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Abstract

Most sky models only describe the cloudiness of the over-
all sky by a single category or parameter such as sky index,
which does not account for the distribution of the cloud-
s across the sky. To capture variable cloudiness, we extend
the concept of sky index to a random field indicating the lev-
el of cloudiness of each sky pixel in our proposed sky repre-
sentation based on the Igawa sky model. We formulate the
problem of solving the sky index of every sky pixel as a la-
beling problem, where an approximate solution can be effi-
ciently found. Experimental results show that our proposed
sky model has better expressiveness, stability with respect
to variation in camera parameters, and geo-location esti-
mation in outdoor images compared to the uniform sky in-
dex model. Potential applications of our proposed sky mod-
el include sky image rendering, where sky images can be
generated with an arbitrary cloud distribution at any time
and any location, previously impossible with traditional sky
models.

1. Introduction
Have you ever taken photos outdoors and wished to ma-

nipulate the clouds such that the photos will look better?

Have you ever imagined transferring the cloud distribution

from one image to another to reflect the change of geo-

location and time? Such applications require a sky rep-

resentation that includes the clouds. Ideally, a sky model

should consider different weather conditions, the cloud dis-

tribution, the scattering of the sunlight, and so on. Such

a complete sky model has not yet been proposed. In this

paper, we propose a sky model that incorporates a cloud

distribution, which is a step towards this ideal sky model.

In recent decades, researchers in atmospheric science

and related fields have proposed different sky models to fit

the measured luminance or radiance of the sky. One major

class of those models classifies the sky into one of the sev-

eral predefined categories from clear to overcast, including

the Perez sky model [15] and the CIE standard sky model

Figure 1. An example of our proposed sky representation. The

upper image is the input sky image (from [19]). The lower image is

its sky index image in our model, where more brightness indicates

less cloud density.

proposed by Kittler [10]. Those sky models limit the types

of appearance of the sky, and the concept of cloudiness in

those models is a discrete-level general representation for

the overall sky. In other words, the cloud distribution is

implicitly assumed to be uniform, which is not an accurate

representation of the real world.

In computer vision, several applications leverage the in-

formation provided by the sky. Lalonde et al. [11, 12] esti-

mate camera parameters and natural illumination condition-

s, and geo-locate outdoor images by the sky appearance as

well as the detected sun position. Jacobs et al. [9] also esti-

mate the camera parameters with the luminance of the sky

by normalized cross correlation. However, the above works

use additional algorithms or manual selection to ensure that

the sky should be clear in the outdoor image. The reasons

are twofold: First, using sky images with clouds requires

additional complexity in algorithm design and implementa-

tion. Second, existing sky models encourage researchers to

use sky images where the clouds are uniform, making clear

sky images the easy choice.

Modeling clouds is also a popular topic in comput-

er graphics. Schpok et al. [17] use qualitative cloud at-
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Figure 2. Sample sky maps generated by the Igawa sky model.

The horizontal axis is azimuth angle (0 to 360 degrees from left to

right), and the vertical axis is altitude from horizon to nexus (0 to

90 degrees from bottom to top). Sky index ranges from 0 (over-

cast) to 1 (clear) representing the degree of cloudiness. In this

case, the solar azimuth and altitude are 90 and 30 degrees respec-

tively. Each sky map is scaled between 0 (black) and 1 (white) for

display.

tributes to generate a volumetric cloud model. Hufnagel and

Held [6] summarize recent cloud models in three aspect-

s: cloud representation, rendering techniques, and lighting

techniques. Even though using some of the cloud models

can produce realistic sky images, most of these cloud mod-

els do not take the geo-location and timestamp into con-

sideration. Further, these rendering models are not used to

represent a sky from an actual image, as is our goal.

In this paper, we propose a sky representation based on

the Igawa sky model [7], which is shown to fit better to

the real measured data than other existing sky models, in-

cluding models proposed by Perez [15], Brunger [2], Har-

rison [4], and Kittler [10]. In the Igawa sky model, a sky

index is introduced as a model parameter describing the

cloudiness of the overall sky. We extend the concept of sky

index to every sky pixel location to capture the cloud dis-

tribution. The proposed sky representation is demonstrated

in Figure 1, where the sky indices are normalized such that

the whiter the pixel in the sky index image is, the clearer

that sky pixel is. Lalonde et al. [12] also estimate the cloud-

s and sky turbidity by solving the weight assigned to each

pixel, where the weight is not directly linked to some phys-

ical model and a data-driven prior model is needed for clear

skies. Our model only uses an image and the Igawa sky

model to estimate the sky indices which have direct phys-

ical interpretation [7]. Li et al. [13] proposed a thin cloud

detection algorithm using Markov random fields, but their

binary labeling algorithm can only handle images with thin

clouds. Our model not only accepts various types of clouds

in the input image but utilizes the geo-location and a physi-

cal model, which is not considered in [13].

