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ABSTRACT

Relevance feedback has been taken as an essential tool to en-
hance content-based information retrieval systems by keeping
the user in the retrieval loop. Among the fundamental rele-
vance feedback approaches, feature space warping has been
proposed as an effective approach for bridging the gap be-
tween high-level semantics and the low-level features. By ex-
amining the fundamental behavior of the feature space warp-
ing, we propose a new approach to harness its strength and
resolve its weakness under various data distributions. Exper-
iments on both synthetic data and real data reveal significant
improvement from the proposed method.

Index Terms— Relevance feedback, content-based infor-
mation retrieval, feature space warping

1. INTRODUCTION

With the prevalence in high-speed networking and high-
volume networked storage, vast amounts of publicly accessi-
ble images and videos have become a very useful resource in
our daily life. One fundamental question in utilizing this huge
resource is how to search for the target media that matches
user’s intention. Content-based information retrieval (CBIR)
systems are designed to deal with weakly annotated data
by similarity matching [9]. And relevance feedback is one
of the essential tools in reducing the semantic gap between
the low-level features and the richness of human semantics
[4, 12].

Relevance feedback approaches can be roughly divided
into three categories: (i) Moving the query point: query point
movement (QPM); (ii) Manipulating the feature space or the
metric space: adjust the weights of each feature component,
move every sample by feature space warping (FSW) [1], or
modify the similarity measure based on user’s feedback [5];
(iii) Learning classifier online: train a support vector machine
(SVM) or an Adaboost classifier to separate relevant samples
from irrelevant samples [10, 11].

In this work, we mainly focus on the FSW algorithm due
to its capability in reducing the semantic gap by altering the
original feature space. In the original proposed FSW algo-
rithm [1], query point serves as a warping center such that
every sample except the query point in the archive changes
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Fig. 1. Relevance feedback results in the toy example with
uniform distributions (top), and Gaussian distributions (bot-
tom). Two clusters (red, blue) are generated in each dataset.
The green point represents the location of query point (or
warping center), and the green circle shows the range contain-
ing the top 200 nearest neighbors to the query point. Precision
evaluated within the green circle is shown under each graph.

its position according to a warping function. On the contrary,
QPM algorithm only moves the query point without chang-
ing other samples in the archive. We’ll show that these two
extreme algorithms are well-matched to each other, such that
better performance can be achieved by integrating them to-
gether in the relevance feedback loop.

The rest of this paper is organized as follows. In the next
section, a toy example is given to demonstrate the strength
and weakness of the feature space warping algorithm. Sec-
tion 3 details the proposed mean shift feature space warping
algorithm. The experimental results on real data are described
in Section 4. And finally, Section 5 concludes the paper and
addresses future works under investigation.

2. A TOY EXAMPLE

In the following example, two synthetic datasets are created
to illustrate the behavior of different relevance feedback algo-
rithms under different data distributions. As shown in Fig.1,



two partially overlapped data clusters are generated in each
dataset. In the first dataset, each cluster is generated with
200 points from uniform distribution within a fixed distance
to each cluster center while each cluster in the second dataset
is generated from Gaussian distribution. The query point lies
in the origin of feature space assumed to belong to the left
cluster. Relevance feedbacks are given to the 200 samples
retrieved by nearest neighbor search in each iteration. Five it-
erations of relevance feedback are conducted to examine per-
formance of three methods: QPM, FSW, and the proposed
mean shift feature space warping method (MSFSW).

Several observations from Fig.1 can be summarized as
follows:

• QPM favors Gaussian distributions and gradually
pushes the query point to its corresponding cluster
center.

• QPM performs poorly under uniform distributions. The
query point stops moving when nearby relevant feed-
backs are uniformly distributed.

• FSW performs poorly under Gaussian distributions
when the query point is far away from the cluster cen-
ter. Closer relevant samples fast moving toward the
query point make far away samples more difficult to
move toward the query center.

• MSFSW outperforms QPM and FSW with satisfactory
performance under both data distributions.

