
Toward Correlating and Solving Abstract Tasks
Using Convolutional Neural Networks

Kuan-Chuan Peng
Cornell University
kp388@cornell.edu

Tsuhan Chen
Cornell University
tsuhan@cornell.edu

Abstract

Most works using convolutional neural networks (CNN)
show the efficacy of their methods in standard object recog-
nition tasks, but not in abstract tasks such as emotion clas-
sification and memorability prediction, which are a subject
of increasing importance (especially as machines become
more autonomous, there is a need for semantic under-
standing). To verify whether CNN-based methods are effec-
tive in abstract tasks, we select 8 different abstract tasks in
computer vision, evaluating the performance of 5 different
CNN-based training approaches in these tasks. We show
that CNN-based approaches outperform the state-of-the-
art results in all the 8 tasks. Furthermore, we show that
concatenating CNN features learned from different tasks
can enhance the performance in each task. We also show
that concatenating the CNN features learned from all the
tasks under experiment does not perform the best, which
is different from what is usually shown in previous works.
Using CNN as a tool to correlate different tasks, we suggest
which CNN features researchers should use in each task.

1. Introduction

Convolutional Neural Networks (CNN) have demon-
strated better performance than non CNN-based approaches
for various datasets in recent research [9, 13, 37, 38].
This trend of applying CNN-based approaches to computer
vision problems started with Krizhevsky et al. [25] using
CNNs to achieve significant improvements in ImageNet [6]
classification results. Further, Donahue et al. [9] show that
the network used in [25] can serve as a feature extractor
which they use to outperform the state-of-the-art results
on several generic tasks. Since then, more researchers
have started studying and applying CNN-based approaches
to different standard benchmark datasets. Summarizing
several standard datasets and the recent CNN-related works
using them in Table 1, we find that one unifying attribute of
the datasets used in most CNN-related works is the fact that

dataset(s) CNN-related works

ImageNet [6] [9, 13, 15, 25, 37]
PASCAL [11] [1, 15]

SUN [34] [1, 9, 13]
Caltech-101 [26] [9, 15, 37]

Caltech-UCSD Birds 200 [33] [9, 38]

8 abstract tasks w/ 6 datasets (Table 2) this work

Table 1. Several standard datasets and the recent CNN-related
works using them. In contrast to the concrete tasks associated
with these datasets, we focus on 8 abstract tasks (associated with
6 datasets) which interest computer vision researchers recently.

the associated tasks of these datasets are standard classical
object/scene classification tasks (concrete tasks) instead of
abstract tasks.

Adopting the definition from Merriam-Webster dictio-
nary [31], we use the term “abstract task” to refer to
the task relating to or involving general ideas or quali-
ties rather than specific people, objects, or actions. As
opposed to an “abstract task”, the term “concrete task”
refers to a task that is not abstract. According to this
definition, the tasks adopted in most CNN-related works
are concrete tasks. Relatively few CNN-related works
concentrate on the abstract tasks. The abstract tasks have
recently received a great deal of focus, including classifi-
cation tasks (emotions [28, 32], architectural styles [35],
aesthetic qualities [27, 29], fashion styles [23], artist and
artistic styles [20]) and regression tasks (memorability [4,
16, 17, 22, 24] and interestingness [12, 14]). Most of
the mentioned references tackle the abstract tasks without
using CNN. Figure 1 displays some example images from a
concrete task and an abstract task along with their labels,
showing that the labels are one major difference of the
images from these two tasks.

In this work, we are interested in the performance of
CNN in abstract tasks because it is not yet well studied
in current literature. We are curious whether a CNN can
outperform the current state-of-the-art results in abstract
tasks. We would like to know, for a given network archi-



Figure 1. Example images from a concrete task (ImageNet [6] classification) and an abstract task (AVA [29] aesthetic classification). The
left 4 images are from ImageNet [6], and the corresponding labels are shown at the bottom of the images. The right 8 images are from
AVA [29]. In these 8 images, the left (right) 4 images are labeled as images with high (low) aesthetic quality.

dataset Artphoto Painting-91 Painting-91 AVA HipsterWars arcDataset Memorability Memorability
task emotion artist artistic style aesthetic fashion style architectural style memorability interestingness

classification classification classification classification classification classification prediction prediction
reference [28] [20] [20] [29] [23] [35] [17] dataset: [17]; task: [14]
task ID EMO AST ART AVA FAS ARC MEM INT

# classes 8 91 13 2 5 10 / 25 regression task regression task
# images 806 4266 2338 >250k 1893 2043 / 4786 2222 2222

image type deviantart [7] painting painting dpchallenge [10] outfit architecture general general
class labels fear, sad, etc. Rubens, Baroque, high / low Bohemian, Georgian, memorability interestingness

Picasso, etc. Cubbism, etc. aesthetic quality Goth, etc. Gothic, etc.

