

Cornell University

Inspiration

- . Features extracted from the top-most layer of convolutional neural networks (CNN) have the best discriminative ability. [1, 8]
- 2. Is there any useful features captured by "shallower" networks but not captured by "deeper" networks?
- 3. What if we combine features learned from CNNs with different depths?

Contributions

- 1. The first paper explicitly utilizing the features extracted from multiple CNNs with different depths.
- 2. Propose cross-layer features in CNN for generic classification tasks and validate the efficacy of cross-layer features by showing their superior performance on three classification tasks.

Example Images of the Tasks

artist style & artistic style classification

Style: Abst. Expression

Style: Baroque

Artist: Constab

Style: Romanticism

Style: Constructivism

architectural style classification

Chicago School

Baroque

Gothic

Novelty

Postmodern

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS

Kuan-Chuan Peng and Tsuhan Chen {kp388, tsuhan}@cornell.edu

dataset	Painting_01 [3]	Painting_01 [3]	arcDataset [7]	task	artist style	artistic style	architectural style
task	artist style	artistic style	architectural style	Lask	classification	classification	classification
	classification	classification	classification	prior work	53.10	62.20	69.17 / 46.21
number of classes	91	13	10 / 25	reference	[3]	[3]	[7]
number of images	4266	2338	2043 / 4786	F_0 (baseline)	55.15	67.37	70.64 / 54.84
image type examples of class labels	Painting Rubens Picasso	painting Baroque Cubbism	Georgian Cothic	$\overline{F_1}$	55.40	68.20	71.34 / 55.57
		Daloque, Cubbisili.	deorgian, dotnic.	F_2	56.40	68.57	70.73 / 55.35
number of training images	2275	1250	300 / 750	F_3	56.35	69.21	70.68 / 55.32
number of testing images	1991	1088	1743 / 4036	F_4	56.35	69.21	70.68 / 55.31
training/testing split	specified [3]	specified [3]	random	$\overline{F_5}$	56.25	68.29	70.94 / 55.44
number of fold(s)	1	1	10				,
evaluation metric	accuracy	accuracy	accuracy				
reference of the above setting	[3]	[3]	[7]	Conclusion			

Formation of Cross-layer Features

feature ID	cross-layer features	dimension	
F_0 (baseline)	f_0	k	1
F_1	$f_0 + f_1$	2k	1.
F_2	$f_0 + f_1 + f_2$	3k	
F_3	$f_0 + f_1 + f_2 + f_3$	4k	2
F_4	$\int f_0 + f_1 + f_2 + f_3 + f_4$	5k	<u> </u>
F_5	$f_0 + f_5$	2k	

We pre-train each CNN_i with ImageNet [2] and fine-tune with the task of interest.

For each task, we train a linear SVM classifier for each F_i .

Extensible to generic classification tasks, cross-layer features outperform the state-of-the-art performance and AlexNet [4] baseline on artist style, artistic style, and architectural style classification.

Ongoing Work

References

- [1] P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV '14.
- [2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li. ImageNet: A large-scale hierarchical image database. In CVPR '09.
- [3] F. S. Khan, S. Beigpour, J. V. D. Weijer, and M. Felsberg. Painting-91: a large scale database for computational painting categorization. In Machine Vision and Applications '14.
- [4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS '12.
- [5] K.-C. Peng, and T. Chen. A framework of extracting multi-scale features using multiple convolutional neural networks. In ICME '15.
- [6] K.-C. Peng, and T. Chen. Toward correlating and solving abstract tasks using convolutional neural networks. Submitted to WACV '16.
- [7] Z. Xu, D. Tao, Y. Zhang, J. Wu, and A. C. Tsoi. Architectural style classification using multinomial latent logistic regression. In ECCV '14.
- [8] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV