
IMPROVING SUBPIXEL STEREO MATCHING WITH SEGMENT EVOLUTION

Yao-Jen Chang1, Hung-Hsun Liu2, Tsuhan Chen1

1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
2Telecommunication Laboratories, Chunghwa Telecom Co., Ltd.,Taoyuan, Taiwan

ABSTRACT

Segmentation-based approach has shown significant success
in stereo matching. By assuming pixels within one image seg-
ment belong to the same 3D surface, robust depth estimation
can be achieved by taking the whole segment into considera-
tion. However, segmentation has been mostly used for stereo
matching at integer disparities rather than subpixel dispari-
ties. One major reason is that small segments may be in-
sufficient for estimating surfaces like slanted planes, while
large segments may contain segmentation errors impacting
the accuracy of depth estimation. In this work, we propose
a segmentation-based scheme for subpixel stereo matching.
Instead of using a fixed segmentation, segments are evolved
to find a better support for reliable surface estimation. Given
an initial estimation of segmentation and depth, the proposed
algorithm jointly optimizes the segmentation and depth by
evolving the segmentation at the pixel level and updating the
plane parameters at the segment level. Justified with exper-
iments performed on the Middlebury benchmark, we show
that the proposed method achieves significant improvements
for subpixel stereo matching.

Index Terms— Stereo vision, Image segmentation, Sur-
face fitting

1. INTRODUCTION

Stereo matching is a fundamental problem in computer vi-
sion that estimates depth of a 3D scene with a pair of images.
With a well-established Middlebury benchmark established
by Scharstein and Szeliski [1], new approaches can be eas-
ily evaluated on a common foundation, thereby boosting the
research advancement of stereo matching.

As pointed in [1], subpixel accuracy is crucial for applica-
tions like image-based rendering. However, it receives much
less attentions than pixel level accuracy evaluated at integer
disparities. Among the top performers on the benchmark at
integer disparities, the idea of using color-based segmenta-
tion proposed by Tao et al. [2] is widely adopted for dealing
with unreliable depth estimation in textureless regions. By as-
suming pixels within the same homogenous region belong to
the same 3D surface, robust depth estimation can be achieved
by taking the whole region into consideration. However, seg-

mentation errors may also lead to erroneous depth estimation
when the assumption is violated. Zitnick and Kang [3] pro-
posed to restrict the impact of segmentation errors by over-
segmentation with lots of small segments. Taguchi et al.[4]
further proposed an adaptive over-segmentation approach to
handle segmentation errors. Since segments are too small
for surface estimation, fronto-parallel planes constraint is im-
posed that sacrifices subpixel accuracy. On the other hand,
Bleyer and Gelautz [5] and Klaus et al. [6] proposed to group
similar segments together for robust plane fitting, thus achiev-
ing subpixel accuracy. However, it suffers from the initial seg-
mentation errors since plane fitting and segment clustering are
both based on segments fixed by the initial segmentation. A
matting method is further proposed [7] to alleviate the im-
pact of small segmentation errors near segment boundaries,
but large segmentation errors are left unresolved. Based on
these observations, segmentation seems to be less promising
for subpixel stereo matching.

For subpixel accuracy, simple methods such as curve fit-
ting to the matching costs at discrete disparity levels have
been utilized for fast computation [1, 8]. Until recently, Yang
et al. [9] proposed a super-resolution scheme based on bi-
lateral filtering for disparity refinement. The bilateral filter
works like soft color segmentation that preserves discontinu-
ities by considering the color differences in addition to spa-
tial differences. Gehrig and Franke [10] similarly proposed to
use adaptive smoothing for edge-preserving disparity smooth-
ing, which is incorporated in the depth estimation modeled
as an energy minimization problem. The effectiveness of [9,
10] encourage us to revisit segmentation for subpixel stereo
matching.

Sharing the concept proposed by Hoiem et al. [11] where
several sub-tasks benefit each other in a closed-loop to ac-
complish the scene interpretation task, we propose to jointly
optimize image segmentation and depth estimation in a closed
loop for subpixel stereo matching. Instead of using a fixed
segmentation, segments are evolved based on the depth infor-
mation to provide a better support for reliable surface estima-
tion. In the next section, an overview of the proposed frame-
work and detailed algorithms are presented. Experiments ini-
tiated with different stereo matching algorithms are conducted
in Section 3. Finally, Section 4 concludes and addresses sev-
eral possible extensions.
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Fig. 1. The conceptual flow diagram of the proposed work.

2. THE ALGORITHM

The conceptual flow diagram of the proposed framework is
depicted in Fig.1. By approximating a 3D scene as a collec-
tion of planar surfaces, depth for each pixel can be derived
from its corresponding surface at subpixel precision. First
of all, an initial depth map and image segmentation are pro-
vided for initialization to obtain initial plane parameters for
each segment. Segment evolution and robust plane fitting are
then instantiated alternatively with refined information pro-
vided by each process. Analogously, the proposed algorithm
can be interpreted as a k-means clustering algorithm [12] in
a broad sense, where initial seeds are given at first and then
membership assignment and cluster update are performed al-
ternatively to achieve optimization. Detail descriptions for
each process are given in the following sub-sections.

2.1. Initialization

Instead of acting as an individual stereo matching algorithm,
our framework can work with other stereo matching algo-
rithms to refine its depth estimation. Accompanied with an
initial image segmentation such as the mean-shift segmenta-
tion proposed by Christoudias et al. [13] , we perform robust
plane estimation with RANSAC [14] to obtain initial plane
parameters for each segment. Segment evolution and robust
plane fitting are followed to obtain a better plane parameteri-
zation and image segmentation.

2.2. Segment Evolution

The goal of segment evolution is to adapt the support of each
segment such that the points within a segment correspond to
the same planar surface in the 3D space. This can be taken as a
labeling problem where each pixel is assigned with a plane la-
bel that minimizes a global energy function. Instead of allow-

ing all plane labels to be assigned, we restrict the candidate
set of plane labels assigned for each pixel s to be the labels
of neighboring pixels within a Wp ×Wp window centered at
s. This is equivalent to deforming a segment within a certain
range from its original shape, thus adapting its support.

The global energy function can be modeled with a data
term and a weighted smoothness term: E = Edata +
λsmoothEsmooth. The data term Edata is defined by the
the color inconsistency cost of each pixel s on the left view
image IL with its corresponding point on the right view im-
age IR related by a homography hs associated with the plane
assigned to s:

Edata =
∑
s∈IL

(1− os) min(f(IL(s), IR(hs(s))), Tf ), (1)

where os ∈ {0, 1} indicates its occlusion state derived from
the current depth map via Z-buffer testing similar to [5], the
function f is the Birchfield and Tomasi’s pixel dissimilar-
ity measure [15], together with a truncation threshold Tf to
form a robust error measure. The smoothness term Esmooth

is defined by incorporating smoothness constraints imposed
on three weighting functions on every two neighboring pixels
s and t on the left view image IL:

Esmooth =
∑

s,t∈N ,s<t

w(os, ot)ed(s, t)D(s, t, hs, ht), (2)

where the occlusion consistency weighting functionw(os, ot)
discourages neighboring pixels to be assigned to the same
plane if pixel s is under occlusion but t is not. The color
consistency function ed(s, t) sets a larger penalty λe for as-
signing different planes to neighboring pixels with low edge
strength between them. The last term of Eqn.(2) is a plane
dissimilarity measure defined by:

D(s, t, hs, ht) = δ(hs 6= ht)+min(d(s, t, hs, ht), Td), (3)

with the first term acting as a plane inconsistency model,
which is set to 1 if two neighboring pixels are assigned to
different planes, and the second term imposing robust error
measure on the disparity differences induced by projecting
s and t to both planes assigned to them, plus the disparity
differences induced by projecting segment centers to both
planes based on the segmentation in the previous iteration.
This would encourage different plane assignments to happen
at the intersection of two planes, but discourages two planes
with large angle differences to be connected together.

In addition to the original candidate set of plane labels for
each pixel, a set of fronto-parallel planes within the disparity
range of the original candidate set are also included to handle
missing disparity planes caused either by initial segmentation
error or depth estimation error. To handle large segmentation
errors, the segment evolution can be performed multiple times
before the next step of plane fitting. The global optimiza-
tion is carried out with the Graph Cuts algorithm proposed by
Boykov et al. [16].
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Fig. 2. Results of the proposed algorithm on the Middlebury stereo dataset: (a-c) initial segmentation obtained by mean-shift
segmentation [13], depth map initiated with WarpMat [7], and associated error map, (d-f) refined segmentation, depth map, and
associated error map. Black and gray pixels in (c) and (f) indicate error> 0.5 in unoccluded and occluded regions, respectively.

