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ABSTRACT

Most works related to convolutional neural networks (CNN)
use the traditional CNN framework which extracts features in
only one scale. We propose multi-scale convolutional neural
networks (MSCNN) which can not only extract multi-scale
features but also solve the issues of the previous methods
which use CNN to extract multi-scale features. With the
assumption of label-inheritable (LI) property, we also propose
a method to generate exponentially more training examples
for MSCNN from the given training set. Our experimental
results show that MSCNN outperforms both the state-of-the-
art methods and the traditional CNN framework on artist,
artistic style, and architectural style classification, supporting
that MSCNN outperforms the traditional CNN framework on
the tasks which at least partially satisfy LI property.

Index Terms— Convolutional neural networks, multi-
scale, label-inheritable

1. INTRODUCTION

Convolutional neural networks (CNN) have received a great
deal of focus in recent studies [1, 2, 3, 4, 5]. This trend started
when Krizhevsky et al. [6] used CNN to achieve extraordinary
performance in ImageNet [7] classification. Furthermore,
Donahue et al. [8] show that the CNN used in Krizhevsky’s
work [6] can serve as a generic feature extractor, and that the
extracted features outperform the state-of-the-art methods on
standard benchmark datasets.

Although recent researchers have shown breakthrough
performance by using CNN, there are two constraints in the
traditional CNN framework: 1: CNN extracts the features
in only one scale without explicitly leveraging the features
in different scales. 2: The performance of CNN highly
depends on the amount of training data, which is shown in
recent works [4, 8]. Using either Caltech-101 [9] or Caltech-
256 [10], these works [4, 8] modify the number of training
examples per class and record the corresponding accuracy.
Both works find that satisfactory performance can be achieved
only when enough training examples are used. In this paper,
we want to solve the above two issues of the traditional CNN
framework. We propose multi-scale convolutional neural

networks (MSCNN), a framework of extracting multi-scale
features using multiple CNN. The details of MSCNN are
explained in Sec. 3. We also propose a method to generate
exponentially more training examples for MSCNN from the
given training set based on the assumption that the task
of interest is label-inheritable (LI). The concept of LI is
explained in Sec. 2.

In recent studies extracting multi-scale features using
CNN, Gong et al. [2] propose multi-scale orderless pooling,
but He et al. [3] propose spatial pyramid pooling. Both
works show experimental results which support the argument
that using multi-scale features outperforms using features in
only one scale. In both works, the multi-scale features are
extracted by using special pooling methods in the same CNN,
so the CNN parameters used to extract multi-scale features
are the same before the pooling stage. However, we argue
that the features in different scales should be extracted with
different sets of CNN parameters learned from the training
examples in different scales, which is explicitly modeled in
our proposed MSCNN.

In the applications using multiple CNN, Lu et al. [11]
predict pictorial aesthetics by using double-column convo-
lutional neural network (DCNN) to extract features in two
different scales, global view and fine-grained view. They also
show that using DCNN outperforms using features in only
one scale. The concept of using multiple CNN is similar
in both DCNN and our proposed MSCNN. Nevertheless, the
input images for the scale of fine-grained view in DCNN are
generated by randomly cropping from the images in the scale
of global view. Lu’s approach [11] has two drawbacks: 1: The
randomly cropped image may not well represent the entire
image in the scale of fine-grained view. 2: By using only the
cropped images in the scale of fine-grained view, the informa-
tion which is not in the cropped area is ignored. In MSCNN,
instead of throwing away information, we extract the features
from every portion of the input image in each scale, which
solves the above two drawbacks of DCNN.

In this paper, we make the following contributions:

• We propose multi-scale convolutional neural networks
(MSCNN) which can extract the features in different
scales using multiple convolutional neural networks.



Fig. 1. The illustration of label-inheritable (LI) property.
Given an image dataset D associated with a task T , if any
cropped version of any image I from D can take the same
label as that of I , we say that T satisfies LI property. In this
figure, we only show the case when the cropped image is the
upper right portion of the original image. In fact, the cropped
image can be any portion of the original image.

