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Abstract

Image-based relighting (IBL) has become a popular re-
search topic in both computer graphics and signal process-
ing. IBL is the technique that renders images of a scene
under different lighting conditions without prior knowledge
of the object geometry and surface properties in the scene.
Simply put, IBL collects images of the scene under all pos-
sible lighting conditions and process these images to render
an image of the scene under a new lighting condition. To be
practical, IBL strives to reduce the number of images that
need to be captured, and most IBL algorithms do so by esti-
mating the surface reflectance function (SRF) of the scene,
which represents the response of each pixel in the scene to
lighting from various directions. IBL hence becomes the
problem of estimating the SRF using a number of lighting
patterns to illuminate the scene. To minimize the number of
lighting patterns needed, we propose to use a statistical ap-
proach, principal component analysis (PCA), and show that
the most efficient lighting patterns should be the eigenvec-
tors of the covariance matrix of the SRFs, corresponding to
the largest eigenvalues. In addition, we show that discrete
cosine transform (DCT)-based lighting patterns perform as
well as the optimal PCA-based lighting patterns for typical
SRFs, especially for scenes with Lambertian surfaces. Both
the PCA-based and the DCT-based methods outperform ex-
isting IBL algorithms with fewer lighting patterns.

1. INTRODUCTION

Within a couple of years, image-based relighting (IBL) has
become a popular research topic in both computer graph-
ics and signal processing. IBL collects images of the scene
under all possible lighting conditions and processes these
images to render an image of the scene under a new light-
ing condition. IBL has an advantage that prior knowledge
of the object geometry and surface properties in the scene
is not needed for rendering. IBL is applied to many appli-
cations such as realistic visualization of scenes in a virtual

Figure 1: SRF model

environment and movie special effects.

1.1. Prior Work

Prior work for IBL essentially estimates, for each pixel of
an image, a2D light mapping function such asplenoptic
illumination function[1], reflected irradiance field[2], en-
vironment matte[3, 4, 5], orreflectance field[6]. In this pa-
per, we use the surface reflectance function (SRF) to unify
all such2D light mapping functions; the SRF is defined for
each pixel in the scene image to represent the contribution
of each point light source in the lighting plane (Figure 1), to
the pixel in the image plane (Figure 1).

The first work that rendered an image as the linear
combination of a set of basis images, was introduced by
Nimeroff et al. [7]. Most traditional IBL methods focus
on representation, sampling and compression issue after ac-
quiring basis images [2, 1, 8, 9, 6]. Lin et al. [2] in-
troduced the reflected irradiance field and solved the min-
imum sampling problem of the reflected irradiance field.
Wong [1] extracted the lighting factor from the plenoptic
function, calling it as the plenoptic illumination function.
They also discussed how to compress the plenoptic illumi-
nation functions that were acquired from basis images. Ho
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et al. [8] also proposed an algorithm to compress basis im-
ages, for IBL, based on principal component analysis (PCA)
[10]. Masselus et al. [9] compared various interpolation
techniques to improve the quality of rendered images. De-
bevec et al. [6] introduced theLight Stageto acquire the
reflectance field of a human face. However, most of these
techniques are often impractical due to the need of a large
number of basis images, each corresponding to a lighting
pattern. For example, for a64 × 64 SRF, Lin et al. [2],
Wong [1], Ho et al. [8] and Debevec et al. [6] needed4096
basis images while [9] used1024 basis images and interpo-
lated given basis images for estimating the original SRF.

More recent work in IBL aims at the efficiency as well
as the accuracy of estimating SRFs [3, 4, 5]. Zongker et
al. [3] introduced an approach to estimating an environ-
ment matte (i.e., SRF) of specular and transparent scenes.
They estimated an environment matte using basis images
lit by Gray-coded lighting patterns. Chuang et al. [5] ex-
tended this technique for higher accuracy and real-time cap-
turing. Instead of Gray-coded lighting patterns, they esti-
mated matte parameters using basis images illuminated by
Gaussian stripe patterns. They also provided a method to
extract an environment matte from single basis image under
certain scene constraints. Peers et al. [4] improved the ef-
ficiency of estimating an environment matte using wavelet
lighting patterns. They measured the importance value of an
applied pattern by computing the norm of the corresponding
scene image. By learning from previously recorded images,
they could select the most important lighting patterns among
wavelets.

