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Abstract -  In this demo, we present a technique for synthesizing the mouth 
movement from acoustic speech information. The algorithm maps the audio parameter 
set to the visual parameter set using the Gaussian Mixture Model and the Hidden 
Markov Model. With this technique, we can create smooth and realistic lip movements. 

INTRODUCTION 

Techniques for converting the human voice into visual parameters of mouth 
movements have applications in face animation, human-computer interfaces, and 
joint audio-visual speech recognition [1].  The problem of mapping from the audio 
feature space to the visual feature space can be solved at several different levels, 
according to the speech analysis being used. 
 
At the first level, frame level, a universal mapping can be derived to map one frame 
of audio to one frame of visual parameters. This method uses a large set of audio-
visual parameters to train the mapping. Such mapping could be extracted by method 
like Vector Quantization, the Neural Network [4], the Gaussian Mixture Model 
(GMM) [2], etc. In our demo, we use the GMM to map the acoustic feature set to 
the visual feature set. 
 
At the second level, phoneme level, the mapping could be found for each phoneme 
in the speech signal. The first step of mapping from audio to visual parameters is to 
segment the speech sequence phonetically. Then we use a lookup-table to find out 
the sequence of visual features. The look-up table is predefined for the whole set of 
phonemes. In this table, each phoneme is associated with one visual feature set. 
 
At the third level, word level, we can explore the context cues in the speech signals. 
First we use a speech recognizer to segment the speech into words, like “one”, 
“four”. For each word, we can create a Hidden Markov Model (HMM) to represent 
the acoustic state transition in the word. For each state in the HMM model, we can 
use the methods as in the first level to model the mapping from acoustic to visual 
feature frame by frame [3]. Since this mapping is tailored to individual words, better 
results could be achieved than the frame-lever and phoneme-level approaches.  In 
our demo, we will explore the mapping for a small vocabulary composed of 10 
digits and 26 English letters.1 
                                                           
1 Published in IEEE Multimedia Signal Processing Workshop, Los Angeles, 
California, 1998 



BACKGROUND 

Gaussian Mixture Model and EM Algorithm 
 

We use the GMM to model the probability distribution of the audio-visual 
vectors. To collect the training data of audio-visual vectors, we use a lip-tracking 
program to extract the lip shape parameters from the video images. Here we take the 
two most important parameters: the width and height of the outer contour of the 
mouth. In the mean time, the acoustic speech is analyzed to yield 13 cepstrum 
coefficients. Then we cascade the cepstrum coefficients with the visual parameters 

to compose the joint feature vector TTT vaO ],[= , where a is the acoustic vector 

and v is the visual vector. 
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Figure 1. Extraction of Joint audio-visual features 

The probability distribution of the audio-visual vectors O  is modeled using GMM. 

The GMM is a weighted sum of k  Gaussian functions. 
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where iw  is the mixture weight, )](,[ Og ii Σµ is the Gaussian function with mean 

iµ , and covariance matrix iΣ  

)}()(
2

1
exp{

)2(

1
)](,[ 1

15
i

T
i

i

ii OOOg µµ
π

µ −Σ−−
Σ

=Σ −  

The GMM is parameterized by a set of triple parameters: the mean vector iµ , 

covariance matrix iΣ  and mixture weight iw  

kiwiii ,,2,1},,{ �=Σ= µλ  

We train the GMM on the training data set with the Expectation-Maximization 
(EM) algorithm [5]. After the model λ  is initialized, the EM algorithm iterates to 
update the model with an update function, and replace the old model parameter with 
the new parameter λ ′ . It has been proven that with the EM algorithm, the product 
of the likelihood for each data point will increase after each iteration, and converge 
to the maximum [5]. 
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where O  is the training data set of O . 
 

After we trained the GMM with the training data set, we can use the model to map 
the audio feature to the visual feature. If we constrain the covariance matrix iΣ  of 

each mixture component to be diagonal, we can simplify the optimal estimate of v  

given a , ]|[ˆ avEv = , to be the sum of the mean vector of the visual feature, 

weighted by the probability that the given acoustic observation belongs to the 
mixture component 
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Hidden Markov Model 
 

The mapping method mentioned above is a universal mapping. It ignores the 
context cues that are inherent in speech. To utilize the context information, we can 
use a mapping tailored to a specific word. Here we use HMM for the audio to visual 
parameter conversion. 
 
We use a standard left-right HMM, with 5 states. The parameters describing the 
model are the transition matrix A , the initial state distribution Π , and the 
observation symbol probability distribution B  for each state [6]. We use the 
cascaded audio-visual feature vector sequences for each word in the vocabulary to 
train a HMM for this word. 
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Figure 2. Left-right Hidden Markov Model 



Thus we get a joint audio-visual HMM with the parameter of ),,( BAΠ . As for 

each state, the observation probability distribution is modeled by the GMM with 3 
mixture components. 
 
We also derive an acoustic HMM from the joint HMM. The parameter of the 
acoustic HMM is ),,( BA ′Π . Π  and A are the same as in the joint HMM, while 

in B′ , the observation distribution is derived from B  with the equation 

∫= dvobab jj )()(  

where )(abj  is the distribution of the acoustic features in the acoustic HMM, and 

)(obj  is the distribution of the audio-visual features in the joint HMM. 