We show that MSCNN outperforms not only the state-
of-the-art performance on three tasks (architectural
style [12], artist, and artistic style classification [13])
but also the traditional CNN framework which only
extracts features in one scale.

• We also propose a method to generate exponen-
tially more training examples for MSCNN from the
given training set. Under the label-inheritable (LI)
assumption, our method generates exponentially more
training examples without the need to collect new
training examples explicitly. Although our method and
MSCNN are designed under LI assumption, our experi-
mental results support that our proposed framework can
still outperform the traditional CNN framework on the
tasks which only partially satisfy LI assumption.

2. LABEL-INHERITABLE PROPERTY

Our proposed MSCNN is designed for the tasks satisfying
label-inheritable property which is illustrated in Fig. 1. Given
an image dataset D associated with a task T , if any cropped
version of any image I from D can take the the same label
as that of I , we say that T is label-inheritable (LI). In other
words, if the concept represented by the label of any image I
in the given dataset D is also represented in each portion of
I , the corresponding task T satisfies LI property.

Fig. 2 shows three examples from three different tasks
which satisfy LI property in different degrees. We also
list the corresponding dataset, task, and label under each
example image. For any image from Painting-91 [13], each
portion of that image is painted by the same artist (Picasso
for the example image), so the task “artist classification” is
LI. For the images from arcDataset [12], we can recognize
the architectural style from different parts of the architecture
(for example, the roof and pillars). However, if the cropped
image does not contain any portion of the architecture, the
cropped image cannot represent the architectural style of the

Fig. 2. Example images from three different tasks which
satisfy LI property in different degrees. The corresponding
dataset, task, label, and the extent that LI property is satisfied
are shown under each image.

original image, which is the reason why LI property is only
partially satisfied for architectural style classification. For the
images from Caltech-101 [9], the LI property is satisfied when
the cropped image contains the entire object which the label
represents. If the cropped image contains only a portion of the
object, the cropped image may not be able to take the same
label. For the example image, the portion of the mouth cannot
totally represent the label “faces.” Therefore, we think object
classification is mostly not LI.

In this work, we apply our proposed framework, MSCNN,
to the tasks satisfying LI property in different degrees,
showing that MSCNN outperforms the traditional CNN
framework on the tasks satisfying LI property. We also show
experimental results supporting that MSCNN can still outper-
form the traditional CNN framework on the tasks which only
partially satisfy LI property. The details of the datasets and
tasks used in this work are presented in Sec. 3.1, and the
experimental results are shown in Sec. 4.

3. EXPERIMENTAL SETUP

3.1. Datasets and Tasks

Conducting experiment on 4 tasks from 3 datasets, we
summarize all the datasets and tasks used in this work in
Table 1, where their properties and related statistics are
also shown. At the bottom of Table 1, we list the experi-
mental setting associated with each task. In this paper, we
refer to each task by its task ID listed in Table 1, where
“training/testing split” indicates whether the training/testing
splits are randomly generated or specified by the work
proposing the dataset/task, and “number of fold(s)” shows
that how many different training/testing splits are used for
the task. To be consistent with prior works, we use the same
experimental settings for these tasks as those used in the refer-
ences listed at the bottom of Table 1.



Table 1. The tasks and associated datasets used in this work along with their properties. In this paper, we refer to each task by
the corresponding task ID listed under each task. The experimental setting for each task is provided at the bottom of the table.

dataset Painting-91 [13] Painting-91 [13] arcDataset [12] Caltech-101 [9]
task artist artistic style architectural style object

classification classification classification classification
task ID ARTIST-CLS ART-CLS ARC-CLS CALTECH101

number of classes 91 13 10 / 25 101
number of images 4266 2338 2043 / 4786 8677

image type painting painting architecture object
label-inheritable yes mostly yes partial mostly no

examples of class labels Rubens, Picasso. Baroque, Cubbism. Georgian, Gothic. chair, cup.

number of training images 2275 1250 300 / 750 1515 / 3030
number of testing images 1991 1088 1743 / 4036 3999 / 2945

training/testing split specified [13] specified [13] random random
number of fold(s) 1 1 10 5
evaluation metric accuracy accuracy accuracy accuracy

reference of the above setting [13] [13] [12] [4]

