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Abstract

This paper explores two new aspects of photos and
human emotions. First, we show through psychovisual
studies that different people have different emotional reac-
tions to the same image, which is a strong and novel depar-
ture from previous work that only records and predicts a
single dominant emotion for each image. Our studies also
show that the same person may have multiple emotional
reactions to one image. Predicting emotions in “distribu-
tions” instead of a single dominant emotion is important for
many applications. Second, we show not only that we can
often change the evoked emotion of an image by adjusting
color tone and texture related features but also that we can
choose in which “emotional direction” this change occurs
by selecting a target image. In addition, we present a new
database, Emotion6, containing distributions of emotions.

1. Introduction
Images are emotionally powerful. An image can evoke a

strong emotion in the viewer. In fact, photographers often
construct images to elicit a specific response by the viewer.
By using different filters and photographing techniques,
photographs of the same scene may elicit very different
emotions. Motivated by this fact, we aim to mimic this
process after the image was taken. That is, we wish to
change an image’s original evoked emotion to a new one
by changing its low-level properties.

Further, the viewer’s emotion may be sometimes affected
in a way that was unexpected by the photographer. For
example, an image of a hot air balloon may evoke feelings
of joy to some observers (who crave adventure), but fear in
others (who have fear of heights). We address the fact that
people have different evoked emotions by collecting and
predicting the distributions of emotional responses when an
image is viewed by a large population. We also address
the fact that the same person may have multiple emotions
evoked by one image by allowing the subjects to record
multiple emotional responses to one image.

This paper proposes a framework for transferring the

Figure 1. An example of transferring evoked emotion distribu-
tion. We transform the color tone and texture related features
of the source to those of the target. The ground truth proba-
bility distribution of the evoked emotion is shown under each
image, supporting that the color modification makes the source
image more joyful. A quantitative evaluation measuring the simi-
larity of two probability distributions with four metrics M (M ∈
{KLD,BC,CD,EMD}) (see Sec. 5) is shown on the right,
where DMs

is the distance between source and target distribu-
tions, and DMtr

is the distance between transformed and target
distributions. For each metric, the better number is displayed in
bold. By any of the 4 measures, the transformed image evokes
more similar emotions to the target image versus the source image.

distribution of evoked emotion of an input image without
severely interfering with the high-level semantic content of
the original image. Since we work with emotion distribu-
tions, we propose a novel approach for emotion transfer that
includes choosing an image representing the target emotion
distribution. Using a target image for emotion transfer is
intuitive and allows an operator to change multiple emotion
dimensions simultaneously. Figure 1 shows an example of
transferring evoked emotion distribution, where the trans-
formed image evokes (versus the source) emotions more
similar to those of the target image. Further, we build a
model to predict the evoked emotion that a population of
observers has when viewing a particular image.

We make the following contributions: 1) We show
that different people have different emotional reactions to
an image and that the same person may have multiple
emotional reactions to an image. Our proposed database,
Emotion6, addresses both findings by modeling emotion
distributions. 2) We use a convolutional neural network
(CNN) to predict emotion distributions, rather than simply
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predicting a single dominant emotion, evoked by an image.
Our predictor of emotion distributions for Emotion6 can
serve as a better baseline than using support vector regres-
sion (SVR) with the features from previous works [20,
28, 30] for future researchers. We also predict emotions
in the traditional setting of affective image classification,
showing that CNN outperforms Wang’s method [30] on
Artphoto dataset [20]. 3) This paper introduces the appli-
cation of transferring the evoked emotion distribution from
one image to another. With the support of a large-scale
(600 images) user study, we successfully adjust the evoked
emotion distribution of an image toward that of a target
image without changing the high-level semantics.

