the spatial relations between the strokes are considered.  

Finally for basic strokes, we describe them with features of several primitive shapes: line, 

polygon and circle.  The likelihood of each stroke that falls into a primitive shape is 

estimated.    

The chapter is organized as follows.  Section 4.1 describes the shade detection for 

sketches.  Section 4.2 explains how to construct the stroke hierarchy of a sketch.  Section 

4.3 introduces a novel concept of hyper-strokes that characterize groups of strokes. 

Section 4.4 specifies what kind of spatial relations between the strokes to be considered 

in our approach.  Section 4.5 provides an explanation about the primitive shape features 

of basic strokes.  Section 4.6 shows a simplified algorithm for shade detection under 

certain assumption and it also shows how the idea of shade detection can be applied for 

images. 

4.1. Shade Detection 

 
 

Figure 25 Example sketches with shaded regions 
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For a shaded region, a user may draw many strokes to describe the shade.  It is 

better to consider this shaded region as one unit instead of considering each stroke 

separately.  This is because two sets of strokes forming the same shaded region may not 

look similar as explained before with the examples in Figure 25.  As a result, a shaded 

region is represented by a single unit containing features describing the shaded region.  A 

region is more likely to be a shaded region if the ink density of the strokes in that area is 

high.  Starting with this observation, we develop the algorithm for the shade detection 

according to the following steps. 

4.1.1. Shade Detection Algorithm 

Step 1: Detect blocks with high ink density  

 The canvas containing the sketch is divided into blocks of M×M pixels.  For each 

block, the number of stroke samples is counted.  If this number is not smaller than a 

certain threshold THnum_sample, then that block is considered to be with high ink density. 

Step 2: Detect regions with large number of neighboring blocks with high ink density 

 Neighboring blocks are combined in order to form a connected region.  If the 

number of blocks in a connected region is not larger than a certain threshold THnum_block, 

then that connected region is ignored.  Otherwise this region is considered to be with high 

ink density. 

Step 3: Find those strokes lying inside the convex hull of each connected region  

For each connected region with high ink density, the convex hull of this 

connected region CONV_HULLregion is constructed from the four corners of each of all 

the blocks forming the connected region.  Each stroke is being compared with the convex 
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hull of the connected region.  If the percentage of the stroke samples inside the convex 

hull is greater than a certain threshold  THpercent_sample_in_conv_hull, then that stroke is 

considered to be inside the convex hull of that connected region.   

Step 4: Classify the strokes into boundary or non-boundary strokes 

 For each stroke that is inside the convex hull of a connected region, the distance 

from each sample point of that stroke to the closest line segment of the convex hull 

boundary is computed and the average distance over all stroke samples is calculated.  If 

this average distance is smaller than a certain threshold THaverage_distance, then that stroke 

inside the convex hull is classified as a boundary stroke.  Otherwise, it is classified as a 

non-boundary stroke. 

Step 5: Construct the convex hull of all boundary strokes and non-boundary strokes for 

each region 

 For each region, the convex hull CONV_HULLstroke containing all boundary 

strokes and non-boundary strokes is constructed.  Essentially this convex hull 

CONV_HULLstroke refines the shaded region compared with the convex hull of the 

connected region CONV_HULLstroke obtained in Step 3. 

Step 6: Replace the points on the boundary of CONV_HULLstroke by the nearest point 

from a boundary stroke if their distance is small enough  

  For each corner of CONV_HULLstroke, the distance between this corner and the 

nearest stroke sample of a boundary stroke is computed.  If this distance is smaller than a 

certain threshold THcorner_distance, then the corner is replaced by that nearest stroke sample 

of the boundary stroke.  This step takes care of the case when the boundary stroke exists 
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for a shaded region but the shade is drawn such that some of the strokes fall outside the 

boundary.  An example of this case is shown in Figure 26.  The boundary stroke that has 

been drawn by the user is indicated in red and all  other strokes for this shade are 

indicated in cyan.  

 

Figure 26 Shaded region with part of the shade falls out of the boundary 

Step 7: Compute the percentage of stroke samples from each boundary stroke that 

contribute to the modification of convex hull boundary.   

If the percentage is less than a certain threshold THpercent_sample_in_boundary, then this 

boundary stroke is not considered as boundary stroke any more and it will be labeled as a 

non-boundary stroke.  This step takes care about the case if there exist two or more 

boundary strokes that are close to the same portion of the shaded region boundary, only 

the nearest boundary stroke is considered to contribute to the true boundary. 

Step 8: The final boundary stroke for that shaded region is replaced by the modified 

convex hull boundary obtained from Step 6 and all remaining boundary strokes are 

discarded. 

Step 9: The resulting boundary stroke and non-boundary strokes can be considered as a 

hyper-stroke and its hyper-stroke features are extracted as described in Section 4.3.  In 
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addition, the boundary stroke is treated as a basic stroke to extract the shape features as 

described in Section 4.5.  

The advantage of our algorithm is that it does not have the assumption that the 

user must include a boundary when he/she draws a shaded region.  Nevertheless, if this 

assumption is valid, then we have a simplified algorithm for the shade detection as 

described in the Appendix A in Section 4.6.1.  In addition, the idea of shade detection can 

also be applied to images and the extension is provided in the Appendix B in Section 

4.6.2. 

4.1.2. Shade Detection Parameters 

Since the size of the shade region varies, therefore we apply the algorithm 

specified in the previous section using 3 sets of parameters in order to detect the shade at 

different scales.  The parameters are shown in Table 1.  Each column represents a set of 

parameters at one scale.  The ink density of the block at the threshold for deciding high 

vs. low ink density can be calculated by with equation (4): 

MM
TH

TH samplenum
densityink ×

= _
_     (4) 

For the first set of parameters , THnum_sample = 0.63.  For the second set of 

parameters,  THnum_sample = 0.31 and for the third set of parameters, THnum_sample = 0.11.   

On the other hand, the threshold of the number of neighboring high ink density blocks 

THnum_block, for deciding whether a connected region has high ink density, is the smallest 

for the first set and is the largest in the third set.  As a result, it can be seen that the first 

set of parameters is used to detect for shade at a finer scale by looking for small regions 
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with very high ink density.  On the other hand, the third set of parameters is used to 

detect for shade at a coarser scale by looking at larger regions with a more relaxed 

constraint of high ink density measure.  The second set of parameters is used to detect for 

shade at a medium scale in-between the first set and the third set.  Some examples of 

shade regions with different sizes are shown in Figure 27. 

Parameter Value for 
the 1st Scale 

Value for 
the 2nd Scale

Value for 
the 3rd Scale 

M 4 4 8 
THnum_sample 10 5 7 
THnum_block 0 3 13 

THpercent_sample_in_conv_hull 65% 65% 65% 
THaverage_distance 5.0 5.0 7.0 
THcorner_distance 9.0 9.0 9.0 

THpercent_sample_in_boundary 70% 70% 70% 

Table 1 Shade Detection Parameters 

Sketch 

   

Detected Shade 
Regions 

  
 

Figure 27 Shaded regions with different sizes 

4.2. Stroke Hierarchy Construction 

Representing a sketch by a stroke hierarchy can be treated as a multiple scale 

representation.  In [20], multiple scale representation is obtained by applying successive 

morphological operations (opening or closing) to tumor shapes and the morphological 
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distance is computed by combining distances at different scales.  The wavelet 

representation in [16] can also be considered as a hierarchy in the spatial frequency 

domain.  Here the difference in wavelet coefficients is used as a distance measure.  The 

hierarchical representation in our system is based on the spatial hierarchy of the strokes.  

Each stroke is considered as one component and the matching is performed in a stroke-

by-stroke basis in order to better tolerate local variations.  Furthermore, a clustering 

method such as ACE (Aggregation Clustering with Exceptions) [52] may be used to 

extract an effective storage structure given the instance relationships from the stroke 

hierarchy. 

