
Tracking of Multiple Faces for Human-Computer
Interfaces and Virtual Environments

Fu Jie Huang and Tsuhan Chen

Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
{jhuangfu,tsuhan}@cmu.edu

ABSTRACT

In this paper, we describe a real-time face-tracking algorithm.
We start with single face tracking based on statistical color
modeling and the deformable template. We then expand the
algorithm to track multiple faces, possibly with occlusion, by
constraining the speed and size changes of the faces. We test
the algorithm on sequences with different occlusion patterns,
and analyze the tracking performance. We also present a
tracking software library based on this algorithm. This library
can be applied to human-computer interfaces, lipreading, and
virtual environments.

1. INTRODUCTION

Image analysis for human faces has been an active research
topic in image processing, computer vision and psychology.
Specific research areas include face detection, face tracking,
face recognition, face animation, etc. In this paper, we focus on
face tracking that can serve as a front end to other facial image
analysis tasks, such as face recognition, face expression
analysis, gaze tracking and lip-reading.

Face tracking is different from face detection in that face
tracking uses temporal correlation to locate human faces in a
video sequence, instead of detecting them in each frame
independently. With temporal information, we can narrow
down the search range significantly and thus make real-time
tracking possible.

Recently there have been a lot of research efforts in face
tracking. Yang and Waibel [1] built a real-time face tracking
system based on normalized color. Bradski [2] proposed the
continuously adaptive mean shift algorithm. Colmenarez, et al.
[3], DeCarlo and Metaxas [4] used a 3D face model in the
tracking process. Malsburg [5] tracked specific feature points
on the face to track the face. However, none of these algorithms
deal with multiple faces, especially occlusion between faces,
effectively. In this paper, we propose a multiple face tracking
algorithm based on constraining the speed and size changes of
the faces.

The outline of this paper is as follows. In section 2, we first
review a single-face tracking algorithm [6] based on statistical
color modeling and the deformable template, and in section 3
we extend it to a multiple face tracking algorithm based on

Work supported in part by Department of Defense and Intel
Corporation.

certain constraints. In section 4, we will evaluate this approach
by testing it on several video sequences, both synthetic and live
video. We propose some extensions for the tracking algorithm
and show its applications in section 5.

2. SINGLE FACE TRACKING

For single face tracking, we use the method reported in [6],
which is based on statistical color modeling and the deformable
template. First, for each pixel in the current video frame, we
calculate the probabilities of each pixel belonging to each of
the two classes: the “face” class (the foreground class) and the
“non-face” class (the background class). Then we use a
deformable template to group the pixels more likely to belong
to the face class. We deform the template so that the it includes
as many face pixels as possible and at the same time includes
as few background pixels as possible. The optimal deformation
can be found by using logarithmic search.

For any given pixel, let
1ω denote the hypothesis that the pixel

belongs to the foreground, and
2ω denote the hypothesis that

the pixel belongs to the background. In order to derive
)|(1 xp ω , the probability of a pixel with value x , a 3-

dimensional vector representing (R, G, B) or (Y, U, V),
belonging to the foreground, and)|(2 xp ω , the probability of

the pixel belonging to the background, we first estimate the
foreground color distribution)|(1ωxp and the background

color distribution)|(2ωxp . Once these are found,)|(1 xp ω
and)|(2 xp ω can be derived from)|(1ωxp and)|(2ωxp
using the Bayesian rule,)(/)()|()|(111 xppxpxp ωωω =
and)(/)()|()|(222 xppxpxp ωωω = .

We use a Gaussian mixture model to approximate the color
distributions of the two classes. Specifically, we use a weighted
sum of two Gaussian functions to model the face region since
the skin color and the facial hair color (eyes, hair, beard) are the
two dominant colors on a human face. For the background
region, we also assume that there are two dominant colors.
Thus, we can approximate the color distribution of each region
as:

),(),()|(222111 iiiiiii CNCNxp µαµαω +=

where),(CN µ represents a Gaussian function, µ and C

are the mean and covariance of the Gaussian function and ijα
is the weight of the Gaussian function in the mixture.

To track the face, we deform an elliptical template so that an
energy function of the region ℜ inside the template, defined as

�
ℜ∈

��
�

�
��
�

�
=ℜ

r r

r

xp

xp
f

)|(

)|(
log)(

1

2

ω
ω

is minimized, where r is a pixel in the region ℜ and rx is

the value of this pixel. Hence, the tracking problem becomes
one that tries to minimize the energy function)(⋅f by

adjusting the template.

3. MULTIPLE FACE TRACKING

In many applications, such as human-computer interfaces and
video surveillance, we need to track multiple faces
simultaneously. Tracking of multiple faces is different from
single face tracking in that these faces may occlude each other.

Without loss of generality, we consider the occlusion between
two faces. In the simple case that the faces in the image frame
move in their own trajectories and do not occlude each other,
we can track these faces separately with multiple color
modeling and multiple deformable templates. Specifically,
while training the color distribution for one specific face class,
we treat other faces as part of the background class.