We make the following contributions: 1: we extend the

uniform sky index model on having a per-pixel sky index

that accurately represents cloud distributions. 2: we show

applications of our sky index map for sky re-rendering and

geo-localization from a single image of the sky.

2. Igawa sky model
In this paper, we assume that the intensity I (si) of any

sky pixel si obeys the distribution of the Igawa sky mod-

el [7] according to the following function:

I (si) ∝ Lez (γs) · φ (γ) · f (ζ)
φ (π/2) · f (π/2− γs) , (1)

where Lez (γs) is the zenith radiance, γ (γs) is the altitude

of the sky pixel (sun) in radians, and ζ is the angular dis-

tance between the sun and the sky pixel. φ (·) (gradation

function) and f (·) (scattering indicatrix function) are both

functions of sky index Si, which is a real value between 0

(overcast) and 1 (clear) representing the degree of cloudi-

ness. The concept of sky index in the Igawa sky model is

only defined globally for the entire sky, not for any partic-

ular pixel. In our algorithm, we extend the concept of sky

index to every sky pixel to generate one sky index per pixel.

In this paper, we use the term “sky maps” for the simu-

lated sky images generated by the Igawa sky model and use

them to estimate the camera parameters (zenith, azimuth,

and focal length) when solving for sky indices. Figure 2

demonstrates the sample sky maps under the condition that

solar azimuth equals 90 degrees and solar altitude equals 30

degrees with various Si.

3. Problem formulation
Our goal is to find the sky indices of all the sky pixel-

s that best reproduce the sky image. We begin by intro-

ducing the notation used in this paper. Consider a random

field of sky indices SI defined over the set of n sky pixels

S and a neighborhood system N . Each sky pixel si ∈ S
has a random variable SIi ∈ SI , indicating its sky index

value. Assume there are m evenly separated discrete lev-

els of sky indices and SIi takes a value from the label set

L = {l1, l2, · · · , lm} where li =
i−1
m−1 . A possible assign-

ment of labels to all SIi is defined as a labeling l ∈ Ln. Our

goal is to find a labeling to minimize the following energy

function E (l):

E (l) =
∑
si∈S

ψi (SIi) +
∑

si∈S,sj∈N(si)

ψij (SIi, SIj) (2)

where N (si) is the set of neighboring sky pixels of si. The

unary term ψi ensures the sky index of each sky pixel is

consistent with the observed data I (si) under the Igawa sky

model. The binary term ψij promotes sky index smoothness

by encouraging neighboring sky pixels to take similar sky

indices. We define ψi and ψij in Sec. 4.
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Figure 3. The flowchart of the algorithm solving the sky indices in our proposed model for all the sky pixels.

4. Calculating the sky indices
To solve the sky index for each sky pixel, we propose

an algorithm shown in Figure 3. We hypothesize a set of

sky images that are used to initialize the sky index, and we

perform inference to optimize Eq. (2) with this initializa-

tion. Given a geo-located input image with timestamp, we

first compute the exact solar zenith θs and solar azimuth

φs by [16] and feed the sun orientation and the timestam-

p as the input of the Igawa sky model to generate a series

of sky maps under m levels of sky indices l1, l2, · · · , lm.

Second, assuming that the camera parameters are not giv-

en as input and that the camera has no roll angle, we need

to estimate camera zenith θc, camera azimuth φc, and fo-

cal length f while solving the sky indices for all sky pixels.

Therefore, we sample a set of triple (θc, φc, f). For each

hypothesis, we calculate the normalized cross correlation

value NCC (si, lj) between the image patch around si and

the corresponding patch in the sky map using lj as sky index

for every sky pixel si and all possible lj ∈ L. The hypoth-

esis that maximizes g (S, SI) provides the estimated values

for (θc, φc, f), where

g (S, SI) =
∑
si∈S

NCC (si, SIi). (3)

The sky index SIi for each Si is initialized as the value

lj ∈ L that maximizes g (S, SI). Given the initial values

for all SIi, we use α-expansion algorithm [1] to minimize

E (l) in Eq. (2) because it can efficiently provide a solu-

tion guaranteed to have certain closeness to the optimal one.