Now we introduce our approach for building a stroke hierarchical representation 

for a sketch.  The relationship between a parent stroke and a child stroke is that the child 

stroke is inside the parent stroke.  The stroke hierarchy describes the structural 

relationship between the strokes in a sketch.  For example, in drawing a house, the 

windows and the door are drawn inside the front part of the house; and the doorknob is 

drawn inside the door.  As a result, the corresponding stroke hierarchy is the one shown 

in Figure 28.  In the actual implementation of this module, a quick bounding box test will 

be first performed between every pair of strokes to determine whether their bounding 

boxes overlap.  If there is a significant amount of overlap between their bounding boxes, 

then a further convex hull test will proceed.  In the convex hull test between two strokes, 

if most of the samples of a stroke fall inside the convex hull bounding the other stroke, 

then the first stroke is considered to be inside the second stroke.  Under this rule, when 

there are two overlapping strokes, it is possible for each stroke to be considered inside the 

other stroke simultaneously.  In this case, we will cancel out their effect by removing the 
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“inside” relationships on both sides.  After getting the “inside” relationship between the 

strokes, these relationships are examined to get the hierarchical information.  For 

example, if stroke 3 and stroke 4 are both inside stroke 2; and if stroke 4 is also inside 

stroke 3, then stroke 2 is considered as the parent stroke of stroke 3; and stroke 3 will be 

considered as the parent stroke of stroke 4.  A sketch of house and its corresponding 

stroke hierarchy are shown in Figure 28.  

 

Figure 28 A sketch and its corresponding stroke hierarchy 

4.3. Hyper-Stroke Feature Extraction 

Under traditional image processing, a pyramid representation of an image with 

multiple levels of detail can be obtained by filtering the image several times.  For 

sketches, instead of using the filtering techniques that rely on preprocessing low-level 

features, we propose to obtain multiple levels of detail by considering groups of strokes 

(thus in a higher semantic level) in addition to the basic strokes alone.  We define hyper-

stroke as a group of strokes such that there exists one basic stroke describing the 

boundary and all the strokes (at least one) inside the region enclosed by the basic stroke.  

Based on this definition, the shaded region described in Section 4.1 can also be 

represented by a hyper-stroke where the basic stroke of the hyper-stroke is the boundary 

stroke of the shaded region and there exists at least one non-boundary stroke enclosed by 
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the boundary stroke in the shaded region.  In addition, a hyper-stroke can also be derived 

from the stroke hierarchy.  Given the stroke hierarchy of a sketch, a hyper-stroke is 

formed by a parent stroke with all its descendent strokes with the parent stroke as the 

basic stroke.  A hyper-stroke should contain at least one descendent stroke therefore the 

stroke at a leaf node that does not enclose any other strokes is not a hyper-stroke.  The 

relationship between the stroke hierarchy and a hyper-stroke is illustrated in Figure 29.  

The hyper-stroke features are extracted for all the strokes inside the region enclosed by 

the basic stroke.  We extract the hyper-stroke features as the Hu moments [15] and the 

histogram of edge directions that are commonly used region-based features.  As a result, 

hyper-stroke features provide an overall description about a region in a sketch.  This is 

analogous to the region-based approaches used for image retrieval [6][17]. 

Sketch

Stroke Hierarchy A Hyper-Stroke

Stroke 
Feature

Group 
Feature

Sketch

Stroke Hierarchy A Hyper-Stroke

Stroke 
Feature

Group 
Feature

 

Figure 29 Relationship between a stroke hierarchy and a hyper-stroke  
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4.4. Spatial Relations 

Several approaches exist for describing spatial relations between two components 

of an object.  One approach is to compare the spatial ordering using some reference 

locations such as the centroid or a corner of the bounding rectangle of the components 

[51].  Another approach is to consider the relationship between the intervals defined by 

the bounding rectangle of the components [35].  The above approaches both quantize the 

spatial relations into a few discrete states, therefore there may be a big jump in spatial 

relations even when the actual change in spatial location of a component is small.  As a 

result, we propose to model the spatial relation with a continuous function to avoid non-

proportional change between spatial relation and spatial locations. 

We compute the displacement vector between the two distances of the 

corresponding stroke pairs as a measure of spatial relations.  For example, as shown in 

Figure 30, the corresponding strokes for s11 and s12 of sketch 1 are s21 and s22 of sketch 2 

respectively.  The spatial relation between strokes s11 and s12 can be denoted by R1 that is 

defined by the horizontal and vertical displacements (dx1, dy1) between the center of s11 

and the center of s12.   Similarly, the spatial relation between strokes s21 and s22 can be 

denoted by R2 that is defined by the horizontal and vertical displacements (dx2, dy2) 

between the center of s21 and the center of s22.  The spatial relation similarity between R1 

and R2 is modeled as a function of dxSPATIAL = distance(dx1, dx2) and dySPATIAL = 

distance(dy1, dy2). 
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Figure 30 Spatial Relations 

4.5. Primitive Shape Feature Extraction 

As mentioned earlier, the choice of features is often based on heuristics and it 

depends on the data.  For each basic stroke, we would like to extract semantic 

information therefore we compare the basic stroke with some primitive shapes in order to 

understand how likely that stroke falls into a given primitive shape category.  In [3], the 

geometry is used to recognize strokes into some primitive shapes.  The geometry 

information is easily accessible since we are dealing with sketches in the stroke domain 

and not in the pixel domain as the case for images.   Different geometric features are used 

to determine the likelihood that each stroke falls in each primitive shape: line, circle and 

polygon.  Some examples of these features are illustrated in Figure 31.   
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Figure 31 Example primitive shape features 
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Assume that a stroke with N samples is denoted by the sequence of 2-D 

coordinates (xi,yi), i = 1,2,…,N.  We would like to calculate the shape likelihood and the 

shape features for each stroke.  Essentially the shape likelihood is used to describe the 

general characteristics of a primitive shape and the shape features are used to distinguish 

between the strokes that belong to similar primitive shape.  The features that are used to 

calculate the shape likelihood and the features that are used in matching for each 

primitive shape are described in the following subsections.   

4.5.1. Line Likelihood and Features 

The features that are used for calculating the line likelihood are given as follows:  

1) Average inverse height ratio  
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Figure 32 Illustration of average inverse height ratio 
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 As illustrated in Figure 32, in each triangle formed by the end points and each of 

the non-end point samples, the height hi is first computed by dividing the area of that 

triangle Ai by the distance d between the end points.  The height ratio is obtained by 

further dividing hi by d.  The height ratio is averaged over all non-end point samples 

and then the inverse is calculated.  If the result is less than 0, then this value is 

replaced with 0.  Essentially this is a measure for the line primitive shape because if 

the stroke is very close to a line, then hi is very small compared with d and the 

average inverse height ratio will thus be large. 

2) Ratio between distance between end points and stroke length  

L
dLline =

2       (9) 

where d is given by equation (7) and L is given by equation (12).  This ratio is very 

close to 1 if the stroke is very close to a line. 

The overall line likelihood is obtained by the following equation (10) 

( ) ( ) 2
2

1
1 line

line
line

lineline LLL λλ
•=      (10) 

where  and  are fixed scalar weights. 1
lineλ 2

lineλ

Figure 33 shows the line likelihood of some stroke examples. 
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(a) Lline = 0.9953 (b) Lline = 0.4958 (c) Lline = 0 

Figure 33 Line likelihood values of some strokes 

The features for the line primitive shape that are used for matching are given as 

follows:  

1) Estimated Slope  
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 This is exactly equal to the slope if the stroke is a line. 

2) Stroke length  
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4.5.2. Polygon Likelihood and Features 

The features that are used for calculating the polygon likelihood are given as 

follows:  

1) Area ratio between the stroke area and the area of its convex hull  

A
Lpolygon

hullconvex   theof area1 =     (13) 
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 This measure is large if the stroke is close to a convex polygon. 
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2) Inverse percentage of number of stroke samples in the convex hull and the 

original number of stroke samples  

N
Lpolygon

hullconvex  in the samples #12 −=    (15) 

A polygon requires a relatively few number of points (ideally equal to the number 

of vertices) to form the convex hull that surrounds all the stroke samples.  As a result, 

this inverse percentage is large if the stroke is close to a convex polygon. 