In [3, 4, 5], the choice of lighting patterns is based as-
sumptions about the SRFs. Zongker et al. [3] selected
Gray-coded lighting patterns since they assumed that an en-
vironment matte was a box function. They approximated
an environment matte using tens of basis images. Chuang
et al. [5] applied Gaussian stripe patterns because an envi-
ronment matte was modelled as a Gaussian function. They
used thousands of basis images to achieve higher accuracy
of estimating an environment matte. Peers et al. [4] used
wavelet basis functions for their lighting patterns because
wavelet basis functions were known to be very effective for
image coding and representation. They used from hundreds
to thousands of basis images for estimating an environment
matte.

The main contribution of our work is to show that select-
ing lighting patterns by learning from data statistics can sig-
nificantly improve the efficiency of relighting with highly
satisfying visual quality. Compared to [1, 2, 8], our work
can be considered as a pre-compression technique for IBL
since eventually we are able to reduce the number of basis
images to be stored for IBL. Unlike Zongker et al. [3] and
Chuang et al. [5], our proposed algorithm does not suffer
from the complex computation caused by the optimization

process and the error caused by an incorrect initial model
(e.g. a box function, a Gaussian function). Our work dif-
fers from [4] in that we design the lighting patterns based
on data statistics of many SRFs, while lighting patterns in
[4] are determined by each scene.

1.2. Overview

Figure 2: Flow of proposed algorithm

Our proposed algorithm has two stages: a training stage
and a test stage (Figure 2).

First, for training, we collect SRF statistics from many
synthetic images categorized by surface properties (Lam-
bertian vs. specular). We apply PCA [10] to the SRFs
(Figure 2.(1)) and show that SRFs are a highly correlated
data set so that only a few eigenvectors can represent a wide
range of possible SRFs. Based on this observation, we can
simply choose the lighting patterns to be the eigenvectors of
the covariance matrix of the SRFs.

Second, for testing, designed lighting patterns from the
training stage (Figure 2.(1)) are applied to the scene to ac-
quire basis images. Basis images are then used to synthesize
the scene with novel lighting patterns (Figure 2.(2)).

It is interesting to note that the SRFs can be modelled as
an Autoregressive(1) (AR(1)) process with a high correla-
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tion parameter so that the PCA basis functions can be ap-
proximated by discrete cosine transform (DCT) basis func-
tions [11]. In particular, SRFs from scenes with Lamber-
tian surfaces fit better into an AR(1) model than SRFs from
scenes with specular surfaces. We will see that DCT-based
lighting patterns provide better performance for scenes with
Lambertian surfaces than scenes with specular surfaces.

In the following section, we explain our algorithm for
performing the reconstruction of SRFs from basis images
and rendering an image using reconstructed SRFs (Section
2, Figure 2.(2)). Section3 contains practical implementa-
tion issues. As a conclusion, we compare the performance
of our reconstructed SRFs with other algorithms [3, 5, 4].
We also present the rendered images for our best result with
the best result among [3, 5, 4] and images of same scene
with true lighting (Section 4).

2. ALGORITHM DESCRIPTION

In this section, we derive the illumination of a pixel on
the image plane with the rendering equation and develop a
mathematical framework to estimate an SRF. An SRF is de-
fined as a weighting function from light sources to the pixel
value. In other words, the intensity value reflected by the
surface is the inner product of an SRF and a lighting pattern
[3, 5, 4, 7, 2, 6, 1].

I(m, n) =

P∑
p=1

Q∑
q=1

Fm,n(p, q)L(p, q) (1)

p, q: The index of the light plane, p = 1...P, q = 1...Q
m, n: The index of the image plane, n = 1...N, m = 1...M
I(m, n): An intensity at(m, n) pixel whereL is a corresponding
lighting pattern
Fm,n: The SRF for pixel at(m, n),0 ≤ Fm,n ≤ 1

L(p, q): An incoming intensity at(p, q) from the light plane

We can cascade elements of an SRF function and a lighting
pattern into vectors so that the rendering equation turns into
Equation 2.