3.2. MSCNN Architecture

The architecture of our proposed multi-scale convolutional
neural networks (MSCNN) is illustrated in Fig. 3. MSCNN
consists of m + 1 CNN which extract features in m + 1
different scales (from scale 0 to scale m, one CNN for each
scale), and the structures of the m + 1 CNN are exactly the
same. We only show m = 1 in Fig. 3 for clarity. In each scale,
we use Krizhevsky’s CNN [6] as the feature extractor which
takes an image as input and outputs a 4096-d feature vector.
The 4096-d feature vector is retrieved from the output of the
topmost fully connected layer of Krizhevsky’s CNN [6].

Given an input image, we extract its multi-scale features
according to the following steps:

1. In scale i, we place a 2i × 2i grid on the input image
and generate 4i cropped images.

2. We resize each of the 4i cropped images in scale i to a
pre-defined image size k × k.

3. Each of the 4i cropped resized images takes turn (in the
order of left to right, top to bottom) to be the input of
the CNN in scale i. In other words, the CNN in scale i
extracts features 4i times with one of the 4i cropped
resized images as input at each time. Afterward we
generate the feature vector in scale i by cascading those
4i 4096-d feature vectors in order.

4. The final multi-scale feature vector is generated by
cascading all the feature vectors in all m + 1 scales
in order, and the dimension of the multi-scale feature
vector is

[(
4m+1 − 1

)/
3
]
× 4096.

For the CNN in each scale, we use the Caffe [14] imple-
mentation of Krizhevsky’s CNN [6] except that the number

of the nodes in the output layer is set to the number of classes
in each task listed in Table 1. When using the Caffe [14]
implementation, we adopt its default training parameters for
training the CNN for ImageNet [7] classification unless other-
wise specified. The pre-defined image size k × k is set to
256×256 according to the Caffe [14] implementation. The
details of the training approach and how to make prediction
are explained in Sec. 3.3.

3.3. Training Approach

Before training, we generate a training set Si for each scale
i from the original training set S of the task of interest T
with the assumption that T satisfies LI property. We take the
following steps:

1. We place a 2i× 2i grid on each image of S, crop out 4i

sub-images, and resize each cropped image to k × k.

2. Due to LI property, each cropped resized image is
assigned the same label as that of the original image
from which it is cropped.

After the above two steps, the generated training set Si

consists of 4i × |S| labeled images (|S| is the number of
images in S), and the size of each image is k × k. We follow
the Caffe [14] implementation, using k = 256.

In training phase, adopting the Caffe reference model [14]
(denoted as MImageNet) for ImageNet [7] classification, we
train the CNN in scale i using the training set Si. We follow
the descriptions and setting of supervised pre-training and
fine-tuning used in Agrawal’s work [1], where pre-training
with MD means using a data-rich auxiliary dataset D to
initialize the CNN parameters and fine-tuning means that all
the CNN parameters can be updated by continued training on



Fig. 3. The illustration of multi-scale convolutional neural networks (MSCNN) which consists of m+ 1 CNN (one for each of
the m+1 different scales). We use each CNN as a feature extractor in that scale. We only show m = 1 here for clarity. In scale
i, we crop 4i sub-images from the input image and resize each of them to 256×256. The CNN in scale i takes each of the 4i

cropped resized images as input at each time and outputs a 4096-d vector for each input. The final multi-scale feature vector of
the input image is generated by cascading all the 4096-d vectors in m + 1 scales. The details of the MSCNN architecture and
the training approach are explained in Sec. 3.2 and Sec. 3.3 respectively.

the corresponding training set. For the CNN in each scale
i, we pre-train it with MImageNet and fine-tune it with Si.
After finishing training all m + 1 CNN in m + 1 scales,
we extract the

[(
4m+1 − 1

)/
3
]
× 4096-d multi-scale feature

vector of each training image in S using the method described
in Sec. 3.2. With these multi-scale feature vectors for training,
we use support vector machine (SVM) to train a linear classi-
fier supervised by the labels of the images in S. In practice,
we use LIBSVM [15] to do so with the cost (parameter C in
SVM) set to the default value 1. Trying different C values,
we find that different C values produce similar accuracy, so
we just use the default value.