 The overall polygon likelihood is obtained by the following equation (16): 

( ) ( ) 2
2

1
1 polygon

polygon
polygon

polygonpolygon LLL λλ
•=    (16) 

where  and  are fixed scalar weights. 1
polygonλ 2

polygonλ

Figure 34 shows the polygon likelihood of some stroke examples. 

  
 

(a) Lpolygon = 0.9772 (b) Lpolygon = 0.5390 (c) Lpolygon = 0 

Figure 34 Polygon likelihood of some strokes 

The features for the polygon primitive shape that are used for matching are given 

as follows:  

1) Number of sides  
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First consider the turn angle that is the amount of angle change at each sample 

point.  As a result, the turn angle is 0 along a line since the angle does not change.  

The turn angle is computed by the following equation (17): 

2
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i

yyxxyyxx
yyyyxxxxβ   (17) 

The number of sides is estimated by first removing those sample points (xi,yi) that 

have small turn angles and then counting how many stroke segments are left with 

remaining stroke samples. 

2) Area ratio between the stroke area and the area of its convex hull  

This feature is exactly the same measure that is used for computing part of the 

polygon likelihood given by equation (13).  

3) Closeness  

p
Lc =       (18) 

where dLp +=      (19) 

L is the stroke length given by equation (12) and d is the distance between end 

points given by equation (7).  Therefore p is the perimeter of shape formed by the 

stroke.  Essentially this closeness measures how close the end points are since when 

the end points are close, d is very small and c is close to 1.  

4) Perimeter efficiency  
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p
Ak π2

=      (20) 

This feature measures much the shape is close to a circle since k = 1 implies that 

the shape is a circle.  In addition, this feature can also be used to distinguish between 

polygons since a polygon with more sides tend to have a higher value of k since it is 

more similar to a circle.  For example, for a regular triangle, k = 0.79; for a regular 

square, k = 0.89; for a regular pentagon, k = 0.93. 

4.5.3. Circle Likelihood and Features 

The features that are used for calculating the polygon likelihood are given as 

follows:  

1) Perimeter efficiency  

kLcircle =
1      (21) 

 k is given by equation (20).  As mentioned before, k = 1 implies that the shape is a 

circle. 

2) Average of estimated radius  
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where rj is the estimated radius of a circle that can be constructed from three 

stroke sample points.  We divide the stroke samples into 3 sets and each time we pick 

one sample from each set in order to estimate the radius.  As illustrated in Figure 35, 
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given three sample stroke points (xj1,yj1), (xj2,yj2) and (xj3,yj3), we first find out where 

is the center by constructing perpendicular bisector for the line segment from (xj1,yj1) 

to (xj2,yj2) and from (xj2,yj2) to (xj3,yj3).  Then the radius can be computed by 

calculating the distance between the center to any of the stroke sample point.   

rj
(xj1, yj1)

(xj2, yj2)

(xj3, yj3)
rj

(xj1, yj1)

(xj2, yj2)

(xj3, yj3)

 

Figure 35 Illustration of estimated radius 

3) Total turn angle  
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where βi is the turn angle given by equation (17).  The total turn angle is 2π for a 

circle.  This measure increases as the total turn angle goes from 0 to 2π, reaches the 

maximum at 2π, and then decreases as the total turn angle continues to increase. 

 The overall polygon likelihood is obtained by the following equation (16): 

( ) ( ) ( ) 3
3

2
2

1
1 circle

circle
circle

circle
circle

circlecircle LLLL λλλ
••=    (24) 

where  , and  are fixed scalar weights. 1
circleλ 2

circleλ 3
circleλ
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Figure 36 shows the circle likelihood of some stroke examples. 

  

(a) Lcircle = 0.8536 (b) Lcircle = 0.6806 (c) Lcircle = 0.273 

Figure 36 Circle likelihood values of some strokes 

The features for the circle primitive shape that are used for matching are given as 

follows:  

1) Area ratio between the stroke area and the area of its convex hull 

This is the same measure as the one given in equation (13).  

2) Total turn angle 

This is similar to the one given in equation (23) where βi is still the turn angle 

given by equation (17).   
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3) Perimeter efficiency 

This is the same feature as given in equation (20).   

4.5.4. Non-Primitive Shape Likelihood and Features 

When the stroke does not look like any of the primitive shapes, we have another 

likelihood and another set of features to take care of this case.  The non-primitive shape 

likelihood is given by equation (26). 
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( ) ( ) ( ) circle
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polygon

line
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where  , and  are fixed scalar weights. lineµ polygonµ circleµ

The features for the non-primitive shape that are used for matching are given as 

follows.  These features are chosen because they provide a more general description 

about a shape as we do not have specific knowledge about a non-primitive shape. 

1) Stroke area 

This is the same feature as given in equation (14).   

2) Area ratio between the stroke area and the area of its convex hull  

This feature is exactly the same measure that is used for computing part of the 

polygon likelihood given by equation (13).  

3) Closeness  

This is the same feature as given in equation (18).   

4.5.5. Heuristic Scalar Weights 

All the scalar weights are determined by heuristics and they are provided in the 

following table:  

Shape Type Weight Value 
1
lineλ  1.0 

Line 2
lineλ  1.0 

1
polygonλ  0.10 

Polygon 2
polygonλ  0.45 
1
circleλ  0.33 Circle 
2
circleλ  1.0 
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 3
circleλ  0.33 

lineµ  0.25 

polygonµ  0.25 Non-primitive Shape 

circleµ  0.25 

Table 2 Heuristic Scalar Weights 

4.6. Appendices 

4.6.1. Appendix A: Simplified Shade Detection for Sketches 

As mentioned in Section 4.1, a region is more likely to be a shaded region if the 

ink density of the strokes in that area is high.  Further, if we assume that the user always 

draw a boundary enclosing the shaded region, then we can use the following method to 

perform shade detection.  In order to determine whether a region has high ink density, we 

consider the total stroke length (the sum of the length of all the descendent strokes) and 

the convex hull area of the parent stroke.  We plot these features from a set of training 

data in Figure 37, where the shaded region is characterized by large total stroke length 

with small convex hull area.  The training data consists of shaded and non-shaded regions 

with both large and small areas as shown in Figure 37.    The decision boundary is 

selected as follows: 

CByAyx ++
<
> 2

shaded-non

shaded
    (27) 

where x is the stroke length; y is the convex hull area; A, B and C are parameters 

determined from the training data.  A second order function is chosen as the decision 

boundary because the training data cannot be well separated by a linear function. 

With this approach, the strokes forming the shaded region can still be considered 

as a hyper-stroke since under the assumption, the user draws a boundary that can be 
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considered as the basic stroke and there exist other strokes inside the boundary forming 

the shade. 

 

Figure 37 Feature space for deciding shaded vs. non-shaded region 

4.6.2. Appendix B: Shade Detection For Images 

The idea of shade detection in sketches can also be applied for images because 

sometimes an image can be described a combination of solid regions and edges.  For each 

region, thinning or edge extraction may be applied since one method is preferred to the 

other under different situations.  For example, if edge extraction alone is used to extract 

the contour, then both the images in Figure 38(b) and Figure 38(c) are considered to be 

the same as the image in Figure 38(a) although they have different solid regions.  If 
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thinning alone is used to extract the skeleton, then the image in Figure 38(d) is considered 

to be very similar to the image in Figure 38(a).  This gives us the motivation of 

classifying a region with contour vs. skeleton representation.  After the contour-skeleton 

classification, stroke tracing is performed to extract the sketch.  The user can provide a 

query sketch that will be compared with those extracted sketches from the database 

trademark images in order to retrieve similar images. 

  

(a) (b) (c) (d) 

Figure 38 Example images with and without solid regions  

For each region, either edge extraction is performed to extract the contour or 

thinning is performed to extract the skeleton.  It is advantageous to use different methods 

under different situations.  For example, for a solid region in which the shape conveys a 

lot of visual information, it is better to perform edge extraction to that region to extract 

the contour.  On the other hand, for a region that contains curves, thinning should be 

performed to that region to extract the skeleton that is a better representation.   