2.3. Robust Plane Fitting

With refined segmentation provided by segment evolution, the
plane parameters of each segment is re-estimated via plane
estimation with RANSAC [14] based on the depth informa-
tion as done in the initialization stage. A robust plane fit-
ting is then performed for each segment by using the gradi-
ent descent optimization with an iteratively re-weighted least
squares framework proposed by Baker et al. [17], with which
the forward-additive algorithm is utilized to estimate the ho-
mography warps from the left view to the right view of image
pairs. To further speed up the image segmentation in the next
iteration, adjacent planes are merged if fitting error is small.
The depth map derived from the plane fitting is also quantized
at the quarter-pixel precision to prevent over-fitting.

3. EXPERIMENTAL RESULTS

To evaluate the proposed framework for stereo matching, we
test our algorithm initiated with the depth map obtained by
several performers in the benchmark. The segmentation in-
formation are not available even for the segmentation-based
approaches. Therefore, we utilize mean-shift segmentation
with its default parameters and the minimal region size set to
64 pixels. The values of parameters used in our experiments
are: λsmooth = 5, Tf = 15, λe = 5, Td = 2,Wp = 9, which

are fixed for all initializations. The iterations of the segment
evolution and robust plane fitting can be carried on until con-
vergence, at the expense of computation load grows almost
linearly with the number of iterations. Empirically, three iter-
ations reach reasonable results.

Fig.2 shows one example of our algorithm initiated with
the depth map generated by [7]. The initial segmentation con-
tains segmentation errors and lots of small segments, while
our refined segmentation provides better segment support for
reliable surface estimation. Significant improvements can be
observed by comparing the error maps of the refined depth
map and the original depth map. Experiments with other
stereo algorithms in the Middlebury benchmark are also con-
ducted. Depending on whether segmentation is utilized and
whether subpixel disparity is targeted, one or more represen-
tative performers in each category are investigated:

• Pixel-level without segmentation: GC+occ [18].
• Pixel-level with segmentation: DoubleBP [19], Over-

SegmBP [3], and AdaptOvrSegBP [4].
• Subpixel without segmentation: C-SemiGlob [8] and

ImproveSubPix [10].
• Subpixel with segmentation: AdaptingBP [6], Segm+

visib [5], WarpMat [7], and SubpixelDoubleBP [9].

By measuring average percentage of bad pixels over all
four datasets, we compare the original performance and the
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Fig. 3. Subpixel performance comparisons for various algo-
rithms measured by average percentage of bad pixels with ab-
solute disparity error > 0.5. The proposed algorithm signifi-
cantly improves original performance of each algorithm, and
outperforms the performance enhanced by [9].

enhanced performance in Fig.3. Among these algorithms, en-
hanced performance of DoubleBP, AdaptingBP, C-SemiGlob,
Segm+visib, and GC+occ conducted by Yang et al. [9] are
also included. For these five algorithms, the relative improve-
ment of the proposed method reaches 27.74% in average
compared to 19.23% provided by [9]. While the enhanced
DoubleBP is the top performer reported in [9], the proposed
method worked best with C-SemiGlob, which is a method
targeted at subpixel precision without using segmentation.
For the rest 5 algorithms with no performance reported in
[9], the enhanced WarpMat gets most performance gain with
our approach. The enhanced ImproveSubPix achieves the
lowest error among these five algorithms, but not as good as
the enhanced C-SemiGlob. Note that the proposed method
can still improve SubpixelDoubleBP, which is the enhanced
DoubleBP provided by [9].

4. CONCLUSIONS

In this work, we proposed a segmentation-based scheme for
subpixel stereo matching. Significant improvements justifies
that the incorporation of the depth information can lead to
a better segmentation with segment evolution, which in turn
helps surface estimation for providing more accurate depth
for a 3D scene. Right now, we only take the left view of
an image pair as the reference image for segment evolution.
As suggested in several stereo matching algorithms [9, 19],
symmetric treatment of both views may also improve segment
evolution for finding a even better support. Moreover, the pla-
nar surface assumption is not always true in reality, especially
for curved surfaces with low texture. The use of more sophis-
ticated surfaces such as quadratic surfaces can be investigated
for further improvement.
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