 
For each state in the acoustic HMM, we derive an optimal estimator of visual 
parameter given the acoustic feature based on the same method mentioned in the 
previous section. 
 
At the conversion phase, we first use the acoustic HMMs to recognize the 
digits/letters and select the proper HMM to find out the sequence of states using the 
Viterbi algorithm [6]. Within each state, we can estimate the visual parameters 
given the acoustic parameters with the associated optimal estimator. 

DEMO 

Use GMM To Map Continuous Speech To Mouth Movements 
 

To collect the training data, we record some sentences spoken by a male 
speaker. The acoustic speech is sampled at 11kHz, 8 bits per sample, mono. At the 
same time video images of the speaker’s mouth area are captured at 15 frames per 
second, 352×288 pixels, 24 bits per pixel. The silence part in the speech and the 
corresponding video frame is cut out using the end point detection [6]. 
 
Then we use our lip-tracking program to extract the lip shape parameters from the 
video images. Here we take the width and height of the outer contour of the mouth. 
In the mean time, the acoustic speech is analyzed to yield 13 cepstrum coefficients. 
The acoustic speech signal is blocked into frames of 256 samples, with adjacent 
frames being separated by 128 samples. Therefore frame rate of acoustic signal is 
86 frames per second. We upsample the visual parameters to the same frame rate as 
the audio features. Then we cascade the cepstrum coefficients with the visual 
parameters to compose the audio-visual feature. 
 
We use the 15 dimensional audio-visual features extracted from the video as the 
training data set to train the GMM with 20 mixture components. We first use Vector 
Quantization (VQ) [6] to cluster the data set into 20 classes. We use the center 
vector and covariance matrix of each cluster as the initial mean and covariance, and 
use the normalized number of the data in each class as the initial weight of that 



component. Then we use the EM algorithm to optimize the parameters for the 
mixture components to find the optimal GMM. Since we constrain each Gaussian 
component to have a diagonal covariance matrix, we get the final model with 20 
component weights, 20 component mean vector of 15 dimensions, 20 component 
covariance matrix of 15 dimensions. 
 
At the conversion phase, the speaker can record a sequence of continuous speech, 
then the sequence of talking mouth synchronized with the recorded speech will be 
given as the output.  
 
The first step to convert the audio signal to the visual parameters is to detect the 
silence part in the speech. Since with the silence part of the speech, there is no 
information to predict the visual parameters, we simply set the parameters as the 
mouth is closed. 
 
For the non-silence part in the speech, we extract the cepstrum coefficients of each 
frame, calculate the probability of this acoustic feature belonging to the mixture 
components, and use these probabilities as the weights to sum up the visual means 
of the components to get the visual estimate, ]|[ˆ avEv = , as described in the last 

section. 
 
Use HMM With GMM To Map Isolated Words To Mouth Movements 
 

We record sequences of isolated digits from 0 to 9 and English letters from A to 
Z, each for 10 times, spoken by a male speaker, as the training data. At the same 
time video images of the speaker’s mouth area are captured as before. The acoustic 
speech is sampled at 11KHz, 8 bits per sample. This video stream is segmented by 
hand according to the speech to be used as the training data. As before, we extract 
the visual feature and the acoustic feature and combine them to compose the audio-

visual feature TTT vaO ],[= . 

 
We use this joint audio-visual feature vector to train a 5-state, left-right, Hidden 
Markov Model. The densities with each state of the HMM is modeled with 3 GMM 
components. We derive an acoustic HMM from this join HMM model, and derive 
an optimal estimator of visual parameter given acoustic parameter for each state in 
this HMM. Since we constrain the HMM to have diagonal covariance matrices for 
each mixture component, the visual parameters are the sum of the mean visual 
parameters of each mixture component weighted by the probability that the acoustic 
observation belongs to the mixture component. 
 
At the conversion stage, when the user speaks several words, the system splits them 
into isolated words. Then for each word, extract the cepstrum coefficients and feed 
them into the acoustic HMM models. After recognized correctly, take the proper 
HMM model and segment the sequence of acoustic parameters into optimal state 
sequence using Viterbi algorithm. 
 



At each state, we estimate the visual parameters given the acoustic parameters with 
the optimal estimator. The estimated visual parameters for each digit are then 
concatenated together to get the whole sequence of the visual parameters of the 
input audio. For the silence part in the acoustic speech, we simply put fixed mouth 
parameters. The length of the estimated sequence of the visual parameters is the 
same with the input audio sequence, and they can be played back with perfect lip 
synchronization. 

CONCLUSION AND FUTURE WORK 

In this demo, we implemented a real-time audio-to-visual mapping algorithm. 
With the GMM, we could predict the visual parameters given the acoustic 
parameters. We used the method to map continuous speech to synchronized lip 
movements.  With the HMM, we also explored the context cue to achieve better 
mapping performance for isolated words.  
 
For the future work, we will explore the possibility of extending the use of 
HMM/GMM with the mapping from continuous speech to smooth lip movements. 
We will also improve the lip animation model to render realistic lip motions such as 
in explosives, fricatives, and lip protrusion. 
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