I(m, n) = FT L (2)

whereF is aPQ×1 vector and aL is aPQ×1 vector. Our
goal is to solve forF, an SRF. Assuming that statistics ofF
are given, we can obtain the most representative basis func-
tions forF using PCA [10]. That is,F can be represented by
linear combination of basis functions as follows(Equation
3).

F = c1e1 + c2e2 + ... + cP QeP Q + m (3)

ek: kth basis function
ck: kth coefficient corresponding tokth basis function
m: A mean vector from statistics

To obtain the most effective basis function,ek, we collect
the statistics ofF and analyze it using PCA [10]. We obtain
the statistics ofF from each set (Lambertian and Specular)
of scenes rendered using ray tracing software (POV-RAY
[12]) (Figure 2). We use ten different training scenes for
each set classified by surface properties. Training scenes
are shown as follows.

(1) Training scenes for Lambertian scenes

(2) Training scenes for Specular scenes

Figure 3: Training scenes

Performing PCA on the training data set, we observe that
only a few basis functions dominate most of the energy dis-
tribution of the SRFs (Figure 4).

From the set of scenes with Lambertian surfaces, we find
that99.14% of energy is preserved within the first six eigen-
vectors. For the specular set,70% of energy stays within the
first six eigenvectors and90% within the first43 eigenvec-
tors. Therefore,F can be approximated by

F̃ ≈ c1e1 + c2e2 + ... + cKeK + m, K � PQ (4)

Therefore, our goal becomes reconstructingF using a
minimum number of basis functions. To solveF, we substi-
tuteL in Equation 2 withek.

Ik(m, n) = (c1e1 + ... + ckek + ... + cKeK + m)T ek

= ck + mT ek (5)

Because basis functions are orthogonal to each other and
they have unit norm, from Equation 6, a coefficient,ck, is
simply calculated from a radiance value at pixel(m,n) if
a corresponding basis functionek is applied as the lighting
pattern. In order to reconstructF without loss, we will need
PQ basis functions. Thanks to PCA, we can select only a
few basis functions, i.e., eigenvectors corresponding to the
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Figure 4: Eigenvalues of the covariance matrix of SRFs

Figure 5: First six designed lighting patterns

largest eigenvalues. Six eigenvectors corresponding to the
six largest eigenvalues and a mean vector from each set of
statistics are shown in Figure 5 (1), (2), (3). If we collect
enough data from many different scenes, we obtain a con-
stant mean vector from PCA [10] as shown in Figure 5 (2), 5
(3). The first six DCT basis functions are shown in Figure 5
(1). From Figure 5, we observe that the basis functions from
the Lambertian set have less contrast than the basis func-
tions from the specular set of scenes. This is as expected
because the SRFs from the Lambertian set have a wider and
flatter characteristics than the SRFs from the specular set.

Equation 6 shows how to calculate coefficients corre-
sponding to the basis functions. We apply calculated co-
efficients from Equation 6 to Equation 4 to obtain the re-
constructed SRFs. Rendering a pixel is then done by simply
computing the inner product with a novel lighting pattern
as shown in the SRF as Equation 2. However, instead of
computing and storing a reconstructed SRF, which often is
a huge dimensional vector, we can simply keep coefficients,
ck, for each pixel and apply them for rendering a pixel di-
rectly ([4]). In other words, a rendered pixel value with a
new lighting condition is calculated by

Inew(m, n) = (c1e1 + ... + ckek + ... + cKeK + m)T Lnew

= c1a1 + ... + cKaK + mT Lnew (6)

whereak = ek
T Lnew.

3. IMPLEMENTATION DETAILS

In Section 2, we designed the optimal lighting patterns as
basis functions of the covariance matrix of SRFs. To apply
them as lighting patterns, we have to fit them into the range
of an image. Since derived lighting patterns contain nega-
tive values and have a unit norm, it is necessary to scale and
shift a basis function as follows.

Lk = 255×
(

ek + |min(E)|1
S1

)
(7)

wherek is the index of the basis,ek is akth basis function,
E is a basis matrix[e1e2...eK ], Lk is thekth lighting pat-
tern,1 is an all-one vector andS1 = |max(E)|+ |min(E)|.
Equation 7 describes how to shift and scale a basis function.