2. Prior Work
In computer vision, image classification based on

abstract concepts has recently received a great deal of focus.
Aesthetic quality estimation [14] and affective image clas-
sification [20, 28, 30] are two typical examples. However,
these two abstract concepts are fundamentally different
because the evoked emotion of an image is not equiva-
lent to aesthetic quality. For example, one may feel joyful
after viewing either amateur or expert photos, and aestheti-
cally ideal images may elicit either happy or sad emotions.
Moreover, aesthetic quality is a one-dimensional attribute,
whereas emotions are not [10].

In most previous works on affective image classifica-
tion [3, 15, 20, 28, 30], image features are used solely for
classification. Relatively few works address manipulating
an image’s evoked emotion by editing the image. Wang
et al. [29] associate color themes with emotion keywords
using art theory and transform the color theme of the input
image to the desired one. However, most results in their
work deal with cartoon-like images, and they only use few
examples. Also showing few examples, Peng et al. [24]
propose a framework for changing the image emotion by
randomly sampling from a set of possible target images
and using an emotion predictor. In contrast with Peng’s
method [24], our proposed method of emotion transfer
does not need random sampling or a predefined set of
target images, and performance on a large set (600 images)
is deeply analyzed. Jun et al. [16] show that pleasure
and excitement are affected by changes in brightness and
contrast. However, changing these two features can only
produce limited variation of the input image. Here, we
modify the color tone and texture related features of an
image to transfer the evoked emotion distribution. We also
show that the change of the evoked emotion distribution is
consistent with the ground truth from our user study.

To modify the evoked emotion of an image, one
may predict how the image transformation affects image
features. This is not a trivial task. Some image attributes
have well-established transformation methods, such as

color histogram reshaping [12, 25], texture transfer [8],
edge histogram specification [22], etc. However, most of
these works belong to the domain of image processing,
and have not considered the affective interpretation of the
image edits. This is an important part of our goal. We use
these image editing tools and focus on building connections
between the processed images and the evoked emotions,
and we show that it is often possible to change the evoked
emotion distribution of an image towards that of a target
image.

In predicting the emotion responses evoked by an
image, researchers conduct experiments on various types
of images. Wang et al. [30] perform affective image
classification on artistic photos or abstract paintings, but
Solli and Lenz [28] use Internet images. Machajdik and
Hanbury [20] use both artistic and realistic images in their
experiment. The fact that groups of people seldom agree
on the evoked emotion [14] and that even a person may
have multiple emotions evoked by one image, are ignored
by previous works. According to the statistics of Emotion6,
the image database we collect in Sec. 3, more than half
of the subjects have emotion responses different from the
dominant emotion. Our statistics also show that ∼22%
of all the subjects’ responses select ≥2 emotion keywords
to describe one subject’s evoked emotions. Both of these
observations support our assertion that emotion should be
represented as a distribution rather than as a single domi-
nant emotion. Further, predicting emotions by distribution
rather than as a single dominant emotion is important for
practical applications. For example, a company has two
possible ads arousing different emotion distributions (ad1:
60% joy and 40% surprise; ad2: 70% joy and 30% fear).
Though ad2 elicits joy with higher probability than ad1
does, the company may choose ad1 instead of ad2 because
ad2 arouses negative emotion in some part of the popula-
tion.

In psychology, researchers have been interested in
emotions for decades, leading to three major approaches –
“basic emotion”, “appraisal”, and “psychological construc-
tionist” traditions [11]. With debate on these approaches,
psychologists designed different kinds of models for
explaining fundamental emotions based on various criteria.
Ortony and Turner [23] summarized some past theories
of basic emotions, and even now, there is not complete
consensus among psychologists. One of the most popular
frameworks in the emotion field proposed by Russell [26],
the valence–arousal (VA) model, characterizes emotions in
VA dimensions, where valence describes the emotion in the
scale of positive to negative emotion, while arousal indi-
cates the degree of stimulation or excitement. We adopt VA
model as part of emotion prediction. In terms of emotion
categories, we adopt Ekman’s six basic emotions [9], which
details are explained in Sec. 3.