To determine whether contour or skeleton is a better representation for a region, 

we compute the thickness that is the distance between each pixel of the skeleton and the 

nearest pixel of the contour.  For example, we would like to perform thinning for a region 

if the thickness is small and if it does not vary too much across different skeleton pixel 

values as shown in Figure 39(b).  On the other hand, if there is a large variation in the 

thickness, then edge extraction is preferred to extract the contour as shown in Figure 

39(a).  As a result, the mean and variance of the thickness is used for classifying a region 
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into skeleton-best or contour-best representation.  After performing edge extraction or 

thinning for all the regions, the strokes are traced by examining the pixel connectivity 

starting from the end points.  This results in two types of strokes: contour strokes which 

are obtained by edge extraction and skeleton strokes which are obtained by thinning.   

 

 

 

 
(a) Region that is 
suitable for edge 

extraction 

(b) Region that is 
suitable for thinning 

Figure 39 Example regions that are suitable for edge extraction and for thinning, 
and their corresponding skeleton superimposed on the contour 

We analyze the performance of our classifier for deciding whether a contour or a 

skeleton should be extracted for each region.  First we need to train the classifier to 

obtain the decision boundary.  As mentioned in the previous section, the mean and 

variance of the thickness are used as the input features for the classifier.  We compute 

these features for about 600 ground truth trademark images that we know which are good 

for contour stroke representation and which are good for skeleton stroke representation.  

The resulting distribution of the mean and variance of the thickness are shown in Figure 

40.  The decision boundary is based on the Mahalanobis distances from the input feature 

vector to the mean feature of each of the two classes.  Assume that x is the input feature 

vector, i.e., x = [mean(thickness) var(thickness)]T, ms and Σs represent the mean and the 

covariance matrix of the feature vector for the trademark images that are best represented 

by skeleton strokes and mc and Σc represent the mean and the covariance matrix of the 
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feature vector for the trademark images that are best represented by contour strokes.  

Then the classification criterion is given as follows: 

( ) ( ) ( ) ( ) ( ) ( )det(ln)det(ln 11
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 (28) 
The resulting decision boundary is shown in Figure 40.    
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Figure 40 Contour-skeleton classification criterion 
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5. Global And Local Matching 

This chapter describes the global and local matching of features at different 

levels.  While a sketch consists of multiple components and two sketches may have 

different number of components, it is necessary to first find a correspondence between 

the components in the two sketches.  This correspondence is determined from global 

matching by minimizing the total cost (or maximizing the total similarity score) between 

components.  Based on this correspondence, the similarity score between the components 

can be computed.  On the other hand, local matching that compares attributes of only a 

few components independently can also be performed such as the matching of stroke 

hierarchy and the spatial relations. 

This chapter is organized as follows: Section 5.1 introduces the multiple 

component feature correspondence problem and discuses two ways of approaching the 

problem.  Section 5.2 provides the similarity score computation for matching different 

levels of features in order to compare both global and local information.  Section 5.3 

presents the experimental result by comparing the proposed approach with two other 

approaches. 

5.1. Multiple Component Feature Correspondence 

A sketch consists of multiple components therefore in the feature space, it can be 

represented by a set of feature points.  The number of components in a sketch depends on 

its complexity hence two sketches may contain different number of components.  As a 
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result, when two sketches are being matched, we need to first determine the 

correspondence between the components before the similarity score can be computed.  

As illustrated in Figure 41, assuming that we know the cost matrix whose entry is the 

matching cost between each component of sketch 1 and each component of sketch 2, 

determining the correspondence between the components is to find a matching such that 

the total cost is minimized.  In graph theory, this corresponds to the bipartite graph 

matching problem [5][10].   It can also be considered as the marriage problem where 

there are M men and M women, and the goal is to find the best way of arranging the M 

couples based on their scores on each candidate.  This problem can be solved by the 

Hungarian method [21].  In our sketch retrieval problem, we need to find a set of 

correspondence between M feature points from one sketch with N feature points from 

another sketch.  The cost matrix can be constructed by considering the inverse of the 

similarity between each pair of feature points.  However, since the Hungarian method 

requires the cost matrix to be square, some dummy rows or columns need to be appended 

to the cost matrix. 
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Figure 41 Matching between multiple components given the cost matrix 
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From the Hungarian method, the correspondence between multiple strokes can be 

assigned according to the shape information between strokes.  In this case, in Figure 42, 

the triangles in sketch 2 and sketch 3 are corresponding strokes to the triangle in sketch 1 

and the rectangles in these two sketches are corresponding strokes to the rectangle in 

sketch 1.  If the similarity is entirely based on shape, then sketch 2 and sketch 3 are both 

similar to sketch 1.  On the other hand, if the spatial relation between the strokes is also 

considered, then we can make a further distinction that sketch 2 is more similar than 

sketch 3 with respect to sketch 1.  There are two ways of including the spatial relations 

into consideration: 1) use the spatial relations in addition to shape information when 

determining the stroke correspondence; or 2) keep using only shape information when 

determining the stroke correspondence, but includes the spatial relations in the similarity 

computation after the correspondence is found. 

 
  

Sketch 1 Sketch 2 Sketch 3 

Figure 42 Example sketches to demonstrate spatial relations 

In the first way, the spatial relations are also considered in determining the stroke 

correspondence.  There exist some methods [38][43] that try to achieve this goal by 

matching shape and spatial relations at the same time.  Petrakis and Faloutsos [38] used 

attributed relational graphs (ARG) for matching medical images under the assumption 

that the number of feature points of the query is less than or equal to the number of 
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feature points of a database sketch.  Smith and Chang [43] integrated the spatial and 

shape features by using the 2D string matching technique proposed in [8] that maintains a 

consistent order for the x-projection and the y-projection of all matched components.  

Assume that the orders of the strokes are preserved in determining the correspondence.  

In Figure 42, in the horizontal direction, the stroke correspondence of the sketches is the 

same as the previous case when only shape information is considered. However, in the 

vertical direction, only one of the object pairs (the triangle pair and the rectangle pair) can 

be corresponding strokes for sketch 2 and sketch 3 with respect to sketch 1 but not both 

because the two object pairs have conflicting orders in the vertical direction.  The object 

pair to be selected as the corresponding strokes depends on the shape similarity of the 

object pairs.  For example, if the triangle pair has a larger similarity score than the 

rectangle pair, then the triangles will be the only corresponding strokes in the vertical 

direction.  The horizontal and vertical directions are considered separately for the stroke 

correspondence and then the similarity score is the combined result in both directions.   

In the second way, the correspondence is determined solely based on shape 

information, and then spatial relations are used in the similarity computation.  In [35][36], 

the spatial relation between multiple objects is used for similarity computation assuming 

that the object correspondence is given.  In this case, when considering the example in 

Figure 42, the stroke correspondence between sketch 1 and sketch 2 is the same as that 

between sketch 1 and sketch 3.  However, if we include spatial relations in the similarity 

computation, then the similarity score between sketch 1 and sketch 2 will still be higher 

than that between sketch 1 and sketch 3 since sketch 1 and sketch 2 are more similar in 

terms of spatial relations. 

 68



The first way has the advantage that shape and spatial relations are considered 

simultaneously therefore the matched result can be more accurate under full search.  

However, the stroke correspondence problem becomes much more complex when trying 

to match both shape and spatial relations simultaneously thus full search is not feasible.  

It is thus necessary to reduce the search space by limiting the search paths.  As a result, 

error can still be introduced under the first way.  On the other hand, in the second way, 

the stroke correspondence is a much simpler problem since only shape information is 

considered and the Hungarian method provides an efficient way of solving this problem.  

Assume that there are not too many similar sets of strokes within the same sketch such 

that there are not too many mistakes in the stroke correspondence, then the spatial 

relations are helpful in computing the similarity score to adjust the ranks of the retrieved 

result properly.   As a result, we propose to use the second way to determine the multiple 

component feature correspondence by considering only the shape similarity and then 

include spatial relations in the similarity computation. 

5.2. Similarity Functions 

We introduce the similarity functions that we use for matching different levels of 

features in order to compare both global and local information. 

