CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS
FOR GENERIC CLASSIFICATION TASKS

Kuan-Chuan Peng and Tsuhan Chen

Cornell University
School of Electrical and Computer Engineering
Ithaca, NY 14850

ABSTRACT

Recent works about convolutional neural networks (CNN)
show breakthrough performance on various tasks. However,
most of them only use the features extracted from the topmost
layer of CNN instead of leveraging the features extracted
from different layers. As the first group which explicitly
addresses utilizing the features from different layers of
CNN, we propose cross-layer CNN features which consist
of the features extracted from multiple layers of CNN.
Our experimental results show that our proposed cross-
layer CNN features outperform not only the state-of-the-art
results but also the features commonly used in the traditional
CNN framework on three tasks — artistic style, artist, and
architectural style classification. As shown by the exper-
imental results, our proposed cross-layer CNN features
achieve the best known performance on the three tasks in
different domains, which makes our proposed cross-layer
CNN features promising solutions for generic tasks.

Index Terms— Convolutional neural networks (CNN),
cross-layer features, generic classification tasks

1. INTRODUCTION

Convolutional neural networks (CNN) have shown break-
through performance on various datasets in recent studies [1,
2, 3, 4, 5]. This widespread trend of using CNN starts
when the CNN proposed by Krizhevsky et al. [6] outper-
forms the previous best results of ImageNet [7] classification
by a large margin. In addition, Donahue et al. [8] adopt
the CNN proposed by Krizhevsky et al. [6], showing that
the features extracted from the CNN outperform the state-
of-the-art results of standard benchmark datasets. Encour-
aged by these previous works, more researchers start to use
Krizhevsky’s CNN [6] as a generic feature extractor in their
domains of interest.

Although extraordinary performance by using CNN has
been reported in recent literature [1, 2, 3, 9, 10], there is
one major constraint in the traditional CNN framework: the
final output of the output layer is solely based on the features
extracted from the topmost layer. In other words, given the

features extracted from the topmost layer, the final output
is independent of all the features extracted from other non-
topmost layers. At first glance, this constraint seems to be
reasonable because the non-topmost layers are implicitly
considered in the way that the output of the non-topmost
layers is the input of the topmost layer. However, we believe
that the features extracted from the non-topmost layers are not
explicitly and properly utilized in the traditional CNN frame-
work where partial features generated by the non-topmost
layers are ignored during training. Therefore, we want to
relax this constraint of the traditional CNN framework by
explicitly leveraging the features extracted from multiple
layers of CNN. We propose cross-layer features based on
Krizhevsky’s CNN [6], and we show that our proposed
features outperform Krizhevsky’s CNN [6] on three different
classification tasks — artistic style [11], artist [11], and archi-
tectural style [12]. The details of cross-layer CNN features,
the experimental setup and the results are presented in Sec. 2,
Sec. 3, and Sec. 4 respectively.

In recent studies analyzing the performance of multi-layer
CNN [1, 4], both works extract features from Krizhevsky’s
CNN [6] and evaluate the performance on different datasets.
These works achieve a consistent conclusion that the features
extracted from the topmost layer have the best discrimina-
tive ability in classification tasks compared with the features
extracted from other non-topmost layers. However, both
works [1, 4] only evaluate the performance of the features
extracted from one layer at a time without considering the
features from multiple layers at once. Unlike [1, 4], in
Sec. 4, we show that our proposed cross-layer CNN features
outperform the features extracted from the topmost layer of
Krizhevsky’s CNN [6] (the features used in [1, 4]).

In previous works [11, 12] studying the three classi-
fication tasks (artistic style, artist, and architectural style)
involved in this paper, the state-of-the-art results are achieved
by the traditional handcrafted features (for example, SIFT and
HOG) without considering CNN-related features. In Sec. 4,
we show that our proposed cross-layer CNN features outper-
form the state-of-the-art results on the three tasks. Another
related prior work is the double-column convolutional neural

output
L_',))
fc output output
fe-6 J fe- ICJ output
conv-5 ' fc-6 l output
Ji
conv-4 fe-6 fo-7 _J output
; ‘J . o0
fc-6 fe-7

conv- wJ conv- wJ
conv-2 I fc-6

¥ ¥ L) ¥
con\-IJ conv-| conv- IJ con\—IJ
))

conv-2 ' conv-2 l
))
mpul/ |n|\ulj mpul/ lnpulj

Con\»IJ con\'-IJ
))
CNN, CNN,; CNN, CNN; CNN, CNN;

input / input /

Fig. 1. The six CNN structures adopted in this work. CNNg
represents Krizhevsky’s CNN [6], and CNN; to CNNj are the
same as CNN except that some layers are removed. We use
each CNN; (i = {0,1,---,5}) as a feature extractor which
takes an image as input and outputs a feature vector f; from
the topmost fully connected layer. These f;s are cascaded to
form our proposed cross-layer features according to the defi-
nition in Table 1.

network (DCNN) proposed by Lu et al. [13]. Using DCNN to
predict pictorial aesthetics, Lu et al. [13] extract multi-scale
features from multiple CNNs with the multi-scale input data
generated from their algorithm. In contrast, our work focuses
on the cross-layer CNN features extracted from multiple
layers without the need to generate multi-scale input.