Issues of previous databases Explanation and how Emotion6 solves the issues
Ad-hoc categories Previous databases select emotion categories without psychological background, but Emotion6 uses Ekman’s 6 basic

emotions [9] as categories.
Unbalanced categories Previous databases have unbalanced proportion of images from each category, but Emotion6 has balanced categories

with 330 images per category.
Single category per image Assigning each image to only one category (dominant emotion), previous databases ignore that the evoked emotion can

vary between observers [14]. Emotion6 expresses the emotion associated with each image in probability distribution.

Table 1. The issues of previous emotion image databases and how our proposed database, Emotion6, solves these issues.

Figure 2. Example images of Emotion6 with the corresponding ground truth. The emotion keyword used to search each image is displayed
on the top. The graph below each image shows the probability distribution of evoked emotions of that image. The bottom two numbers are
valence–arousal (VA) scores in SAM 9-point scale [1].

To recognize and classify different emotions, scientists
build connections between emotions and various types of
input data including text [10], speech [7, 17], facial expres-
sions [7, 6], music [31], and gestures [7]. Among the
research related to emotions, we are interested in emotions
evoked by consumer photographs (not just artworks or
abstract images as in [30]). Unfortunately, the number of
related databases is relatively few compared to other areas
mentioned previously. These databases, such as IAPS [19],
GAPED [4], and emodb [28] have a few clear limita-
tions. We propose a new emotion database, Emotion6,
which the paper is mainly based on. Table 1 summarizes
how Emotion6 solves the limitations of previous databases.
Sec. 3 describes the details of Emotion6.

3. The Emotion6 Database

For each image in Emotion6, the following information
is collected by a user study: 1) The ground truth of VA
scores for evoked emotion. 2) The ground truth of emotion
distribution for evoked emotion. Consisting of 7 bins,
Ekman’s 6 basic emotions [9] and neutral, each emotion
distribution represents the probability that an image will
be classified into each bin by a subject. For both VA
scores, we adopt the Self-Assessment Manikin (SAM) 9-
point scale [1], which is also used in [19]. For the valence
scores, 1, 5, and 9 mean very negative, neutral, and very
positive emotions respectively. For the arousal scores, 1
(9) means the emotion has low (high) stimulating effect.

Figure 2 shows some images from Emotion6 with the corre-
sponding ground truth. The details about the selection of
emotion model/categories/images and the user study are
described in the following paragraphs. More statistics are
shown in the supplementary material. We will release the
database upon publication.

Emotion model and category selection: According to
the list of different theories of basic emotions [23], we use
Ekman’s six basic emotions [9] (anger, disgust, joy, fear,
sadness, and surprise) as the categories of Emotion6. Each
of these six emotions is adopted by at least three psycho-
logical theorists in [23], which provides a consensus for the
importance of each of these six emotions. We adopt the
valence–arousal (VA) model, in addition to using emotion
keywords as categories because we want to be consistent
with the previous databases where ground truth VA scores
are provided.

Image collection and user study: We collect the images
of Emotion6 from Flickr by using the 6 category keywords
and synonyms as search terms. High-level semantic content
of an image, including strong facial expressions, posed
humans, and text, influences the evoked emotion of an
image. However, one of our goals is to modify the image
at a low level (rather than modifying text or facial expres-
sions) to manipulate the evoked emotion. One could argue
that Emotion6 should not contain images with high-level
semantic concepts. However, this is not trivial because
the definition of high-level semantic contents is debatable.



Figure 3. Two screenshots of the interface of our user study on
AMT. Before the subject answers the questions (right image), we
provide instructions and an example (left image) explaining how
to answer the questions to the subject.

Therefore, we only remove the images containing apparent
human facial expressions or text directly related to the
evoked emotion because these two contents are shown to
have strong relationship to the emotion [7, 10]. In contrast
to the database emodb [28], that has no human moderation,
we examine each image in Emotion6 to remove erroneous
images. A total of 1980 images are collected, 330 for each
category, comparable to previous databases. Each image is
scaled to approximately VGA resolution while keeping the
original aspect ratio.