When there is occlusion, the difficulty of multiple face tracking
depends on several factors, such as how similar these faces are,
how long the occlusion lasts, and at what percentage one face is
occluded by another.

If the skin colors of these two faces are identical, it is very
difficult to track these faces correctly based on the color
information. Figure 1 shows an example using synthetic video.
When face A is partially occluded by another face B , the
deformable template for face A will be expanded so that it
includes the pixels in face B based on the optimization, as
shown in Figure 1. The white ellipses show the tracking results
for the two faces. The one that was tracking the face in the back
is incorrectly expanded to cover both faces.

Figure 1 Occlusion between two faces with similar color
distribution

If the color distribution of face A is different from B , then the
template tracking face A will shrink to include the partial
region not occluded by B . If the occlusion lasts for a
considerable amount of time, then the template may not be able
to follow the face anymore. If we consider cases when the
occlusion is “transient,” one way to deal with occlusion is to
make use of the motion information of the face. In computer
vision literature, Kalman filtering and its derivatives [7] are
often used for tracking objects with noisy observation data,

including occlusion [8]. Computation of Kalman filtering
however is rather complicated.

Here we apply constraints on the speed and size changes of the
face. We assume that during the occlusion, the speed and the
size of the face being occluded does not change significantly,
which can be formulated as:

11 ∆+′′−′<′−<∆−′′−′ pppppp

where p is face position in the current frame, p′ is the

position in the previous frame, and p ′′ is in the frame before

the previous frame.
1∆ is a pre-fixed threshold, which decides

the allowed speed change between two image frames.

The constraint for the shape change can be described as:

2∆<′− ww

where w and w′ are the width of the face in the current and

the previous frame, and 2∆ is the pre-fixed threshold.
1∆ and

2∆ are decided by experiments.

4. TRACKING RESULTS

To evaluate the tracking performance, we have created
synthetic video sequences, so that ground truth data is available,
with different occlusion patterns. Suppose there are two faces
of different sizes (the larger one is of the person closer to the
video camera), we let the smaller face move and be occluded
by the larger face that remains still. We created these test
sequences with several occlusion patterns as follows.

• Moving path: We simplify the moving paths into three
cases as shown in Figure 2, where the arrows show
possible moving paths:

o The moving face keeps moving in the same direction.

o The moving face changes its path during occlusion
and then moves upwards.

o The moving face changes its path during occlusion
and then moves downwards.

• Face size change: We create sequences of the following
three cases:

o The moving face maintains a constant size.

o The moving face’s size decreases during occlusion.

o The moving face’s size increases during occlusion.

In our experiments, tracking of the larger face always
succeeded. Therefore, here we focus on tracking results of the
moving / occluded face, which is the smaller face.

Figure 2 An example image from the test sequences.

We tested the algorithm with and without constraints on five
different occlusion patterns as in Table 1. We calculate the
distances between the face center positions from the ground
truth data and the tracking results, and define the distance as
the tracking error. Figure 3 shows an example tracking result.
The occlusion in this example happens from frame 3 to frame
26, and peaks at frame 16 when the larger face occludes 90%
region of the smaller face. The dotted curve shows the tracking
error of the constraint-based algorithm, while the solid curve
shows the tracking result of the algorithm without the
constraints. We can see that the tracking error of the constraint-
based algorithm goes back to about 10 pixels after the
occlusion, which means the tracking is correct, while the
tracking error of the algorithm without constraints keeps
increasing, which means the template has lost the face.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
The tracking error of one example sequence

frame number

pi
xe

ls

with constraints
without constraints

Figure 3 Tracking error of one example sequence

We tested the algorithm with and without constraints on
sequences with different occlusion percentages for each
occlusion pattern, and found the largest occlusion percentage
with which the algorithms could still track the face correctly.
The results are summarized in Table 1.

Table 1 Performance comparison

Occlusion
pattern

With
constraints

Without
constraints

Same direction
Constant size

88% 80%

Same direction
Increase size

90% 90%

Same direction
Decrease size

89% 78%

Move upwards
Constant size

88% 80%

Move downwards
Constant size

89% 87%

From Table 1, we can see that the algorithm with constraints on
the speed change and the size change can handle a larger
percentage of occlusion, therefore is more robust than the
algorithm without constraints. In three out of the five occlusion
patterns, the algorithm with constraints can handle around 10%
larger occlusion than the algorithm without constraints. One
exception is when the face moves in the same direction as its
size increases, the algorithm without constraints performs as

well as the algorithm with constraints. We conjecture that this
is because when the face size increases, tracking becomes
easier and the algorithm without constraints is already good
enough.

In addition to synthetic sequences, we also tested the algorithm
on live video. The result of one sequence is shown in Figure 4.
We can see the system tracks the smaller face correctly
throughout the occlusion.