5.2.1. Stroke Hierarchy Similarity 

The similarity in the stroke hierarchical structures is determined by counting how 

many corresponding stroke pairs also preserve the parent-child relationship in the stroke 

hierarchies.  For example, two stroke hierarchies are shown in Figure 43 where nodes 

with the same numbers are corresponding strokes.  Between these two stroke hierarchies, 
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three corresponding stroke pairs (2-5; 2-6 and 3-4) are also parent-child strokes in both 

hierarchies.  As a result, the similarity in the stroke hierarchical structure in this case is 3. 
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Figure 43 Stroke hierarchy similarity 

5.2.2. Hyper-Stroke Similarity 

We first show how to compute the similarity between two hyper-strokes.  Then 

we will describe how to compute the similarity between two sets of hyper-strokes where 

each set of hyper-strokes is generated from one sketch.   

We use the Mahalanobis distance between the hyper-stroke features F1 and F2 as 

the feature distance measure as shown in equation (29) 

( ) ( )21
1

2121  ),( FFFFFFd T
HYPER −Σ−= −               (29) 

where Σ is the covariance matrix of the hyper-stroke features pre-determined from 

the sketches in the database.  

The hyper-stroke similarity between two hyper-strokes is computed as the inverse 

of the hyper-stroke feature distance. 

A set of hyper-strokes can be generated from one sketch.  As a result, given two 

sketches, we need to compare two sets of hyper-strokes by first determining the 
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correspondence so that we know which hyper-stroke from one sketch is matched with 

which hyper-stroke from another sketch.  In determining the correspondence, first the 

similarity table is constructed where each element represents the similarity between a 

hyper-stroke from sketch 1 and a hyper-stroke from sketch 2.  Then the correspondence 

between the two sets of hyper-strokes is determined by the greedy algorithm.  The 

element in the table with the maximum score is selected and the associated row index and 

column index of that element indicates a pair of corresponding hyper-strokes.  The row 

and the column associated with that element are removed from the table.  The maximum 

score is searched again from the remaining table and this process is repeated until the 

table becomes empty.  The resulting similarity score between the two sets of hyper-

strokes is computed as the sum of the similarity scores of the selected elements. 

5.2.3. Spatial Relation Similarity 

Recall in Section 4.4, the spatial relation is defined by the displacement vector 

between the centers of two strokes within a sketch.  Using the notations illustrated in 

Figure 30, the spatial relation similarity between R1 and R2 is modeled as a function of 

dxSPATIAL = distance(dx1, dx2) and dySPATIAL = distance(dy1, dy2) defined by equation (30).  

||||
21 ),( SPATIALSPATIAL dydx eeRRSim −− +=      (30) 

An exponential function is used as the spatial relation similarity.  Since it is a 

continuous function, there will not be a big jump in the spatial relation similarity when 

the location of a stroke is changed a little bit as opposed to the case of using the spatial 

ordering or the interval relationship by quantizing the spatial relations into discrete steps. 
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5.2.4. Shape Similarity 

As described in Section 4.5, there are features for three primitive shapes and a 

non-primitive shape for each stroke.  The shape similarity is computed by first calculating 

the similarity scores across all shapes and then picking the maximum score. 

In [45], equation (31) is proposed to be used as the similarity function.  We also 

use equation (31) to match two features Fi1j and Fi2j, which are the j-th feature of the i-th 

shape (3 primitive shapes + 1 non-primitive shape) for strokes s1 and s2.   

),max(
),min(

),(
21

21
21

jiji

jiji
jiji FF

FF
ssSim =      (31) 

If the feature spans a large range, then it is not suitable to use equation (31) as the 

similarity function any more since the decay may be too fast as the feature distance 

increases.  As a result, we propose another similarity function as shown in equation (32) 

to compare features that span a large range.  This is essentially the ratio between the 

geometric mean and the arithmetic mean thus the score lies between 0 and 1. 
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The resulting shape similarity score between two strokes s1 and s2 is given by 

equation (33). 
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5.2.5. Overall Similarity 

Figure 44 provides a unified system by how the representation stage, the feature 

extraction stage and the matching stage are combined.  The numbers in the brackets 
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denote which section the underlying blocks are described.  This provides a summary of 

how Chapter 3, Chapter 4 and Chapter 5 are bonded together to form the framework. 
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Figure 44 Unified system with representation, feature extraction and matching 
 

Now we provide a description about how to compute the similarity scores for 

different levels of features between two sketches.  The blocks in the center column in 

Figure 44 corresponds to the matching stage.  The hyper-stroke similarity between the 

two sets of hyper-stroke features from sketch 1 and sketch 2 is computed according to 

Section 5.2.2.  The stroke hierarchies from the two sketches are also compared according 

to Section 5.2.1.  Then for each of the multiform representations (original, split, merged), 

the similarity of the basic strokes between the two sketches is computed.  This is done by 

first determining the correspondence between the basic strokes with the Hungarian 

method specified in Section 5.1.  The shape similarity between each corresponding stroke 

pair between two sketches is computed according to 5.2.4.  The spatial relation similarity 
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is computed between a pair of strokes in sketch 1 and the pair of corresponding strokes in 

sketch 2 according to Section 5.2.3.  The similarity between the two sketches in each 

multi-form representation is then computed by combining the shape and spatial similarity 

functions as follows: 
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where s1p and s2p are the p-th corresponding strokes between sketch 1 and sketch 2, R1pq 

and R2pq are the spatial relations between the p-th and the q-th corresponding strokes in 

Sketch 1 and Sketch 2 respectively, and n is the number of corresponding strokes 

between the two sketches.  This equation assumes that there are at least two strokes in 

each sketch.  In case there is only a single stroke in one of the sketches, then only the 

shape similarity is considered without using the spatial relation similarity. 

We now describe how to compute the overall similarity score from the similarity 

scores for different levels of features.  For each of the three multi-form representations, 

the shape and spatial relation similarity scores between the query sketch and each sketch 

in the database are computed.  Then the mean of these scores for each representation is 

calculated.  Afterwards the shape and spatial similarity scores of each representation are 

normalized by dividing themselves by the mean score of that representation.  The 

resulting scores are then combined linearly with certain weights that are initialized with 

equal values and can be updated with the relevance feedback method described in Section 

6.2 .  The final overall similarity score is obtained by another linear combination of the 

shape and spatial relation similarity of the multi-form representations with the hyper-

stroke feature similarity and the stroke hierarchy similarity. 
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5.3. Experiment and Result 

Figure 45 shows the retrieval performance of our proposed approach compared 

with two other approaches.  The weights that we used in this experiment are 

05.0,05.0,9.0 ===+ HIERARCHYHYPERSPATIALSHAPE www .  The first approach uses the Hu 

moment invariants [15] as features and the second approach uses the wavelet coefficients 

[16].  It can be seen that by using our proposed approach, the result is better than the 

previous two approaches. We also compare our performance with the result obtained by 

using the linear combination of the two approaches.  Although the performance improves 

after combining the two approaches, our approach still outperforms this combined result. 
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Figure 45 Comparison of retrieval performance with other approaches 
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Now we perform other experiments to show the gain in retrieval performance 

with respect to individual module.  The gain in retrieval performance by combining the 

matching results from multiform representations has already been shown in Section 3.4.  