We use Amazon Mechanical Turk (AMT) to collect
emotional responses from subjects. For each image, each
subject rates the evoked emotion in terms of VA scores,
and chooses the keyword(s) best describing the evoked
emotion. We provide 7 emotion keywords (Ekman’s 6
basic emotions [9] and neutral), and the subject can select
multiple keywords for each image. Instead of directly
asking the subject to give VA scores, we rephrase the ques-
tions to be similar to GAPED [4]. Figure 3 shows two snap-
shots of the interface. To compare with previous databases,
we randomly extract a subset S containing 220 images from
GAPED [4] such that the proportion of each category in S
is the same as that of GAPED. We rejected the responses
from a few subjects who failed to demonstrate consistency
or provided a constant score for all images.

Each HIT on AMT contains 10 images, and we offer 10
cents to reward the subject’s completion of each HIT. In the
instructions, we inform the subject that the answers will be
examined by an algorithm that detects lazy or fraudulent
workers and only workers that pass will be paid. In each
HIT, the last image is from S, and the other 9 images are
from Emotion6. We create 220 different HITs for AMT
such that the following constraints are satisfied: 1) Each
HIT contains at least one image from each of 6 categories
(by keyword). 2) Images are ordered in such a way that the
frequency of an image from category i appearing after cate-
gory j is equal for all i, j. 3) Each image or HIT cannot be
rated more than once by the same subject, and each subject
cannot rate more than 55 different HITs. 4) Each image is
scored by 15 subjects.

Mean and standard deviation, in seconds, on each HIT
are 450 and 390 respectively. The minimum time spent on
1 HIT is 127 seconds, which is still reasonable. 432 unique
subjects took part in the experiment, rating 76.4 images on

average. After collecting the answers from the subjects,
we sort the VA scores, and average the middle 9 scores (to
remove outliers) to serve as ground truth. For emotion cate-
gory distribution, the ground truth of each category is the
average vote of that category across subjects. To provide
grounding for Emotion6, we compute the VA scores of the
images from S using the above method and compare them
with the ground truth provided by GAPED [4], where the
original scale 0∼100 is converted linearly to 1∼9 to be
consistent with our scale. The average of absolute differ-
ence of V (A) scores for these images is 1.006 (1.362) in
SAM 9-point scale [1], which is comparable in this highly
subjective domain.

4. Predicting Emotion Distributions
Randomly splitting Emotion6 into training and testing

sets with the proportion of 7:3, we propose three methods–
SVR, CNN, CNNR and compare their performance with
those of the three baselines. The details of the proposed
three methods are explained below.

SVR: Inspired by previous works on affective image
classification [20, 28, 30], we adopt features related to color,
edge, texture, saliency, and shape to create a normalized
759-dimensional feature set shown in Table 2. To verify the
affective classification ability of this feature set, we perform
the exact experiment from [20], using their database. The
average true positive per class is ∼60% for each category,
comparable to the results presented in [20].

We train one model for each emotion category using
the ground truth of the category in Emotion6 with Support
Vector Regression (SVR) provided in LIBSVM [2] with the
parameters of SVR learned by performing 5-fold cross vali-
dation on the training set. In the predicting phase, the prob-
abilities of all emotion categories are normalized such that
they sum up to 1. To assess the performance of SVR in
emotion classification, we compare the emotion with the
greatest prediction with the dominant emotion of the ground
truth. The accuracy of our model in this multi-class classi-
fication setting is 38.9%, which is about 2.7 times that of
random guessing (14.3%).