Based on the above observations, we found QPM and FSW
behave quite differently under different data distributions.
Even though FSW shows good performance in the literature
[1], the inherent weakness could hinder a broader use. In the
next section, the proposed MSFSW algorithm is presented
which shows promising performance improvement on the toy
example.

3. MEAN SHIFT FEATURE SPACE WARPING

With similar notations used in [1], we address our MSFSW
algorithm as follows. Given a query point q in the feature vec-
tor space, k samples are retrieved by nearest neighbor search.
Within these k samples, user specifies relevance feedbacks to
M samples (M ≤ k), forming a relevant set {fp} and irrele-
vant set {fn}. These two sets of points form a force field to
guide all data samples {p} in the whole feature space to move
toward or away from the warping center w. More formally,
for each p ∈ {p}, its warped point p′ is updated as

p′ = p + λ

M∑
j=1

uj exp(−c|p− fj |)(w − p), (1)

where the scalar value uj can be simply set to +1 if fj ∈ {fp},
and −1 if fj ∈ {fn}, global coefficients c and λ are used
to control the inference for each feedback to each sample
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Fig. 2. Mean shift feature space warping: given two rele-
vant samples f1 and f2, and an irrelevant sample f3 with
user’s feedback, the warping center w is shifted to the mean
of relevant samples followed by the warping operation for all
samples in the archive w.r.t. the updated warping center w′.

and maximum moving factor from any point p toward the
warping center w.

According to the original feature space warping algo-
rithm, the warping center w is equal to q. Thus, the query
point will always stay in the original position. Other points
will move toward or far away from q based on its proxim-
ity to relevant and irrelevant sets. However, this will cause
problems as illustrated in the toy example on the Gaussian
distribution case. Therefore, we propose to move the warping
center instead of staying at q. A good strategy is to adopt the
Rocchio’s query point movement formula [9]:

w′ = αw + βfp − γfn, (2)

where w is the warping center initially set to q, fp is the mean
of relevant set {fp}, and fn is the mean of the irrelevant set
{fn}. Parameters α, β, and γ can be tuned to optimize the
performance. A natural choice without exhaustive search on
the parameter space is to choose β = 1, α = γ = 0, i.e., us-
ing the mean of relevant feedbacks to shift the warping center
such that all points in the archive will move toward or far
away from the adapted warping center as depicted in Fig. 2.

With the above formulations, the MSFSW algorithm pro-
vides a flexible parameterization for switching between the
two extreme algorithms: QPM by setting α = γ = λ = 0,
β = 1, and FSW by setting α = 1, β = γ = 0. Beyond sim-
ple switching, the integration of full parameter settings takes
advantage from both algorithms and results in a more power-
ful feature space warping algorithm for relevance feedback.

4. EXPERIMENTAL RESULTS

In Section 2, dramatic improvement of the proposed method
is shown with synthetic datasets created from Gaussian and
uniform distributions. In this section, two real datasets are
utilized to validate the performance of the proposed method.
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Fig. 3. Sample images from the MNIST database of hand-
written digits: (a) the training set, and (b) the testing set.

Fig. 4. Sample images from the outdoor scene dataset: the
training set (top two rows), and the testing set (bottom two
rows).

4.1. Handwritten Digits Dataset

The MNIST database of handwritten digits [3], contains a
training set of 60000 samples, and a test set of 10000 sam-
ples of ten digits written by approximately 250 writers. Each
image is size-normalized to 28 × 28 pixels. Sample images
are shown in Fig. 3. In this work, the gray-level image texture
is concatenated to form a 784-dimensional feature vector. A
randomly-selected subset of 1000 images (100 images/digit)
from the training set is utilized to train a low-dimensional
space by using linear discriminant analysis (LDA) [2]. An-
other set of 1000 images extracted from the testing set are
projected to the LDA space to form the data samples in our
evaluation. The confusion matrix of the LDA features shown
in Fig. 5(a) has high diagonal components, meaning that each
cluster is quite compact and discriminative.