# training images ∼645 2275 1250 ∼233k 853 300 / 750 1111 1982
# testing images ∼160 1991 1088 19930 92 1743 / 4036 1111 240

data split random specified [20] specified [20] specified [29] random random specified [17] random
# fold(s) 5 1 1 1 100 10 25 10

evaluation metric 1-vs-all accuracy accuracy accuracy accuracy accuracy accuracy ρ ρ
reference of [32] [20] [20] [29] [23] [35] [17] [14]
above setting

Table 2. The datasets and associated abstract tasks used in this work along with their properties. In the entire paper, we refer to each task
by the corresponding task ID listed under each task. The experimental setting for each task is provided at the bottom of the table, where ρ
is Spearman rank correlation between the prediction and the ground truth.

tecture, which of the many approaches to training the
network performs the best for abstract tasks. In addition,
we are also curious about the following questions which
are rarely discussed in current literature where different
abstract tasks are treated in a relatively independent fashion.
We would like to know whether the CNN features learned
from an abstract tasks can improve the performance in
another abstract task. Furthermore, we want to identify
for a given abstract task, concatenating which of the many
learned CNN features will perform the best. These ques-
tions are related to the transferability mentioned by Yosinski
et al. [36]. However, Yosinski et al. [36] study the trans-
ferability only in the ImageNet [6] classification task. Our
work is related to the transferability across different tasks
and datasets. Our experiments include 8 abstract tasks from
6 datasets, covering the abstract tasks mentioned previously.
The datasets and tasks used in this work are summarized in
Table 2, where each task is assigned a task ID. In this paper,
we use the task ID to refer to each abstract task.

Most works using CNN-related features, including the
references in Table 1, adopt the CNN proposed in [25] and
pre-train it with supervision for ImageNet [6] classification.
As a strong and novel departure from the previous works,

this paper uses not only the CNN features pre-trained with
the supervision for ImageNet [6] but also the CNN features
pre-trained with the supervision for AVA [29] under the
same CNN architecture [25]. We compare the performance
of these two sets of CNN features in all 8 abstract tasks in
Table 2, identifying which set of features achieves better
performance in each abstract task.

When using CNN-based approaches or features for
abstract tasks, most existing works limit themselves to one
specific domain instead of deriving cross-task insights and
leveraging the CNN features learned from different domains
of abstract tasks. For instance, Bar et al. [2] use CNN-
based features to perform artistic style classification of the
images in WikiArt dataset [3]. Peng et al. [30] predict
emotion distributions with their proposed Emotion6 dataset.
Karayev et al. [19] work on image style classification with
their proposed datasets, but Lu et al. [27] are interested in
classifying both aesthetic qualities and image styles using
AVA dataset [29]. Though our datasets do not completely
overlap, 3 of our 8 selected tasks in Table 2 (EMO, ART,
and AVA) cover similar abstract tasks to theirs. Khosla et
al. [21] adopt CNN-based features to predict popularity of
Flickr images. Deza and Parikh [8] incorporate CNN-based



features to analyze image virality. We plan to include their
abstract tasks as our future work. The novelty of this paper
is in applying CNN-based features to 8 abstract tasks from
8 different domains, correlating different abstract tasks, and
providing cross-task findings based on the empirical conclu-
sions of the experimental results. The following subsection
summarizes our findings.

1.1. Summary of Findings

Superior performance of CNN-based approaches in
abstract tasks. Testing the performance of 5 different
training approaches with the CNN in [25], we find that at
least one of the five CNN-based approaches outperforms the
current state-of-the-art performance in the 8 abstract tasks
in Table 2.