Given θs, φs, θc, φc, f , and SI , we reconstruct the sky im-

age by retrieving the corresponding intensities in sky maps

(Figure 4).

The unary term ψi used in our algorithm is written as:

ψi (SIi) = c1 −NCC (si, SIi) + c2 |Ir (si)− In (si)| ,
(4)

where c1 and c2 are constants. The last term corresponds to

the reconstruction error, where Ir (si) is the normalized in-

tensity of si in the reconstructed sky image generated by the

Igawa sky model with current SI , and In (si) is the normal-

ized intensity of si in the input sky image. We use L1-norm

Figure 4. The flowchart of the algorithm reconstructing the sky

image from the corresponding sky index image.

in the last term of Eq. (4) because we want to penalize every

unit of difference equally. We also try L2-norm in Eq. (4)

and it produces similar results. The constants c1 and c2 are

chosen such that the two parts of the unary term have com-

parable ranges.

A contrast sensitive Potts model is used for the binary

term ψij :

ψij (SIi, SIj) =

{
0 if SIi = SIj ,

h (i, j) otherwise,
(5)

and h (i, j) is a function based on the difference of colors

of neighboring pixels with the following form:

h (i, j) = c3 + c4 · exp
(
−c5 · ‖Ic (si)− Ic (sj)‖2

)
, (6)

where c3, c4, and c5 are constants chosen empirically.

Ic (si) and Ic (sj) are the color vectors of pixel si and sj
respectively. In our experiment, the model parameters we

used are (c1, c2, c3, c4, c5) = (1, 1, 0.1, 0.1, 1) . Figure 6

demonstrates the result of our algorithm usingm = 11 with

the sample images in column (a). Column (b) and (c) are the
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Figure 5. The sky index images and the corresponding reconstruct-

ed sky images using different numbers of discrete sky index levels

m with the same input sky image as that in Figure 1. In each case

of m, the top image is the solved sky index image where brighter

pixels indicate clearer sky, and the bottom one is the reconstruct-

ed sky image where brighter pixels represent higher intensity. A

larger m produces finer reconstructed images.

reconstructed sky images generated by the flow in Figure 4

with the uniform sky index model and our proposed model

respectively. As the estimated sky index images solved by

the flow in Figure 3, column (d) is used to generate images

in column (c). Column (c) is not just the negative images

of column (d) because two pixels with the same sky index

may have different intensities in the reconstructed image.

Column (e) is the results of thin cloud detection by [13]

where white (black) pixels represent clouds (sky). Qualita-

tively, our model captures the cloud distribution better than

either the uniform sky index model or Li’s method [13]. In

Figure 6, we only show the portion of the sky (our region

of interest), and the sky index images are shown such that

brighter pixels indicate clearer sky. We reconstruct the sky

images only in gray scale because the Igawa sky model only

defines the radiance distribution of the sky. The chromatic

information is related to the scattering of the sunlight, which

will complicate our current model. The sky index images is

finer when m increases, which is shown in Figure 5. For

computational efficiency, we use m = 11 in our experi-

ment. The image of sky indices and reconstructed images

are normalized to enhance the contrast for display.

4.1. Limitation of the proposed model

There are some cases such that the sky index images de-

termined by the algorithm of Figure 3 are inconsistent with

a human’s perception. Figure 7 shows some typical failure

cases from the AMOS data set [8]. The intensities in the

areas marked by the red rectangles in column (d) should be

darker than the solved values. In other words, some over-

cast pixels are incorrectly labeled as clear. This is unfor-

tunate but expected because the Igawa sky model does not

have volumetric concept of the clouds, and some physical

phenomena (such as the shadows, the scattering of the sun-

light, and reflection and refraction) within the clouds are not

fully modeled. If an overcast pixel happens to have similar

appearance as that of a clear pixel and the normalized cross

correlation between the neighborhood of the overcast pix-

el and the clear sky map is high, the overcast pixel can be

incorrectly labeled as a clear sky pixel.