CNN and CNNR: In CNN, we use the exact convo-
lutional neural network in [18] except that the number of
output nodes is changed to 7 to represent the probability
of the input image being classified as each emotion cate-
gory in Emotion6. In CNNR, we train a regressor for each
emotion category in Emotion6 with the exact convolutional
neural network in [18] except that the number of output
nodes is changed to 1 to predict a real value and that the
softmax loss layer is replaced with the Euclidean loss layer.
In the predicting phase, the probabilities of all emotion cate-
gories are normalized to sum to 1. Using the Caffe imple-
mentation [13] and its default parameters for training the
ImageNet [5] model, we pre-train with the Caffe reference



Feature Type Dimension Description
Texture 24 Features from Gray-Level Co-occurrence Matrix (GLCM) including the mean, variance,

energy, entropy, contrast, and inverse difference moment [20].
3 Tamura features (coarseness, contrast and directionality) [20].

Composition 2 Rule of third (distance between salient regions and power points/lines) [30].
1 Diagonal dominance (distance between prominent lines and two diagonals) [30].
2 Symmetry (sum of intensity differences between pixels symmetric with respect to the

vertical/horizontal central line) [30].
3 Visual balance (distances of the center of the most salient region from the center of the

image, the vertical and horizontal central lines) [30].
Saliency 1 Difference of areas of the most/least saliency regions.

1 Color difference of the most/least saliency regions.
2 Difference of the sum of edge magnitude of the most/least saliency regions.

Color 80 Cascaded CIECAM02 color histograms (lightness, chroma, hue, brightness, and saturation)
in the most/least saliency regions.

Edge 512 Cascaded edge histograms (8 (8)-bin edge direction (magnitude) in RGB and gray chan-
nels) in the most/least saliency regions.

Shape 128 Fit an ellipse for every segment from color segmentation and compute the histogram of fit
ellipses in terms of angle (4 bins), the ratio of major and minor axes (4 bins), and area (4
bins) in the most/least saliency regions.

Table 2. The feature set we use for SVR in predicting emotion distributions.

Figure 4. Classification performance of CNN and Wang’s
method [30] with Artphoto dataset [20]. In 6 out of 8 emotion
categories, CNN outperforms Wang’s method [30].

model [13] and fine-tune the convolutional neural network
with our training set in both CNN and CNNR.

To show the efficacy of classification with the convo-
lutional neural network, we use CNN to perform binary
emotion classification with Artphoto dataset [20] under the
same experimental setting of Wang’s method [30]. In this
experiment, we change the number of output nodes to 2 and
train one binary classifier for each emotion under 1-vs-all
setting. We repeat the positive examples in the training set
such that the number of positive examples is the same as
that of the negative ones. Figure 4 shows that CNN outper-
forms Wang’s method [30] in 6 out of 8 emotion categories.
In terms of the average of average true positive per class of
all 8 emotion categories, CNN (64.724%) also outperforms
Wang’s method [30] (63.163%).

The preceding experiment shows that CNN achieves
state-of-art performance for emotion classification of
images. However, what we are really interested in is the
prediction of emotion distributions, which better capture the
range of human responses to an image. For this task, we use
CNNR as previously described, and show that its perfor-
mance is state-of-art for emotion distribution prediction.

We compare the predictions of our proposed three

Method 1 Method 2 PKLD PBC PCD PEMD

CNNR Uniform 0.742 0.783 0.692 0.756
CNNR Random 0.815 0.819 0.747 0.802
CNNR OD 0.997 0.840 0.857 0.759
CNNR SVR 0.625 0.660 0.571 0.620
CNNR CNN 0.934 0.810 0.842 0.805

Uniform OD 0.997 0.667 0.736 0.593

Method KLD BC CD EMD
Uniform 0.697 0.762 0.348 0.667
Random 0.978 0.721 0.367 0.727

OD 10.500 0.692 0.510 0.722
SVR 0.577 0.820 0.294 0.560
CNN 2.338 0.692 0.497 0.773

CNNR 0.480 0.847 0.265 0.503

Table 3. The performance of different methods for predicting
emotion distributions compared using PM and M (M ∈
{KLD,BC,CD,EMD}). The upper table shows PM , the
probability that Method 1 outperforms Method 2 with distance
metric M . Each row in the upper table shows that Method 1
outperforms Method 2 in all M . The lower table lists M , the
mean of M , of each method, showing that CNNR achieves better
M than the other methods listed here. CNNR performs the best
out of all the listed methods in terms of all PM s with better M .

methods with the following three baselines: 1) A uniform
distribution across all emotion categories. 2) A random
probability distribution. 3) Optimally dominant (OD) distri-
bution, a winner-take-all strategy where the emotion cate-
gory with highest probability in ground truth is set to 1,
and other emotion categories have zero probability. The
first two baselines represent chance guesses while the third
represents a best case scenario for any (prior art) multiclass
emotion classifier that outputs a single emotion.