In testing phase, given a testing image, we generate its[(
4m+1 − 1

)/
3
]
× 4096-d multi-scale feature vector using

the method described in Sec. 3.2. After that, we feed the
feature vector of the testing image as the input of the trained
SVM classifier, and the output of the SVM classifier is the
predicted label of the testing image.

Compared with the traditional CNN (m = 0), MSCNN
has m + 1 times of the number of parameters to train.
However, under LI assumption, we can generate exponen-
tially more training examples (4i × |S| training examples in
scale i) from the original training set S without the need to
explicitly collect new training examples. For any two training
examples Ii and Ij from Si and Sj respectively (i < j), the
overlapping content cannot exceed a quarter of the area of
Ii. Therefore, under LI assumption, our training approach
not only generates exponentially more training examples but
also guarantees certain diversity among the generated training
examples.

In terms of the training time, since Si contains 4i × |S|
training examples, the time needed to train the CNN in scale i

is 4i× t0, where t0 is the training time of the traditional CNN
framework. The training time of the linear SVM classifier
is far less than that of CNN, so it is negligible in the total
training time. If we train the m + 1 CNN in m + 1 different
scales in parallel, the total training time of MSCNN will be
4m × t0.

When training CNN, the traditional method implemented
by Caffe [14] resizes each training image to a pre-defined
resolution because of the hardware limitation of GPU. Due
to the resizing, partial information in the original high-
resolution training image is lost. In MSCNN, more details
in the original high-resolution training image are preserved
in scale i (i > 0) because all the training examples in
Si (∀i ∈ {0, 1, · · · ,m}) are resized to the same resolution.
The extra information preserved in scale i (i > 0) makes
MSCNN outperform the traditional CNN framework on the
tasks satisfying LI property, which is shown in Sec. 4.

Our proposed MSCNN extracts the features in different
scales with scale-dependent CNN parameters. In other words,
the CNN parameters in scale i are specifically learned from
the training images in scale i (the images in Si). This training
approach solves the issue of previous works [2, 3] which
simply generate multi-scale features from the same set of
CNN parameters that may not be the most suitable one for
each scale. In addition, MSCNN extracts the features from
every portion of the image in each scale, which solves the
drawback of Lu’s work [11] that does not fully utilize the
information of the entire image in the scale of fine-grained
view. Applying our proposed MSCNN to the tasks listed in
Table 1, we report the performance in Sec. 4.



Fig. 4. The performance comparison for the task ARTIST-
CLS. The results show that our proposed methods (MSCNN-
1 and MSCNN-2) outperform both Khan’s method [13] and
the traditional CNN framework (MSCNN-0), which supports
that MSCNN outperforms the traditional CNN framework on
the tasks satisfying LI property.

4. EXPERIMENTAL RESULTS

Using the experimental setting specified in Table 1, we
compare the performance of MSCNN with that of the tradi-
tional CNN framework (m = 0) and that of the state-of-the-
art methods. We use the notation “MSCNN-m” to represent
the MSCNN framework consisting of m + 1 CNN in m + 1
different scales (scale 0 to scale m). MSCNN-0 represents
the traditional CNN framework which extracts the features in
only one scale. The results of each task are explained in the
following paragraphs.

ARTIST-CLS: Fig. 4 compares the performance of
Khan’s method [13], the traditional CNN framework
(MSCNN-0) and our proposed methods (MSCNN-1 and
MSCNN-2), showing that our proposed methods outperform
both the current state-of-the-art method and the traditional
CNN framework. Since ARTIST-CLS satisfies LI prop-
erty, this result supports that MSCNN outperforms the tradi-
tional CNN framework on the tasks which are LI. Fig. 4
also shows that MSCNN-2 performs worse than MSCNN-
1, which indicates that increasing the number of scales in
MSCNN may not always increase the accuracy. This is
reasonable because the training images in scale i (the images
in Si) are less likely to contain useful features as i increases.
Therefore, the accuracy increases the most when we increase
the number of scales in MSCNN to a certain level. Although
MSCNN-2 performs worse than MSCNN-1, both MSCNN-1
and MSCNN-2 outperform MSCNN-0, which supports that
using multi-scale features is better than using the features in
one scale for the tasks satisfying LI property.