In this paper, our main contribution is the concept of
utilizing the features extracted from multiple layers of convo-
lutional neural networks (CNN). Based on this concept, we
propose cross-layer CNN features extracted from multiple
layers and show that our proposed features outperform not
only the state-of-the-art performance but also the results of the
traditional CNN framework in artistic style [11], artist [11],
and architectural style [12] classification. To the best of
our knowledge, this is the first paper explicitly utilizing the
features extracted from multiple layers of CNN, which is a
strong departure from most CNN-related works which use
only the features extracted from the topmost layer.

2. CROSS-LAYER CNN FEATURES

Fig. 1 and Table 1 illustrate the involved CNN structures in
this work and how we form our proposed cross-layer CNN
features respectively. There are 6 different CNN structures
in Fig. 1, where CNNjg represents the CNN proposed in
Krizhevsky’s work [6], and CNN; to CNNj are the “sub-
CNNs” of CNNj (they are the same as CNNg except that
some layers are removed). We use the same notation of

feature ID ‘ cross-layer features (Fig. 1) dimension
Fp (baseline) fo k
Fy fo+ f1 2k
F fo+ f2 2k
F3 Jot+ fat fs 3k
Fy Jotfot+ fa+ fa 4k
Fs Jotfotfat+fatfs 5k

Table 1. The summary of the cross-layer CNN features
used in this work. Serving as a baseline, Fj represents
the features extracted from the topmost layer in the tradi-
tional CNN framework. F} to Fj are our proposed cross-
layer CNN features which are formed by cascading f;s
(¢ =1{0,1,---,5}) defined in Fig. 1. We follow the speci-
fication of Krizhevsky’s CNN [6] and use k£ = 4096.

convolutional layers (conv-1 to conv-5) and fully connected
layers (fc-6 and fc-7) as that used in [1] to represent the
corresponding layers in Krizhevsky’s CNN [6]. In Fig. 1,
in addition to the input and output layers, we only show
the convolutional and fully connected layers of Krizhevsky’s
CNN [6] for clarity. Instead of using the output from the
output layer of each CNN; (i ={0,1,---,5}), we treat
CNN; as a feature extractor which takes an image as input
and outputs a k-d feature vector f; from the topmost fully
connected layer, which is inspired by [8]. We follow the
specification of Krizhevsky’s CNN [6] and use £ = 4096 in
our experiment.

In Fig. 1, fo represents the features extracted from the
output of the fc-7 layer in Krizhevsky’s CNN [6], f; repre-
sents the features extracted from the fc-6 layer, and f5 to f5
represent the features derived from different combinations of
the convolutional layers. f; (i = {0,1,--- ,5}) is extracted
from the topmost fully connected layer of CNN;, not from
the intermediate layer of CNNj because the features extracted
from the topmost layer have the best discriminative ability
according to [1, 4]. As the features learned from CNN and its
sub-CNN:ss, f;s implicitly reflect the discriminative ability of
the corresponding layers of CNNj. Most CNN-related works
use only fj and ignore the intermediate features (f; to f5), but
we explicitly extract them as part of our proposed cross-layer
CNN features which are explained in the following paragraph.

Using the feature vectors (f;s) defined in Fig. 1, we
cascade these f;s and form our proposed cross-layer CNN
features. We summarize these cross-layer CNN features (F}
to F) in Table 1, where how the features are formed and their
dimensions are specified. F{y represents the features extracted
from the topmost layer in the traditional CNN framework
without cascading the features from other layers. The feature
IDs listed in Table 1 are used to refer to the corresponding
cross-layer CNN features when we report the experimental
results in Sec. 4, where we compare the performance of F;
(i ={0,1,---,5}) on three different tasks.

dataset Painting-91 [11] Painting-91 [11] arcDataset [12]
task artist artistic style architectural style
classification classification classification
task ID ARTIST-CLS ART-CLS ARC-CLS
number of classes 91 13 10/25
number of images 4266 2338 2043 /4786
image type painting painting architecture
examples of class labels Rubens, Picasso. Baroque, Cubbism. Georgian, Gothic.
number of training images 2275 1250 300 /750
number of testing images 1991 1088 1743 /4036
training/testing split specified [11] specified [11] random
number of fold(s) 1 1 10
evaluation metric accuracy accuracy accuracy
reference of the above setting [11] [11] [12]

Table 2. The tasks and associated datasets used in this work along with their properties. In this paper, we refer to each task by
the corresponding task ID listed under each task. The experimental setting for each task is provided at the bottom of the table.
For the task ARC-CLS, we conduct our experiment using two different experimental settings (the same as those used in [12]).