Then, the way to calculate the coefficients,ck, to recon-
struct the SRF becomes

ck =
S1

255
Ik(m, n)− ek

T m− |min(E)|FT 1 (8)

FT 1 in Equation 8 isIgray(m,n)
128 , whereIgray(m,n) is a

pixel value captured with the solid gray lighting pattern.

4. EXPERIMENT RESULTS

4.1. Performance of SRF Reconstruction

The proposed algorithm is compared with other relighting
algorithms, which use an environment matte [3, 5, 4]. We
apply a DCT-based approach and a PCA-based approach,
and evaluate the performance. For test scenes to generate
the error curves in Figure 5, ten different scenes are chosen
as follows (Figure 6). Note that the training scenes used to
create the PCA basis functions and test scenes are different
except for the surface properties.

In Figure7 (1), we generate the SRF reconstruction error
curves using ten different diffused scenes by increasing the
number of lighting patterns for our algorithm and method
in [4, 5]. The error is computed in the mean-square sense.
Figure 7 (2) compares the performance between our pro-
posed methods and the methods in [4, 3] when ten different
specular scenes are used as test scenes.

In Figure 7, the proposed methods outperform others
[3, 5, 4]. From the result shown in Figure7, a DCT-based
approach fits better for Lambertian scenes. In signal pro-
cessing literature [11], if a signal is an AR(1) process and
the correlation parameter,ρ, of an AR(1) model is close to
1, the optimal basis functions for the signal approximate to
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(1) Test scenes for Lambertian scenes

(2) Test scenes for Specular scenes

Figure 6: Test scenes

DCT basis functions. We can fit SRFs to an AR(1) and ver-
ify whetherρ is close to1 or not by checking the significant
level of the modified Li-McLeod portmanteau (LMP) statis-
tic [13]. As a results,ρ estimated from Lambertain scenes
is 0.9108± 0.1075 with 95% confidence intervals andρ es-
timated from Specular scenes is0.8321± 0.2425 with 95%
confidence intervals. It shows that SRFs from Lambertain
scenes fit better for an AR(1) process withρ close to one
and, therefore, a DCT-based approach fits better for Lam-
bertain scenes.

4.2. Rendered images

Rendered images are presented in Figures 8 and 9. If the
scene is Lambertian, our algorithm can provide very good
quality of rendered images using only six basis images. For
specular scenes, it is necessary to use more basis images
corresponding to high order basis functions than Lamber-
tian scenes. If the difference in Figures 8 and 9 is close to
gray, the rendered image is close to the ground truth. Fig-
ure 8 shows that our method can generate better quality of
rendered images than [4], even thought we apply fewer pat-
terns, six, than [4],15 lighting patterns applied. In Figure
9, we choose15 patterns for both algorithms and compare
the quality of the rendered images. We compute the mean
square error of the rendered image and show on the differ-
ence map. We can see that rendered images from a PCA-
based algorithm are significantly closer to the ground truth
than [4].

5. CONCLUSION

In this paper, we introduce a statistical approach to recon-
structing SRFs. Our goal is to achieve efficiency as well as
accuracy. The proposed technique obtains basis images by

(1) Lambertian scenes

(2) Specular scenes

Figure 7: Comparison with another relighting algorithms

selecting the most effective lighting patterns. The property
of selecting lighting patterns can be understood as a pre-
compression algorithm for IBL. Since the proposed algo-
rithm acquires the data set smartly, we do not have to store
a large amount of data for IBL.

Reconstructed SRFs can be utilized in many other appli-
cations such as detecting the shadow or generating the nor-
mal map of a scene. This is very useful in object recogni-
tion and detection. Our future work will attempt to achieve
both image-based relighting and multi-view rendering of the
scene without prior knowledge of the geometry information,
while using as few basis images as possible.

5



Figure 8: (1) Scene under true lighting(ground truth), (2)
Rendered image by our proposed method using six images,
(3) Rendered image by [6] using fifteen images, (4) Differ-
ence map between (1) and (2), (5) Difference map between
(1) and (3)

Figure 9: (1) Scene under true lighting(ground truth), (2)
Rendered image by our proposed method using fifteen im-
ages, (3) Rendered image by [6] using fifteen images, (4)
Difference map between (1) and (2), (5) Difference map be-
tween (1) and (3)
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