ART-CLS: Fig. 5 compares the performance of Khan’s
method [13] and MSCNN-0 to MSCNN-3, showing that
our proposed methods (MSCNN-1 to MSCNN-3) outperform
both the current state-of-the-art method and the traditional
CNN framework (MSCNN-0). Because ART-CLS mostly

Fig. 5. The performance comparison for the task ART-CLS.
The results show that our proposed methods (MSCNN-1 to
MSCNN-3) outperform both Khan’s method [13] and the
traditional CNN framework (MSCNN-0), which supports that
MSCNN outperforms the traditional CNN framework on the
tasks which are LI.

Fig. 6. The performance comparison for the task
CALTECH101. The results show that our proposed method
(MSCNN-1) performs worse than the traditional CNN frame-
work (MSCNN-0) because CALTECH101 is mostly not LI,
which indicates that MSCNN does not work for the tasks
which are not LI.

satisfies LI property, this result supports that MSCNN outper-
forms the traditional CNN framework on the tasks satisfying
LI property. Fig. 5 also supports the following two arguments:
1: The accuracy increases the most when we increase the
number of scales in MSCNN to a certain level. 2: Using
multi-scale features outperforms using the features in one
scale for the tasks which are LI.

CALTECH101: Fig. 6 compares the performance of
Zeiler’s work [4], MSCNN-0, and MSCNN-1, showing that
Zeiler’s work [4] and MSCNN-0 are comparable in accu-
racy. However, Fig. 6 shows that MSCNN-1 performs
worse than MSCNN-0. This result is not surprising because
CALTECH101 is mostly not LI and our proposed framework
is based on LI assumption. Fig. 6 indicates that MSCNN does
not work for the tasks which are not LI.

ARC-CLS: Fig. 7 compares the performance of Xu’s
method [12] and MSCNN-0 to MSCNN-2, showing that
our proposed methods (MSCNN-1 and MSCNN-2) outper-
form both the current state-of-the-art method and the tradi-
tional CNN framework (MSCNN-0). Since ARC-CLS



Fig. 7. The performance comparison for the task ARC-
CLS. The results show that our proposed methods (MSCNN-
1 and MSCNN-2) outperform both Xu’s method [12] and the
traditional CNN framework (MSCNN-0), which supports that
MSCNN still outperforms the traditional CNN framework on
the tasks which are partially LI.

only partially satisfies LI property, this result supports that
MSCNN can still outperform the traditional CNN framework
on the tasks which are only partially LI. Fig. 7 also supports
that using multi-scale features outperforms using the features
in only one scale for the tasks which are partially LI.

Based on our experimental results, we show that MSCNN
outperforms the traditional CNN framework on the tasks
which are LI. Even when LI property is only partially satis-
fied, MSCNN can still outperform the traditional CNN frame-
work. In addition, our results indicate that for a task satis-
fying LI property, there is a most suitable number of scales
for MSCNN such that the accuracy can increase the most.

5. CONCLUSION

We addressed the label-inheritable (LI) property of the clas-
sification tasks and proposed a novel framework, multi-scale
convolutional neural networks (MSCNN), for the tasks satis-
fying LI property. We also proposed a training method
for MSCNN under LI assumption such that exponentially
more training examples can be generated without the need to
collect new training data. MSCNN not only solves the issues
of the previous methods which use CNN to extract multi-
scale features but also outperforms both the state-of-the-art
methods and the traditional CNN framework on two LI tasks,
artist and artistic style classification. Our experimental results
also show that MSCNN can still outperform both the state-of-
the-art method and the traditional CNN framework even on
architectural style classification which is only partially LI.
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