We use four different distance metrics to evaluate
the similarity between two emotion distributions – KL-
Divergence (KLD), Bhattacharyya coefficient (BC),
Chebyshev distance (CD), and earth mover’s distance
(EMD) [21, 27]. Since KLD is not well defined when a
bin has value 0, we use a small value ε = 10−10 to approx-
imate the values in such bins. In computing EMD in our



Figure 5. The framework of transferring evoked emotion distribution by changing color and texture related features.

paper, we assume that each of the 7 dimensions (Ekman’s
6 basic emotions [9] and neutral) is such that the distance
between any two dimensions is the same. For KLD, CD
and EMD, lower is better. For BC, higher is better.

For each distance metric M , we use M and PM to eval-
uate the ranking between two algorithms, where M is the
mean of M , and PM in Table 3 (upper table) is the propor-
tion of images where Method 1 matches the ground truth
distribution more accurately than Method 2 according to
distance metric M . Method 1 is superior to Method 2
when PM exceeds 0.5. For the random distribution base-
line, we repeat 100000 times and report the average PM .
The results are in Table 3. CNNR outperforms SVR, CNN,
and the three baselines in both PM and M , and should be
considered as a standard baseline for future emotion distri-
bution research. Table 3 also shows that OD performs even
worse than uniform baseline. This shows that predicting
only one single emotion category like [20, 28, 30] does not
well model the fact that people have different emotional
responses to the same image and that the same person may
have multiple emotional responses to one image.

We also use CNNR to predict VA scores. CNNR outper-
forms the two baselines – guessing VA scores as the mode
of all VA scores and guessing VA scores uniformly, and has
comparable performance with respect to SVR. The detailed
results are in the supplementary material.

5. Transferring Evoked Emotion Distributions

In emotion transfer, the goal is to modify the evoked
emotion distribution of the source towards that of the target
image. We believe that selecting a target image is more
intuitive than specifying the numerical change of each bin
of evoked emotion distributions because the quantization
of emotion change may be unnatural for humans. Setting
up source and target images, we examine the differences
between the distributions before and after adjusting the
color tone and texture related features. We only change low-

level features because we do not want to severely change
the high-level semantics of the source image. The frame-
work of transferring evoked emotion distribution is illus-
trated in Figure 5. For each pair of source and target
images, we decompose the images into CIELab color space,
and modify the color tone in the ab- channels, and texture
related features in the L channel. For the color tone adjust-
ment, we adopt Pouli’s algorithm [25] with full transfor-
mation. For the adjustment of texture related features, we
first create the Laplacian pyramids Ls and Lt for source and
target images, respectively. Second, Ls (i) are scaled such
that the average of the absolute value of Ls (i) is the same
as that of Lt (i), where L (i) is the i-th level of the Lapla-
cian pyramid L. Finally, the modified Ls and the Gaus-
sian pyramid of the source image are used to reconstruct.
Figure 1 and 6 show the adjustment of the color tone and
texture related features.