We perform another experiment to compare the retrieval performance with and without 

stroke hierarchy similarity.  To make the dataset more challenging, we add two new 

classes of sketches whose examples are shown in Figure 46 and in Figure 47.  The 

example sketches shown in Figure 46 illustrate the sign showing traffic light ahead 

whereas the example sketches shown in Figure 47 illustrate that there is a sign below the 

traffic light.  It should be noted that these two classes of sketches contain strokes of the 

same shape, yet the fact that the traffic light is drawn inside or above the diamond shape 

gives two different meanings.  As a result, we expect the stroke hierarchy to be able to 

help in the retrieval.  In this setup, the retrieval performance using only the original 

representation is compared with the retrieval performance using the original 

representation with stroke hierarchy similarity.  The overall similarity score used in the 

former case is obtained by setting 0,0,1 ===+ HIERARCHYHYPERSPATIALSHAPE www

5.0

 and the 

resulting similarity score used in the latter case is obtained by setting 

,0,5.0 ===+ HYPERSPATIALSHAPE www HIERARCHY .  Figure 48 shows the retrieval 

performance using the “Sign – traffic light ahead” sketches as the query.  It can be seen 

that the performance is better when stroke hierarchy similarity is considered.   
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Figure 46 Example Sketches in the Class “Sign – traffic light ahead” 

  

  
Figure 47 Example Sketches in the Class “Sign below traffic light” 
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Figure 48 Comparison of retrieval performance for stroke hierarchy 
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We perform another experiment to compare the retrieval performance with and 

without hyper-stroke similarity.  We use a new class of sketches shown in Figure 49 as 

the queries.  These sketches illustrate different kinds of wall sockets but they are 

considered as one class.  The challenge about this class of sketch is that the shapes 

between different kinds of wall sockets are quite different.  However, all of them have the 

property that it has three holes that are indicated by the three shaded regions.  As a result, 

we expect the hyper-stroke to be able to help in the retrieval.  In this setup, the retrieval 

performance using only the original representation is compared with the retrieval 

performance using the original representation with hyper-stroke similarity.  The overall 

similarity score used in the former case is obtained by setting 

0,0,1 ===+ HIERARCHYHYPERSPATIALSHAPE www  and the resulting similarity score used in the 

latter case is obtained by setting 0.0,5.0,5.0 ===+ HIERARCHYHYPERSPATIAL wwSHAPEw .  

Figure 50 shows the retrieval performance and it can be seen that the performance is 

better when hyper-stroke similarity is considered.   

  

  

  

  
Figure 49 Sketches in the Class “Wall Socket” 
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Figure 50 Comparison of retrieval performance for hyper-stroke similarity 
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6. Multiple Component Relevance 

Feedback 

Sometimes the system may not provide satisfactory retrieval results after the user 

provides a query.  Relevance feedback has been proposed to refine the retrieval by asking 

the user to provide positive and negative examples from the retrieval result.  The system 

then learns from these examples and hopefully the new retrieval result is closer to what 

the user wants. 
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Figure 51 System diagram for relevance feedback 
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We propose to employ two strategies in the relevance feedback for the sketch 

retrieval: query feature movement and weight updating.  The resulting system diagram 

for the relevance feedback is shown in Figure 51.  The similarity scores from the 

matching of the multiform representations are combined and the sketches are retrieved 

based on the ranks of the scores.  After the user provides some positive and negative 

examples, the system updates the features of the query in order to make them more 

similar to the features of the positive examples and dissimilar to the features of the 

negative examples.  In addition, the system determines which of the multiform 

representations provides high ranks to the positive examples and low ranks to the 

negative examples and then increases the weight for the corresponding representation in 

combining the similarity scores.  

This chapter is organized as follows.  Section 6.1 starts with the strategy in query 

feature movement.  It first introduces the traditional approach for performing relevance 

feedback using query feature movement for objects with single component.  Next we 

provide an extension to handle query feature movement for objects with multiple 

components.  Section 6.2 discusses the weight updating approach for relevance feedback.  

Section 6.3 presents the experimental results using the proposed relevance feedback 

strategies. 

6.1. Query Feature Movement  

6.1.1. Object with Single Component 

If each object consists of a single component, then in the feature space, each 

object can be represented by one feature point.  One way of performing relevance 

feedback is to modify the feature point of the query to be closer to the feature points of 
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the positive examples and farther away from the feature points of the negative examples 

[48].   

Assume 
)(i

QF  be the i-th feature of the query, 
)(i

Pj
F  be the i-th feature of the j-th positive example, 

)(i
N k

F  be the i-th feature of the k-th negative example, 
where i = 1,2,…,D ; j = 1,2,…,nP ; k = 1,2,…, nN 

    D is the feature dimension 
    nP is the number of positive examples 
    nN is the number of negative examples 

The features of the query can be modified by the following equation [35]:  
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where α and β are some scaling factors 

It can be observed that the final modification of the feature point of the query is 

obtained by combining the contribution of the feature point from each of the positive and 

negative examples.  Figure 52 illustrates the relevance feedback for objects with a single 

component.   

Chang and Li proposed an algorithm called Maximizing Expected Generalization 

Algorithm (MEGA) [7] and Tong and Chang proposed to use Support Vector Machine 

Active Learning [44] to learn the concepts from the relevance feedback for image 

retrieval.  Each object in the database processes a set of concepts that take binary values 

and the algorithms try to learn which concepts better describe the query such that they 

will be used as criteria for searching the database.  In the sketch retrieval application, it is 

not intuitive to come up with meaningful concepts to describe a stroke.   

 82



Query

Positive Examples

Negative Examples

Don’t Care Examples

Object
Feature space

One feature point corresponds to an 
object that has single component

Query

Positive Examples

Negative Examples

Don’t Care Examples

Object
Feature space

One feature point corresponds to an 
object that has single component

 
Figure 52 Relevance feedback for objects with a single component 

6.1.2. Extension to Object with Multiple Components 

The problem will get more complicated when an object may have multiple 

components.  From the relevance feedback, the user will only give positive or negative 

examples of the objects, and then the system needs to figure out what features from 

which components are responsible for characterizing the objects that the user wants.  We 

now describe our approach for extending the relevance feedback from objects with one 

component to objects with multiple components in the next section. 

If each object consists of multiple components, then in the feature space, each 

object can be represented by a variable number of feature points equal to the number of 

components of that object.  Again, relevance feedback can be performed by modifying 

the feature points of the query to be closer to the feature points of the positive examples 

and farther away from the feature points of the negative examples.  The final 

modification of the feature point of the query is also be obtained by combining the 

contribution of the feature point from each of the positive and negative examples.  

However, there is an additional problem that needs to be solved: which feature point 
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(component) of a positive or negative example should contribute to the modification of a 

feature point of the query?  In the previous section, it is assumed that the features of the 

query and the features of the positive and negative examples all have the same dimension 

D.  However, in our system, a query is a sketch that can contain multiple strokes and so 

are the positive and negative examples.  The number of strokes for the query sketch and 

the number of strokes for each positive and negative example sketch may not be the 

same.  This means that the features of the query and the features of the positive and 

negative examples can have different dimensions.  As a result, equation (36) needs to be 

modified to account for this situation.  Let , , denote the number of feature 

points in the query, the number of feature points in the j-th positive example and the 

number of feature points in the k-th negative example respectively.  In this case, when we 

compute the similarity between two sketches that have different number of strokes, the 

stroke correspondence is first determined and the features of the corresponding strokes 

are compared.  Similarly, by using this stroke correspondence, the features of the query 

can be modified by considering only the contribution from corresponding strokes if they 

exist. 
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 for i = 1,2,…,DQ     (37) 

With this extension, the query feature movement for multiple components can be 

described by equation (37).  Compared with equation (36), it can be observed that there 

are additional terms ( ))()( , p
P

i
Q j

FFM  and ( ))()( , q
N

i
Q k

FFM  that specify the feature point 

correspondence.  For example, if the i-th feature point of the query matches with the p-th 
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feature point of j-th positive example, then ( )=)()( , p
P

i
Q j

FFM
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i
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k
         ,1, )()( ≤

1.  It should also be noted that 

for each feature point of the query, a maximum of one match is allowed from each 

example.  As a result, there is an underlying constraint given by (38): 
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  Figure 53 illustrates the relevance feedback for objects with multiple 

components. 
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Figure 53 Relevance feedback for objects with multiple components 

6.2. Weight Updating  

The similarity scores of the multiform representations between two sketches are 

combined linearly.  At first the weights are initialized with equal values and we would 

like to use the user feedback in order to adjust the weights such that we will increase the 

weight corresponding to the representation that provides a better retrieval performance.  