3. EXPERIMENTAL SETUP

3.1. Datasets and Tasks

We conduct experiment on three tasks (artistic style, artist,
and architectural style classification) from two different
datasets (Painting-91 [11] and arcDataset [12]). We summa-
rize these datasets and tasks in Table 2, where their properties
and related statistics are shown. We also provide the exper-
imental settings associated with each task at the bottom of
Table 2. When reporting the results in Sec. 4, we use the
task ID listed in Table 2 to refer to each task. In Table 2,
“training/testing split” represents whether the training/testing
splits are randomly generated or specified by the literature
proposing the dataset/task, and “number of fold(s)” lists the
number of different splits of training/testing sets used for the
task. To evaluate different methods under fair comparison,
we use the same experimental settings for these three tasks as
those used in the references listed at the bottom of Table 2.
For the task ARC-CLS, there are two different experimental
settings (10-way and 25-way classification) provided by [12],
and we do both in our experiment.

3.2. Training Approach

In our experiment, we use the Caffe [14] implementation to
train the 6 CNN; (¢ = {0,1,--- ,5}) in Fig. 1 for each of the
three tasks in Table 2. For each task, CNN; is adjusted such
that the number of the nodes in the output layer is set to the
number of classes of that task. When using the Caffe [14]
implementation, we adopt its default training parameters for
training Krizhevsky’s CNN [6] for ImageNet [7] classification
unless otherwise specified. Before training CNN; for each
task, all the images in the corresponding dataset are resized to

256256 according to the Caffe [14] implementation.

In training phase, adopting the Caffe reference model
provided by [14] (denoted as MiyageNet) for ImageNet [7]
classification, we train CNN; (¢ = {0,1,--- ,5}) in Fig. 1 for
each of the three tasks in Table 2. We follow the descriptions
and setting of supervised pre-training and fine-tuning used in
Agrawal’s work [1], where pre-training with M, means using
a data-rich auxiliary dataset D to initialize the CNN param-
eters and fine-tuning means that all the CNN parameters
can be updated by continued training on the corresponding
training set. For each CNN; for each of the three tasks in
Table 2, we pre-train it with Mimagenet and fine-tune it with
the training set of that task. After finishing training CNN,,
we form the cross-layer CNN features F; (i = {0,1,--- ,5})
according to Table 1. With these cross-layer CNN feature
vectors for training, we use support vector machine (SVM) to
train a linear classifier supervised by the labels of the training
images in the corresponding dataset. Specifically, one linear
classifier is trained for each F; (i = {0,1,---,5}) for each
task (a total of 6 classifiers per task). In practice, we use
LIBSVM [15] to do so with the cost (parameter C' in SVM)
set to the default value 1. Trying different C' values, we find
that different C' values result in similar accuracy, so we just
use the default value.

In testing phase, we use the given testing image as the
input of the trained CNN; (¢ = {0,1,---,5}) and generate
fis. The cross-layer CNN features F; (i = {0,1,---,5}) are
formed by cascading the generated f;s according to Table 1.
After that, we feed each feature vector (F;) of the testing
image as the input of the corresponding trained SVM clas-
sifier, and the output of the SVM classifier is the predicted
label of the testing image.

4. EXPERIMENTAL RESULTS

Using the training approach described in Sec. 3.2, we evaluate
the performance of F; (i = {0, 1,--- ,5}) defined in Table 1
on the three tasks listed in Table 2. The experimental results
are summarized in Table 3, where the numbers represent the
classification accuracy (%) and the bold numbers represent
the best performance for that task. We compare the perfor-
mance of our proposed cross-layer CNN features (£} to F5)
with the following two baselines: 1: The current known best
performance of that task provided by the references listed in
Table 3. 2: The performance of F{,, which represents the
commonly used features in the traditional CNN framework.