5. Experimental results
In this paper, we use the AMOS data set [8] to evaluate

our proposed model. Among 633 cameras with the ground

truth location data in the AMOS data set, we choose 198

cameras which take pictures where the portion of the sky

is about one-third of the entire image or more. We pick

one image in the image sequence of 2008 for each of the

198 cameras, and those 198 images are chosen such that the

number of images taken in each month is approximately the

same. We call these 198 images the target data set and our

goal is to show that our model is better than the uniform sky

index model with the target data set in the following exper-

iments. In these experiments, we follow [20] and use mean

absolute error (MAE) as our evaluation metric. Figure 8

shows some of the images in the target data set.

5.1. Expressiveness

In this experiment, we compare the expressiveness of our

proposed model with that of the traditional uniform sky in-

dex model where all the sky pixels take the same label. The

expressiveness is measured by the average normalized re-

constructed error (ANRE) defined as follows:

ANRE =
1

n

n∑
i=1

|Ir (si)− In (si)|. (7)

where Ir (si) is the normalized intensity of si in the recon-

structed sky image generated by the Igawa sky model with

SI , and In (si) is the normalized intensity of si in the input

sky image. Figure 9 illustrates the steps to compute ANRE.

Some reconstructed images of both the uniform sky index

model and our model with the target data set are shown in

Figure 6. As expected, the appearance of the reconstructed

image of our model is more similar to the input image than

that of the uniform sky index model. Table 1 shows that the

average ANRE of the target data set with the proposed mod-

el is lower than that of the uniform sky index model. We al-

so conduct a paired t-test to compare the ANRE of each im-

age of the target data set with both models; t (197) = 3.972,

p = 0.0001. Our data suggest that with 99.5% confidence,

the ANRE of our model is lower than that of the uniform

sky index model.
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(a) (b) (c) (d) (e)

Figure 6. The reconstructed images using the uniform sky index model and our proposed model (one example per row). Column (a) is the

input sky images taken from the AMOS data set [8]. Column (b) and (c) are the reconstructed sky images (brighter pixels indicate higher

sky intensity) with the uniform sky index model and our model respectively. Column (d) is the sky index images of our model, where

clearer sky pixels are brighter. Column (e) is the results of thin cloud detection using [13] where white (black) pixels represent clouds

(sky).

(a) (b) (c) (d)

Figure 7. The failure cases from the AMOS data set [8] using our proposed model. The ordering of (a)∼(d) is the same as that in Figure 6.

The intensities of the sky index image in the areas marked by the red rectangles should be darker (more overcast) than the current values,

which means some overcast pixels are marked as relatively clear ones because of the shadow within the clouds.

5.2. Stability of sky index

In our algorithm, we utilize normalized cross correlation

(NCC) to estimate the camera parameters (θc, φc, f). Simu-

lating that the input sky images may come from noisy web-

cam images, we measure the change of the sky index image

if the camera zenith and azimuth given to α-expansion al-

gorithm are changed from the original estimation (θc and

φc) to the perturbed values (θc +Δθc and φc +Δφc). The
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Figure 8. Sample outdoor images of the target data set derived from the AMOS data set [8].

Figure 9. The flowchart to measure the average normalized reconstructed error (ANRE). Some input blocks of the modules introduced in

Figure 3 and 4 are not shown for clarity.

Table 1. The average ANRE of the target data set with both the

uniform sky index model and our proposed model.

Sky Model Uniform Sky Index Model Our Model

Average ANRE 0.627 0.262

average change D of two sky index images is measured by

the following function:

D =
1

n

n∑
i=1

|SIi1 − SIi0|, (8)

where SIi1 and SIi0 are the sky indices of sky pixel si with

the perturbed and original camera parameters respectively.

Figure 10 shows the average D of the target data set under

various Δθc and Δφc using the uniform sky index model

(left half) and our model (right half). The sky index image

of our model is more stable than that of the uniform sky

index model under the perturbation of θc and φc. The results

are expected because when Δθc and Δφc achieve certain

amounts, the uniform sky index model will force all pixels

to take another sky index, but our model will only change

the sky index of a pixel si if the lj maximizingNCC (si, lj)
changes.