Let Pi denotes the i-th positive examples and Ni denotes the i-th negative examples from 

the user feedback.  nP is the total number of positive examples and nN is the total number 
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of negative examples.  Let j be the index for the j-th representation: j = 1 denotes the 

original representation; j = 2 denotes the split representation; j = 3 denotes the merged 

representation.  The quantity Rj given in (39) is directly proportional to the sum of ranks 

of the negative examples and inversely proportional to the sum of ranks of the positive 

examples.  Essentially Rj is a measure of retrieval performance for the user feedback 

examples since when Rj is large, the negative examples have low ranking (rank has large 

value) and the positive examples have high ranking (rank has small value), showing that 

this representation leads to good performance.  On the other hand, when Rj is small, the 

negative examples have high ranking (rank has small value) and the positive examples 

have low ranking (rank has large value), showing that this representation does not lead to 

good performance.  The max operator is present to take care of the case when no 

example has been provided (for example, when there is no negative example, i.e., nN=0, 

the numerator will be set to be equal to 1 instead of 0).  The weights Wj are updated by 

normalizing Rj as given in (40). 
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6.3. Experiments and Results  

Figure 54, Figure 55 and Figure 56 show the retrieval performance of the 

proposed relevance feedback algorithm with weight updating only, with query moving 
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only and with both query moving and weight updating respectivly by varying the number 

of iterations of user feedback.  Iteration 0 is the initial retrieval performance when no 

feedback is applied.  It can be seen that as the number of iteration increases, the retrieval 

performance is also increased.  The result converges after the 2 iterations.  It can also be 

seen that the gain with the query moving as shown in Figure 55 is more than the gain 

with weight updating as shown in Figure 54.  By combining both methods, the 

performance is further improved as shown in Figure 56. 
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Figure 54 Retrieval performance for relevance feedback with only weight updating 

by varying number of iterations 
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Figure 55 Retrieval performance for relevance feedback with only query moving by 

varying number of iterations 

 
Figure 56 Retrieval performance for relevance feedback with both query moving 

and weight updating by varying number of iterations 
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Figure 57, Figure 58 and Figure 59 show the retrieval performance of the 

proposed relevance feedback algorithm with weight updating only, with query moving 

only and with both query moving and weight updating respectively by varying the 

number of feedback examples after 1 iteration.  The feedback examples are taken as the 

top retrieved results at iteration 0 therefore they may include both positive or negative 

examples.  It can be seen that the retrieval performance is increased if more examples are 

used for the relevance feedback.  It can also be seen that the gain with the query moving 

as shown in Figure 58 is more than the gain with weight updating as shown in Figure 57.  

By combining both methods, the performance is further improved as shown in Figure 59. 
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Figure 57 Retrieval performance for relevance feedback with only weight updating 

by varying number of examples 

 89



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Relevance feedback with query moving

Recall

P
re

ci
si

on

No feedback                 
iteration 1 with 3 examples 
iteration 1 with 6 examples 
iteration 1 with 9 examples 
iteration 1 with 12 examples
iteration 1 with 15 examples
iteration 1 with 18 examples

 
Figure 58 Retrieval performance for relevance feedback with only query moving by 

varying number of examples 

 
Figure 59 Retrieval performance for relevance feedback with both query moving 

and weight updating by varying number of examples 
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7. Partial Matching 

This chapter describes our work in partial matching that has a different problem 

setup from whole matching.  Whole matching is suitable for applications such as 

trademark retrieval with query by sketch [24], i.e., when the query sketch and the relevant 

sketch in the database have roughly the same number of strokes as shown in Figure 60.  

The algorithm is also robust to distortion when there are missing strokes.  However, in 

the case of partial matching as shown in Figure 61, the query sketch may be only a 

portion of the sketch in the database.  In this case, there are much more strokes in a 

sketch from the database than the query sketch so it is more likely to find a set of strokes 

that are matched based on the shape.  This may lead to a high similarity score even for 

irrelevant sketches, thus reducing the retrieval precision.   

Query DatabaseQuery Database  

Figure 60 Retrieval with whole matching 
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Figure 61 Retrieval with partial matching 

As a result, we consider the spatial relation together with shape features when we 

try to find the stroke correspondence.  Specifically, we discuss two approaches that we 

have considered along this direction.  The first approach transforms the stroke 

correspondence problem into the string matching problem and then uses dynamic 

programming to solve it.  The second approach uses the nearest-neighbor method to find 

the correspondence between bistroke feature points that consist of shape features of two 

strokes and the spatial relation between them.   

Sketch retrieval with partial matching is useful to find relevant information after 

jotting and storing notes with a pen-based device.  For example, in a classroom, the 

teacher may write and draw the lecture notes on the whiteboard that can be captured and 

stored page by page.  Later students can retrieve relevant pages from the lecture sketch 

database by drawing a simple query.  For example, a student can draw the chemical 

structure of benzene as the query and then the system will retrieve the page that contains 

a similar chemical structure with the associated description about its name, chemical 

formula and properties.  With the partial retrieval capability, it is not necessary to 

perform segmentation of a page into sketches before the matching, i.e., we do not need to 
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know which regions of the page form a unit and then decide which regions to be matched 

with the query. 

This chapter is organized as follows.  Section 7.1 provides the explanation of two 

matching schemes we have considered in determining the correspondence of the features.  

The first approach is dynamic programming and the second approach is bistroke feature 

matching.  Section 7.2 presents the experimental results for partial matching. 

7.1. Matching Schemes  

7.1.1. Dynamic Programming 

By projecting the strokes in the horizontal and in the vertical direction, the strokes 

can be ordered to form a 1D sequence in each direction.  If we denote each stroke by an 

alphabet, then essentially the stroke correspondence problem can be transformed into the 

string matching problem.  Specifically, we represent each stroke by two alphabets in each 

direction, and then sort the alphabets according to the x or y coordinates of its boundaries.  

For a sketch, in each direction, we obtain a string that is a sequence of alphabets sorted 

according to the spatial locations of the boundaries of the underlying strokes. Now we 

need to determine the matching (stroke correspondence) between two strings in each 

direction.  String matching can be solved using the dynamic programming technique.  

First the similarity score table is constructed between every element of the first string and 

every element of the second string based on the shape similarity between the two 

underlying strokes.  Then starting from the bottom right corner, each element in the 

similarity score table is updated according to the path that returns a higher gain in score.  

After constructing updating the entire table, we search for the element in the table with 

the maximum score and then backtrack to find the path ending in this element.  The 
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resulting path specifies the stroke correspondence and the maximum score in the table is 

used as the similarity score between two sketches. 

7.1.2. Bistroke Matching 

A bistroke feature consists of stroke features of a pair of strokes together with the 

spatial relation between them.  As a result, the query with N strokes will correspond to a 

set of 

  points in the bistroke feature space.  The goal of the bistroke feature 

matching is to find a correspondence between the set of points of the query and the set of 

points of the page in the bistroke feature space.  We can use the following algorithm to 

find the one-to-one correspondence between the bi-stroke features.  Assume that there are 

N strokes in the query sketch and M strokes in the page, the similarity matrix will contain 

×  elements.  We search for the element in the similarity matrix with the highest 

score and then its row index and its column index will indicate the corresponding stroke 

feature points between the query and the page.  The similarity matrix is updated by 

removing the row and the column containing that element.  This process is repeated until 

the similarity matrix is empty.  However, the complexity of the bistroke feature matching 

will becomeO  which is too 

computation intensive.  As a result, instead of finding a one-to-one correspondence 

between the sets of bistroke feature points, we will simply find the nearest bistroke 

feature point in the page for each of the bistroke feature point in the query.  The 

complexity of the bistroke feature matching is thus reduced to O .  
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Although it is now possible for multiple bistroke feature points from the query to 

correspond to a single bistroke feature point from the page, it is unlikely for this to 

happen too often since there are relatively large number of bistroke feature points located 

in a high dimensional space.  As a result, the requirement of the one-to-one 

correspondence for bistroke feature matching may not be as strict as the case for stroke 

feature matching. 