To investigate whether the evoked emotion distributions
can be pushed towards any of the six directions via the trans-
ferring method, we experiment by moving neutral images
towards each of the other emotion categories. We construct
a set of source images Ss consisting of the 100 most
neutral images in Emotion6 in terms of the ground truth
of evoked emotion, and we use Emotion6 as the set of
target images St. For an image in Ss, each image in St

takes a turn as the target image and a corresponding trans-
formed image is produced using the method of Figure 5.
For each source image, 6 transformed-target pairs are
chosen (one for each of Ekman’s 6 basic emotions [9]
ei (i ∈ {1, 2, · · · , 6})) such that the transformed image trei
has the highest predicted probability in ei. These probabil-
ities are predicted by our classifier (Sec. 4) which takes an
image as input and outputs its evoked emotion distribution.
This results in 600 source-target-transformed triplets. We
put the transformed images of these 600 triplets on AMT
and collect the ground truth of the transformed images using
the same method when building Emotion6.

We use the metrics M ∈ {KLD,BC,CD,EMD}



Figure 6. Examples showing the feature transform in transferring evoked emotion distributions. For each example, DMs
and DMtr

are
provided (M ∈ {KLD,BC,CD,EMD}) with better scores marked in bold. The ground truth of evoked emotion distribution from
AMT is provided under each image. In each example, the transformed image has closer evoked emotion distribution to that of the target
compared to the source in all 4 metrics.

Figure 7. Failure examples of transferring evoked emotion distributions. The ground truth of evoked emotion distribution from AMT is
provided under each image. For each example, DMs

and DMtr
are provided (M ∈ {KLD,BC,CD,EMD}) with better scores marked

in bold. The results show that the evoked emotion distribution of the source does not move toward that of the target in these examples.

from Sec. 4 to evaluate the distance between two emotion
distributions. For each distance metric M (M ∈
{KLD,BC,CD,EMD}), we compute the distances
between: 1) source and target images DMs

= M (ds, dt).
2) transformed and target images DMtr

= M (dtr, dt),
where ds, dt, and dtr are the ground truth probability distri-
butions of evoked emotion of the source, target, and trans-
formed images respectively. The results are reported in
terms of DMs

, DMtr
, and PM , where PM represents the

probability that dtr is closer to dt than ds is, using metric
M . Table 4 shows that we shape ds toward dt successfully
in about 60∼70% of the cases in each ei. Figure 6 depicts
some examples with DMs

and DMtr
computed from the

ground truth given by the user study, showing that our

feature transformation moves ds closer to dt in terms of all
4 metrics.

We also show some typical failure modes of emotion
transferring in Figure 7. There are two main reasons for
such failure cases: 1) ds may be mostly caused by the
high level semantics such that the modification in low-level
features can hardly shape ds closer to dt. 2) dt may be also
mostly caused by the high level semantics such that copying
the low-level features of the target cannot totally replicate
its emotional stimuli. More examples of transferring evoked
emotion and their emotion distributions are provided in the
supplementary material.

In an additional experiment, randomly selecting 6 target
images from St for each of 100 source images in Ss, we



Category Anger Disgust Fear Joy Sadness Surprise
PKLD 0.74 0.64 0.70 0.79 0.68 0.70
PBC 0.65 0.61 0.68 0.68 0.58 0.66
PCD 0.69 0.61 0.56 0.78 0.70 0.66
PEMD 0.64 0.69 0.72 0.79 0.63 0.80

Table 4. The results of transferring evoked emotion in terms of PM

(M ∈ {KLD,BC,CD,EMD}) in each category, which shows
that in more than a half cases, the transformed image has a closer
emotion distribution to the target (versus the source).

generate the corresponding 600 transformed images and
collect their emotion distributions judged by AMT with
the same setting as that of the previous experiment. The
resulting PM s are 0.67, 0.56, 0.62, and 0.61 for M =
KLD,BC,CD,EMD respectively, which shows that the
transformation produces an evoked emotion distribution
closer to the target (versus the source image) with 99%
confidence from binomial test.