Concatenating CNN features learned from different
tasks can enhance the performance in each task. Unlike
previous works [14, 17, 20, 23, 28, 29, 35] that only use
standard or handcrafted features without using the features
specifically trained for other abstract tasks, we argue that
the performance of a given abstract task can benefit from
the features learned from other existing abstract tasks. More
precisely, our results show that for each of the abstract
tasks in Table 2, concatenating the CNN features learned
from some other task(s) which are different from the task
of interest can outperform using only the CNN features
learned from the task of interest. This finding supports that
when the computer vision community keeps identifying and
proposing brand new tasks, researchers should leverage the
knowledge learned from other related tasks.

Concatenating CNN features learned from all the
tasks does not perform the best. To identify which
CNN features to concatenate will perform the best in each
task, we evaluate different settings of concatenating CNN
features. Our results show that concatenating the CNN
features learned from all the tasks in our experiment does
not perform the best, which is surprising and inconsis-
tent with what is usually shown in previous works [16,
17, 20, 29] where combining all the features achieves the
best performance. We also show that in some abstract
tasks, using only the CNN features learned from the task
of interest outperforms concatenating the CNN features
learned from all the tasks. In addition, for each task, we
identify the concatenating setting which results in the best
performance in our experiment.

Suggestions of choosing CNN features to use in
abstract tasks. We address that CNN can be used as a
tool to correlate different abstract tasks. According to the
performance of the CNN features learned from different
abstract tasks, we are able to interpret a given abstract task
using higher-level semantics instead of only using stan-
dard or handcrafted features like previous works [14, 20,
23, 28, 29]. For example, according to our results, artistic

style features (F ART) outperforms fashion style features
(F FAS) in the artist classification task (AST), where the
notation “F T” denotes CNN features learned from the task
T (T is a task ID). For each task, we release the performance
ranking of the CNN features learned from different tasks.
The ranking is an indicator of which CNN features we
should consider in each task. We hope this method of corre-
lating different abstract tasks will encourage researchers to
leverage the knowledge learned from existing tasks more
when they solve their tasks of interest.

2. Experimental Setup
2.1. Datasets and Tasks

Performing 8 abstract tasks from 6 datasets, we summa-
rize all the datasets and tasks used in this paper in Table 2
along with their properties and related statistics. We refer to
each task by its task ID listed in Table 2, where the experi-
mental setting associated with each task is also provided. In
Table 2, “data split” indicates whether the training/testing
splits are randomly generated or specified by the work
proposing the dataset/task, and ”# fold(s)” represents the
number of different training/testing splits used for the task.
The experimental setting of each task follows that of the
corresponding reference listed at the bottom of Table 2.
More detail experimental settings of the tasks EMO, AVA,
and FAS are presented in the supplementary materials.

2.2. Network Architecture

For the 6 classification tasks in Table 2, we use the
Caffe [18] implementation of the CNN introduced in [25]
except that the number of the nodes in the output layer is set
to the number of classes in each task. For the 2 regression
tasks (MEM and INT), we also use the Caffe [18] imple-
mentation of the CNN introduced in [25] except that the
number of the nodes in the output layer is changed to 1
to predict a real value and that the softmax loss layer is
replaced with the Euclidean loss layer. When using the
Caffe [18] implementation, we adopt its default training
parameters for training the CNN for ImageNet [6] classi-
fication unless otherwise specified.

2.3. Training Approaches

Before training, we resize all the images to 256×256
which is the same size used to train the CNN for
ImageNet [6] classification in Caffe [18] implementation.
We directly adopt the Caffe reference model [18] (denoted
as MImageNet) for ImageNet [6] classification. Using the
same CNN architecture (except that the number of the nodes
in the output layer is set to 2), we train an AVA [29] refer-
ence model (denoted asMAVA) with∼233k training images
and training from scratch approach (randomly initialize
all the CNN parameters and train with the training set).



training approach ID description

pt ImageNet + ft Pre-train with MImageNet and fine-tune all the CNN parameters using the training set.
pt ImageNet + ft-fc8 The same as “pt ImageNet + ft” except that only the CNN parameters associated with the edges directly connected to the

output layer are allowed to be updated using the training set.
pt AVA + ft Pre-train with MAVA and fine-tune all the CNN parameters using the training set.

pt AVA + ft-fc8 The same as “pt AVA + ft” except that only the CNN parameters associated with the edges directly connected to the output
layer are allowed to be updated using the training set.

train from scratch Randomly initialize all the CNN parameters and train with the training set.