Performance comparison is conducted with four iterations
of relevance feedback based on the average precision evalu-
ated from top 100 nearest neighbors by taking each individ-
ual sample as a query. The result for the three methods with
different numbers of feedbacks is shown in Fig. 6. The ab-
breviations ’Q’, ’F’, ’M’ in the legend of Fig. 6 stand for the
three methods ’QPM’, ’FSW’, and ’MSFSW’, respectively.
The number (25, 50, 75, and 100) after each abbreviation
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Fig. 5. Confusion matrices on the test set in the LDA feature
space: (a) the handwritten digits dataset with digits from 0 to
9, and (b) the outdoor scene dataset with 8 scene categories.
Colors in each block (i, j) indicate the percentage of samples
in class i being closest to the cluster center of class j.

Fig. 6. Performance evaluation on the MNIST database of
handwritten digits.

stands for the number of feedbacks given in each iteration.
’Q-UB’ represents the theoretical performance upper bound
of QPM estimated by moving the query to the cluster center
of its corresponding class. With the compact cluster distri-
bution implied by the confusion matrix, the upper bound of
QPM is almost approachable by QPM with large amount of
feedbacks in each feedback iteration as shown in the Q100
curve in Fig.6.

The proposed MSFSW method significantly outperforms
the other two methods, while the FSW shows less improve-
ment given fewer feedbacks. Note that both MSFSW and
FSW methods can easily break the theoretical performance
upper bound of QPM. This is because MSFSW and FSW have
the ability to move potentially irrelevant samples away from
the query center and attracts far away relevant samples toward
the query center, while QPM can only stay with nearby irrel-
evant samples within the region of relevant samples.



Fig. 7. Performance evaluation on the outdoor scene dataset.

4.2. Outdoor Scene Dataset

The outdoor scene dataset is collected by Oliva and Torralba
[6]. This dataset contains 2688 images with eight outdoor
scene categories: tall building, inside city, street, highway,
coast, open country, mountain, and forest. Sample image are
shown in Fig. 4. Different from the handwritten digits, the
contents of the scene database contain large variations within
each category. To provide a more consistent feature vector,
a 512-dimensional Gist descriptor [7] is utilized to represent
the whole scene within each image.

Similar to the procedure stated in the previous sub-
section, 100 images per category are selected to train a low-
dimensional space by LDA. Another set of 800 images ex-
tracted to form the testing set are projected to the LDA space
to form the data samples in our evaluation. Performance
evaluation is done with the same way as the handwritten dig-
its database. The result for the three methods with different
numbers of feedbacks is shown in Fig. 7. As shown in the
confusion matrix in Fig. 5(b), the feature space of this dataset
is less discriminative than the handwritten digits dataset, im-
plying the performance upper bound of QPM is more difficult
to reach for QPM. Again, the FSW and MSFSW have no
difficulty in breaking this performance upper bound with 50
or more feedbacks.

The overall performance trend is quite similar to the result
of handwritten digits database. However, the FSW shows in-
significant improvement to QPM with 25 feedbacks at the 4th
iteration. Its performance improvement also becomes rather
flat after the first iteration. On the contrary, MSFSW con-
tinues improvement with more and more iterations of rele-
vance feedback. Consistent performance superiority justifies
the proposed method a better solution for relevance feedback.

5. CONCLUSIONS

In this work, we presented the mean shift feature space warp-
ing algorithm for relevance feedback. By examining the

strength and weakness of two extreme relevance feedback
approaches, the proposed method takes advantage from both
approaches to provide better enhancement in bridging the gap
between low-level features and high-level semantics.

Although preliminary experimental results indicate promis-
ing performance improvement on the proposed method, sev-
eral issues should be taken into consideration. The first
problem is how to apply the proposed algorithm to a huge
dataset. Exhaustive warping each sample in the database is
highly expensive. A pre-filtering mechanism would be nec-
essary to select a reasonable subset for use in the relevance
feedback loop. Another interesting problem is how to apply
the proposed approach to features represented by large and
sparse visual words, such as the 1M visual words used in
the task of object retrieval from over one million images [8].
Last but not least, the study on how to apply the feature space
warping with online classifier learning could potentially bring
another significant performance boost to relevance feedback.
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