To show that our framework of emotion transferring
actually transforms the evoked emotion distribution of the
source image towards that of the “correct” target, we
perform cross evaluation with the ground truth of 600
triplets. Assume tei is the corresponding target image
of trei given a source image. For each source image in
Ss, we compute all DMij

= M
(
dtei , dtrej

)
,∀i, j ∈

{1, 2, · · · , 6}, where dtei and dtrej are the ground truth
probability distributions of evoked emotion of tei and trej
respectively and M ∈ {KLD,BC,CD,EMD}. For each
source image in Ss, each tei , and each M , we compare all
6 DMij

(j ∈ {1, 2, · · · , 6}) and compute P1/6 M which is
defined as the probability that the following condition is
true:

i =


argmin

j
DMij

, if M 6= BC

argmax
j

DMij
, if M = BC

(1)

In other words, P1/6 M is the probability that a trans-
formed image’s emotion distribution matches its target’s
emotion distribution more closely than the other five trans-
formed images from the other five targets. Table 5 lists all
P1/6 Ms, comparing them with 16.67%, the probability of
randomly selecting 1 transformed image out of 6. Table 5
shows our strategy moves the evoked emotion distribution
of the source image closer towards that of the desired target
(versus other transformed images) with the probability
higher than chance in most cases. Considering all trans-
form categories as a whole for M ∈ {KLD,BC,EMD},
we achieve a confidence level higher than 95% using bino-
mial test.

Inspired by the user study by Wang et al. [29], we
perform an additional user study comparing pairs of images.
Wang’s algorithm [29] outputs a color-adjusted image given
an input image and an emotion keyword. Photoshop experts
were hired to produce an output image which represents

Transform Category Anger Disgust Fear Joy Sadness Surprise All
P1/6 KLD 0.23 0.15 0.22 0.27 0.13 0.21 0.20
P1/6 BC 0.26 0.14 0.21 0.26 0.12 0.19 0.20
P1/6 CD 0.19 0.22 0.15 0.18 0.18 0.15 0.18
P1/6 EMD 0.26 0.22 0.19 0.19 0.18 0.21 0.21

Table 5. Cross evaluation results in terms of P1/6 M (M ∈
{KLD,BC,CD,EMD}) in each transform category (the
numbers larger than 1/6 are marked in bold), which shows that
our framework of emotion transferring moves the evoked emotion
distribution of the source closer towards that of the desired target
(versus other transformed images) with the probability higher than
chance in most cases.

the same emotion given the same input. In Wang’s exper-
iment [29], they ask subjects to select one image better
corresponding to the emotion keyword out of two images:
the outputs of their algorithm and the Photoshop expert.
However, there are two major shortfalls in Wang’s exper-
iment [29]: 1) Only 20 pairs of images were studied, a
small sample size. 2) The output of their algorithm is
not compared directly with the input image, neglecting the
possibility that both the outputs of their algorithm and the
Photoshop expert are worse than the input image.

We improve Wang’s experiment [29] by making the
following two adjustments: 1) We use the 600 neutral and
transformed image pairs for the user study. 2) For each pair,
we upload the source and transformed images in random
order to AMT and ask 15 subjects to choose the one image
(of two) that better corresponds to the emotion keyword.
Out of all 600×15 evaluations, 66.53% selections indicate
that our transformed image better corresponds to the associ-
ated emotion keyword, roughly comparable to the 69.70%
reported by Wang et al. [29]. In 76.50% of the pairs, more
subjects think our transformed image better matches the
emotion keyword than the source image. This user study
shows that our framework performs well when targeting a
specific dominant emotion. Further, as shown in Table 4,
our framework can transfer emotion in distributions, more
general than previous work [29].

6. Conclusion
This work introduces the idea of representing the

emotional responses of observers to an image as a distri-
bution of emotions. We describe methods for estimating the
emotion distribution for an image, and describe a method
for modifying an image to push its evoked emotion distribu-
tion towards a target image. Further, our proposed emotion
predictor, CNNR, outperforms other methods including
using SVR with the features from previous work and the
optimal dominant emotion baseline, the upper-bound of the
emotion predictors that predict a single emotion. Finally,
we propose a novel image database, Emotion6, and provide
ground truth of valence, arousal, and probability distribu-
tions in evoked emotions.
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