7.2. Experiment and Results 

  For the experiment, we use those sketches that consist of at least two strokes as 

the queries.  The objective of this experiment is to evaluate the retrieval performance of 

our proposed algorithm for partial matching.  Each element in the database is constructed 

by combining sketches from different classes to form a page.  In each page, we randomly 

select seven sketches belonging to different classes from the initial collection and put 

them together by translation and scaling to form a page.  It should be noted that the query 

sketches and the pages of sketches in the database are collected at a different time in 

order to simulate an actual retrieval scenario in which the database is collected first and 

then retrieval is performed at a later time.  In this database, there are 100 pages in total.  

For each class of sketch, there are 20 pages in the database that contain a sketch from that 

class.  Figure 62 shows two example pages in the database that contain a sketch from the 

class “fish”.  For each query, we retrieve the elements from the database in the 

descending order of similarity scores.   
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Figure 62 Two example pages in the database 

We compare our retrieval result with several other approaches.  From Figure 63, it 

can be seen that the retrieval performance using the dynamic programming approach is 

very low.  With the seven Hu moment invariants [15] as features, the retrieval 

performance is also very low because these features are more suitable for global 

matching.  By matching the histogram of edge directions, the result is better than the 

previous approaches.  Stroke feature matching only uses the shape features without the 

spatial relations to find the correspondence.  With this approach, there is a significant 

improvement in the retrieval performance.  By using the bistroke feature matching, the 

retrieval performance is further improved compared with the stroke feature matching.  

Quantitatively, the stroke feature matching shows an improvement of 62% increase in 

terms of the average precision compared with the edge histogram matching while the 

bistroke feature matching shows an additional gain of 56% over the stroke feature 

matching. 
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Figure 63 Retrieval performance for partial matching 
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8. Applications 

This chapter provides two example applications that perform retrieval based on 

sketches.  Section 8.1 introduces our prototype in sketch retrieval on virtual whiteboard.  

Section 8.2 describes our prototype in trademark retrieval.   

8.1. Sketch Retrieval for Virtual Whiteboard 

We have implemented a prototype for free-form hand-drawn sketch retrieval as 

shown in Figure 64.  The user can sketch a query on the whiteboard, and then the system 

will retrieve those sketches from the database that look similar to the query sketch. 

User sketches a query

User retrieves similar sketches from the database

Query
Sketch

Similar
Sketch

Page stored in 
Database

 
Figure 64 Prototype of free-form hand-drawn sketch retrieval system 
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8.2. Trademark Retrieval 

Our trademark retrieval interface is shown in Figure 65.  After the user selects a 

database a trademarks, he/she can browse through the trademarks.  A window will pop up 

after the user right clicks on the trademark image and the corresponding sketch extracted 

for that trademark will be shown.  Moreover, he/she can click on the trademark to select 

that trademark to be the query and then the trademarks in the database that are similar to 

the query will be retrieved.  The query is shown on the frame in the left hand side.  The 

twelve trademarks that have the highest ranks according to the similarity score are shown 

on the frame in the right hand side.  In addition to trademark image, the user is also able 

to provide a sketch as a query, and the trademarks whose corresponding extracted 

sketches similar to the query sketch are retrieved and ranked as shown in Figure 65.  Note 

that the query is merely a rough sketch yet the system is able to retrieve all the relevant 

trademarks with the highest similarity scores. 
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Figure 65 Trademark retrieval user interface 
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9. Summary and Future Directions 

All the work in this thesis is finding an efficient sketch retrieval method to 

improve the retrieval performance in terms of archiving relevant materials from the 

database with minimum number of trials.  We propose novel approaches along different 

stages of the retrieval system.  Specifically, we target on creating multiform 

representations of a sketch in order to find at least one consistent representation when it is 

compared against other similar sketches under user variations.  We also target on coarse-

to-fine feature extraction in order to capture the characteristics of the sketch at various 

levels.  Our next target is on global and local matching in order to compare various levels 

of features.  Our final target is on multiple component relevance feedback in order to 

refine the retrieval result based on the user feedback. 

The first contribution of this thesis is in preprocessing the sketches for creating 

multiform representations in order to have certain degree of consistency under each 

representation.  From the original representation of a sketch, we split the strokes into 

smaller stroke segments based on the dominant points to obtain the split representation.  

Then from the split representation, we merge the stroke segments if they form a primitive 

shape to become the merged representation.  Since there can be so many possibilities in 

terms of variations, finding a unique representation that is consistent over all kinds of 

variations is a difficult task, sometimes there may not be a solution.  Therefore, instead of 

keeping only one representation, we propose to use multiform representations for each 

sketch such that it is more robust under different kinds of variations.  We have shown that 
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by keeping the multiform representations, the sketch retrieval performance is higher than 

any of the representation used alone. 

The second contribution of this thesis is in extracting high-level features for 

associating them with semantic meaning.  We propose to detect shaded regions and 

represent them in a coarse level by treating them as one unit.  We have built a classifier in 

this shade detection problem for both hand-drawn sketches and for images.  We also 

propose to construct a stroke hierarchy to keep the structural information of the sketch.   

By making use of the stroke hierarchy, we introduce a novel concept of hyper-stroke that 

consists of a group of strokes inside a region enclosed by a boundary stroke.  Finer 

features such as shape features of basic strokes and spatial relations between strokes are 

also extracted.  In addition, we propose to analyze the strokes into primitive shapes.  This 

coarse-to-fine feature extraction can be conceptually considered as looking at the sketch 

at different points of view.  When coarse features are extracted, it can be considered as 

the case when the sketch is being viewed far away and when fine features are extracted, it 

can be considered as the case when the sketch is being viewed nearby.  We realize that 

comparing features at different levels allows matching to be performed both globally and 

locally.  While a sketch consists of multiple components and two sketches may have 

different number of components, we transform the multiple component correspondence 

problem into the bipartite graph matching problem.  We analyze two ways in how this 

correspondence problem can be solved.  We have shown which similarity functions to 

use for different levels of features and how to combine them to give the overall similarity 

score.   

 102



Another contribution of this thesis is in extending traditional relevance feedback 

approach from objects with single component to objects with multiple components.  We 

have proposed to use the correspondence in order to move the query feature to make 

them closer to the positive examples and farther away from the negative examples 

provided by the user.   We have also proposed to update the weights for the similarity 

scores from the multiform representations according to how much impact they have on 

the feedback examples.  We have shown that the relevance feedback converges at the 2nd 

iteration and the retrieval performance increases with more examples feedback to the 

system. 

We have considered two matching schemes, dynamic programming and bistroke 

correspondence, in order to find the correspondence between features for partial matching 

applications.  We have shown that bistroke matching results in 56% gain in the retrieval 

performance in terms of the average precision compared with stroke matching where 

spatial relation is not considered in determining the correspondence. 

Several prototypes of sketch retrieval system have been implemented targeting on 

different applications.  One prototype system is for the retrieval of hand-drawn sketches 

on a virtual whiteboard.  The scenario is that the teacher first draws the lecture notes on 

the virtual whiteboard and later a student can retrieve relevant materials by drawing a 

sketch query so that this application is suitable for distance learning.  Another prototype 

system is for the trademark retrieval.  The scenario is that when a person wants to register 

a new trademark, the clerk in the patent and trademark office can draw a query sketch of 

the design and use it to search from the trademark database to verify whether similar 

trademark has already been registered. 
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There are several possible extensions for the work described in this thesis.  It 

would be interesting to study how to extract more semantic information from a sketch so 

that we will be able to associate sketches with abstract ideas and retrieve them.  In terms 

of multiform representations, currently we have three representations for a sketch.  It may 

be extended to allow more representations in order to further increase the robustness 

during matching.  Eventually if the computation becomes so fast that perhaps a 

continuous representation can be built for each sketch and a consistent representation 

between two sketches can be searched in real time during matching.  In our system, the 

feature extraction mainly focuses on the geometric features.  It may be extended to 

include color features so that it may be more beneficial when trying to retrieve images.  

Currently the query feature movement strategy in the relevance feedback only operates 

on the shape features.  It can be extended to update other features such as the stroke 

hierarchy and the hyper-stroke features.  It would be interesting to examine how this 

approach can be further extended to update spatial relations.   
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