5.3. Geo-location estimation

To compare the ability of predicting the longitude and

latitude of the uniform sky index model and our model, we

fix θc, φc, and f as the estimated values computed in Fig-

ure 3 but hypothesize pairs of longitude and latitude (on a 5

degree grid). The estimated longitude and latitude is set to

the hypothesis which maximizes Eq. (3). The flow of esti-

mating the geo-location is shown in Figure 11 and executed

with both the uniform sky index model and our model. We

assume that we know the input image is taken from which

hemisphere to increase the accuracy of geo-location estima-

Figure 10. The average change of sky index under different camera

zenith and azimuth perturbations on the target data set. The aver-

age change of our model (right half) is generally smoother than

that of the uniform sky index model (left half).

tion. We search for the geo-location that maximizes the av-

erage normalized cross correlation values between the sky

maps and the input image at the corresponding location.

Accurate geo-location estimation often requires clear sky

images [9, 12], shadow detection [21], or an image se-

quence where the sun is visible [12]. Our model can pre-

dict geo-location within 200 km in 4.55% of the target da-

ta set given only single sky image. The 200 km thresh-

old is inspired by [5]. The uniform sky index model only

achieves the same criteria in 0.51% of the target data set.

Figure 12 shows the portion of the prediction falling in d-

ifferent thresholds of surface error. In general, the slope

and the absolute value of the curve of our model are higher,

which supports that our model has better geo-locating abil-

ity. Further, our model predicts more accurate geo-location

than the uniform sky index model in 66.67% of the images

in the target data set. We also conduct a paired t-test to com-
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Figure 11. The flowchart of estimating the geo-location based on the sky index.

Figure 12. The curves show the portion of the prediction falling in

different thresholds of surface error, which supports that our model

has better geo-locating ability.

pare the surface error made by both models for each image

of the target data set; t (197) = 3.972, p = 0.0001. The

average surface errors made by our model and the unifor-

m sky index model are 4898 km and 7209 km respectively.

Our data suggest that with 99.99% confidence, our model

predicts more accurate geo-location than the uniform sky

index model does.

6. Applications

In this section, we list several potential applications of

our model, and sky image rendering is an obvious one. Giv-

en the sky indices of all the sky pixels, we can render the

corresponding sky images at any time and location by the

flow in Figure 4. In other words, we can bring our favorite

cloud distribution to the location and desired time that we

want, which is impossible with the uniform sky index mod-

el. Figure 13 demonstrates reconstructed images with the

same cloud distribution under various times and locations.

To colorize, the chromatic information in those images are

kept the same as that of the input image without introducing

another scattering model.

The sky indices derived from our model may serve as a

source of features for cloud classification (cirrus, cumulus,

Figure 14. The estimation of cloud cover by our model. Each num-

ber is the average sky index ranging from 0 (overcast) to 1 (clear)

of the corresponding image.

stratus, etc.), providing important knowledge for weather

forecasting as suggested in [3]. Tao et al. [18] estimate

cloudiness of the sky and other semantic attributes to cat-

egorize sky images, and we believe that it can achieve de-

tailed classification by cloud types using our model. Fig-

ure 14 orders the sky images based on the cloud cover by

sorting the average sky indices. The sky indices of our mod-

el are useful for cloud matching (deciding if two clouds are

the same) or cloud tracking, a pre-processing step for some

tasks in solar engineering [14].

Another potential application of our model is to achieve

more accurate estimation of outdoor illumination condition-

s similar to the estimation in [11], and accurate illumina-

tion models are needed for applications such as shape from

shading and artificial 3D object insertion in outdoor images.

Note that in [11], sky is classified into one of the three cat-

egories: clear, partially cloudy, or completely overcast ac-

cording to the general sky appearance. The estimation of

illumination conditions may benefit from our model incor-

porating pixel-wise cloudiness prediction.
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Figure 13. Reconstructed sky images with the same cloud distribution under various time and locations. The chromatic information in

these images is kept the same as that of the input image without introducing another scattering model.

7. Conclusion

In this paper, we propose a novel sky representation that

includes a pixel-wise sky index to represent clouds. We for-

mulate our model as a labeling problem and solve the sky

index for each sky pixel.

In our experiment, the proposed sky model surpasses the

uniform sky index model in three ways: expressiveness, sta-

bility under inaccurate camera parameter estimation, and

the geo-locating ability. We also demonstrate using the sky

index image to produce sky images with the given cloud

distribution at desired time and location.

In the future, we will incorporate color information and

model physical phenomena such as refraction and sunlight

scattering improve the reconstructed sky images.
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