The results in Table 3 show that all of our proposed cross-
layer CNN features (F} to F5) outperform the two baselines
on the three tasks, which supports our claim that utilizing the
features extracted from multiple layers of CNN is better than
using the traditional CNN features which are only extracted
from the topmost fully connected layer. Furthermore, we find
that the types of layers (either fully connected or convolu-
tional layer) we remove from CNNj to form the sub-CNNs
(and hence f; and F;) do not influence the fact that the clas-
sification accuracy will increase as long as the features from
multiple layers are considered simultaneously. Specifically,
the cross-layer CNN features F are formed by cascading the
features from different combinations of the fully connected
layers, but F5 to F5 are formed by cascading the features from
different combinations of the convolutional layers. All of our
proposed cross-layer CNN features (£} to F) outperform the
two baselines on the three tasks because we explicitly utilize
the features from multiple layers of CNN, not just the features
extracted from the topmost fully connected layer.

Table 3 also shows that CNN-based features (Fjy to Fj)
outperform the classical handcrafted features (for example,
SIFT and HOG) used in the prior works [11, 12], which
is consistent with the findings of the recent CNN-related
literature [3, 4, 5, 8, 13]. In addition, our proposed cross-
layer CNN features are generic features which are applicable
to various tasks, not just the features specifically designed
for certain tasks. As shown in Table 3, these cross-layer
CNN features are effective in various domains from artistic
style classification to architectural style classification, which
makes our proposed cross-layer CNN features promising
solutions for other tasks which future researchers are inter-
ested in.

5. CONCLUSION

In this work, we mainly focus on the idea of utilizing the
features extracted from multiple layers of convolutional
neural networks (CNN). Based on this idea, we propose
the cross-layer CNN features, showing their efficacy on
artistic style, artist, and architectural style classification. Our
proposed cross-layer CNN features outperform not only the

task ID ‘ ARTIST-CLS ART-CLS ARC-CLS

prior work 53.10 6220 69.17/46.21
reference [11] [11] [12]

Fy (baseline) 55.15 67.37 70.64/54.84

F 55.40 68.20 71.34/55.57

Fy 56.25 68.29 70.94/55.44

I3 56.40 68.57 70.73/55.35

F, 56.35 69.21 70.68/55.32

F5 56.35 69.21 70.68/55.31

Table 3. The summary of our experimental results. The
numbers represent the classification accuracy (%), and the
bold numbers represent the best performance for each task.
The results show that for all the three tasks, our proposed
cross-layer CNN features (F; to F3) outperform not only
the best known results from prior works but also the features
commonly used in the traditional CNN framework (Fp).

state-of-the-art results of the three tasks but also the CNN
features commonly used in the traditional CNN framework.
Furthermore, as the first group advocating that we should
leverage the features from multiple layers of CNN instead of
using the features from only a single layer, we point out that
our proposed cross-layer CNN features are promising generic
features which can be applied to various tasks.

6. REFERENCES

[1] P. Agrawal, R. Girshick, and J. Malik, “Analyzing the
performance of multilayer neural networks for object
recognition,” in ECCV, 2014, pp. 329-344.

[2] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-
scale orderless pooling of deep convolutional activation
features,” in ECCV, 2014, pp. 392-407.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid
pooling in deep convolutional networks for visual recog-
nition,” in ECCV, 2014, pp. 346-361.

[4] M. D. Zeiler and R. Fergus, “Visualizing and under-
standing convolutional networks,” in ECCV, 2014, pp.
818-833.

[5] N. Zhang, J. Donahue, R. Girshick, and T. Darrell,
“Part-based R-CNNs for fine-grained category detec-
tion,” in ECCV, 2014, pp. 834-849.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional neural
networks,” in Advances in Neural Information
Processing Systems 25, pp. 1097-1105. 2012.

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.--
F. Li, “Imagenet: A large-scale hierarchical image
database,” in CVPR, 2009, pp. 248-255.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell, “DeCAF: A deep convolu-
tional activation feature for generic visual recognition,”
CoRR, vol. abs/1310.1531, 2013.

L. Kang, P. Ye, Y. Li, and D. Doermann, “A deep
learning approach to document image quality assess-
ment,” in ICIP, 2014.

A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella,
and J. Schmidhuber, “Fast image scanning with deep
max-pooling convolutional neural networks,” in ICIP,
2013.

FE. S. Khan, S. Beigpour, J. V. D. Weijer, and M. Fels-
berg, “Painting-91: a large scale database for compu-
tational painting categorization,” Machine Vision and
Applications, vol. 25, pp. 1385-1397, 2014.

Z. Xu, D. Tao, Y. Zhang, J. Wu, and A. C. Tsoi, “Archi-
tectural style classification using multinomial latent
logistic regression,” in ECCV, 2014, pp. 600-615.

X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang, “RAPID:
rating pictorial aesthetics using deep learning,” in
ACMMM, 2014.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on Intelli-
gent Systems and Technology, vol. 2, pp. 27:1-27:27,
2011, Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