Frame No. 1 Frame No. 5

Frame No. 9 Frame No. 14

Figure 4 Example result with live video

5. APPLICATIONS AND EXTENSIONS

We have built a tracking software library ‡ for various
applications. In one application, we integrate face tracking
with a face detection module from Henry Rowley et al. [9] to
initialize the system. The face detection module detects all the
frontal view faces in the image frame. We then use the pixels in
the detected face region to calculate the color distribution of the
face and use the remaining pixels to calculate the color
distribution for the background. Then we use the algorithm
described in Section 2 to track the face. We use the size and
aspect ratio of the tracked face to decide whether the tracking is
correct or not. For example, if the aspect ratio (height over
width) is larger than a pre-determined threshold, we assume
that the face tracking has failed. Once the tracking fails, we
reset the system to the detection module. The system diagram is
shown in Figure 5.

Detection Tracking

Tracking fails

Face detected

Figure 5 Block diagram of a real-time tracking system

We also developed an eye-tracking algorithm, which can be
integrated with the face tracking system. To track the eyes, we
start from the eye positions from the previous frame, and
update them based on the information we obtain from the

‡ Available at http://amp.ece.cmu.edu

current frame. First we position the search window around the
initial position of each eye given by the previous frame. If the
person is not moving too fast, the iris of the eye is still inside of
the search window as shown in Figure 6.

Figure 6 The search window

In the search window, we compare the normalized intensity of a
pixel with a given threshold, and then calculate the center point
of the pixels whose intensity is below the threshold. The center
point is considered as the current position of the iris. We can
use this position as the center of the search window for the next
frame, and repeat this procedure again. Figure 7 shows the
cropped search window regions, the binary image after
thresholding the image intensity, and the resulting eye centers.

Figure 7 From left to right: the search window regions, the
binary images, and the resulting eye centers

Based on the relative positions of the eyes and the face, we can
decide the pose of the face, as shown in Figure 8, which is a
human head seen from above.

a

2*r

Left eye
Right eye

θ

Figure 8 Pose estimation

With a being the distance between the projection of the mid-
point of two eyes and the center of the face, and r being the
radius of the head, we can estimate the pose θ as follows:

)/arcsin(ra=θ
We have used this pose estimator as part of a virtual conference
system we have been building [10]. This system can estimate
the pose of the user and render the corresponding avatar with
the correct pose. We have also used the pose estimator as the
front-end of a pose-invariant face recognition system [11]. We
feed the cropped face region together with the pose information
into the recognition module to obtain better recognition.

6. CONCLUSIONS AND FUTURE WORK

We described a face tracking algorithm based on the stochastic
color model and the deformable template, and extended the
algorithm to track multiple faces with some constraints on
speed and size changes of the face during occlusion. We tested

the algorithm on video sequences with different occlusion
patterns and show that our algorithm works well for most of the
test sequence.

Still, there are a lot of research work which can be done to
improve this algorithm. For example, noticing that after
occlusion the tracking error becomes very small, we should be
able to reduce the tracking error during the occlusion by
performing inverse tracking from the tracking results after the
occlusion.

Acknowledgements

The authors would like to thank Dr. Tom Drayer, Department of
Defense, and Dr. Ram Rao, Intel Corporation, for fruitful
discussions.

7. REFERENCE

[1] J. Yang and A. Waibel, “A Real-Time Face Tracker,”
Proceedings of WACV’96, pp. 142-147.
[2] G. Bradski, “Computer Vision Face Tracking for Use in a
Perceptual User Interface,” http://developer.intel.com
/technology/itj/q21998/articles/art_2.htm
[3] A. Colmenarez, R. Lopez and T. Huang, “3D Model-Based
Head Tracking,” Visual Communication and Image Processing,
San Jose, CA, 1997
[4] D. DeCarlo and D. Metaxas, “Deformable Model-Based
Face Shape and Motion Estimation,” IEEE Proc. of ICFG,
1996.
[5] T. Maurer and C. Malsburg, “Tracking and Learning Graphs
and Pose on Image Sequences of Faces,” IEEE Proc. of ICFG,
pp. 176-181, 1995.
[6] R. Rao and R. Mersereau, “On Merging Hidden Markov
Models with Deformable Templates,” Proceedings of the Int'l
Conf. on Image Processing, Washington D.C., 1995.
[7] G. Welch and G. Bishop, “An Introduction to the Kalman
Filter,” Technical Report TR 95-041, Computer Science, UNC
Chapel Hill, 1995
[8] R. Rosales and S. Sclaroff, “Improved Tracking of Multiple
Humans with Trajectory Prediction and Occlusion Modeling,”
IEEE Conf. On CVPR, CA, 1998.
[9] H. Rowley, S. Baluja and T. Kanade, “Neural Network
based Face Detection,” IEEE Trans. On PAMI, pp. 23-38, 1998
[10] H. Leung and T. Chen, “Networked Collaborative
Environment with Animated 3D Avatar,” IEEE workshop on
Multimedia Signal Processing, 1998.
[11] F.J. Huang, Z. Zhou, H-J Zhang and T. Chen, “Pose
Invariant Face Recognition,” IEEE ICFG 2000, Grenoble,
France.