Table 3. The five different CNN training approaches used in this work. MImageNet is the Caffe [18] reference model trained for
ImageNet [6] classification, and MAVA is our trained reference model for AVA [29] classification. In this work, we refer to each training
method by its training approach ID.

task ID EMO AST ART AVA FAS ARC MEM INT
evaluation metric 1-vs-all accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) ρ ρ

previous work 63.163 [32] 53.100 [20] 62.200 [20] 73.250 [27] 70.971 [23] 69.170 / 46.210 [35] 0.500 [22] 0.600 [14]
pt ImageNet + ft 60.127 56.102 68.290 n / a 71.294 71.159 / 52.953 0.520 0.643

pt ImageNet + ft-fc8 64.724 53.541 65.165 n / a 66.228 67.246 / 51.469 -0.140 0.339
pt AVA + ft 59.836 25.615 40.625 n / a 57.337 35.841 / 20.401 0.368 0.511

pt AVA + ft-fc8 60.644 4.671 18.015 n / a 27.554 18.233 / 8.290 0.080 -0.113
train from scratch 61.572 21.698 38.327 74.436 54.304 21.532 / 12.386 0.372 0.382

Table 4. The summary of the experimental results of the 8 abstract tasks listed in Table 2 using the five training approaches in Table 3. In
this table, ρ is the Spearman rank correlation between the prediction and the ground truth. The bold numbers represent the best performance
given the specified evaluation metric, and the underlined numbers indicate the performance better than that of “train from scratch”.

We train a reference model for AVA [29] instead of other
datasets in Table 2 because the number of training images
in AVA [29] is large enough (>230k) such that training from
scratch can achieve reasonable performance.

Given MImageNet and MAVA, we list the 5 training
approaches used in this work in Table 3, following the
descriptions and setting of supervised pre-training and fine-
tuning used in [1] unless otherwise specified. In Table 3,
pre-training (pt) with MD means using a data-rich auxiliary
dataset D (D ∈ {ImageNet,AVA}) to initialize the CNN
parameters. Fine-tuning (ft) means all the CNN parame-
ters can be updated by continued training on the dataset
of interest. “ft-fc8” is the same as “ft” except that only
the CNN parameters associated with the edges directly
connected to the output layer are allowed to be updated. In
this paper, we use the training approach ID in Table 3 to
refer to each training approach. Applying all the 5 training
approaches listed in Table 3 to all the 8 tasks in Table 2, we
report the experimental results and compare them with the
corresponding state-of-the-art performance in Sec. 3. Our
trained AVA [29] reference model, MAVA, will be released
upon publication. More details about the parameters used
for training are shown in the supplementary material.

3. CNN Performance in Abstract Tasks

We summarize the experimental results of the selected
8 abstract tasks in Table 4, where more detailed results
are available in the supplementary materials if there are
multiple experimental settings for that task. Table 4

shows that in all the 8 tasks, at least one of the five
training approaches in Table 3 outperforms the state-of-
the-art methods. Table 4 also shows that for most of the
8 tasks, the training approaches involving pre-training and
fine-tuning usually outperform training from scratch. For
AST, ART, and ARC, the complete results are shown in
Table 4, where the results of ARC are displayed in the form:
10-way / 25-way classification accuracy. The results of
the other tasks are explained in detail in the supplementary
materials.

Reviewing all the experimental results in Table 4 and
the supplementary materials, we summarize the findings
in the form of Q&A in Table 5, extract cross-task conclu-
sions based on these findings, and provide probable reasons
for some of these findings in the following paragraphs. In
Table 5, Answer 2 shows that for all the listed abstract tasks
except EMO and AVA, “pt ImageNet + ft” performs the best
out of all the 5 training methods in Table 3. The reason
why “pt ImageNet + ft-fc8” outperforms “pt ImageNet +
ft” in EMO may result from the small amount of training
data provided in Artphoto dataset [28]. The small amount of
training data provide limited information on solving the task
EMO, so updating all the CNN parameters according to the
training set which is not representative enough is worse than
keeping most CNN parameters the same as the initialized
values learned from >1.2 million images in ImageNet [6].
For AVA, “pt AVA + ft-fc8” performs the best because the
dataset used for pre-training is suitable for the task, and
keeping most CNN parameters the same as the initialized
values learned from>230k images in AVA [6] is better than



task ID EMO EMO AST ART AVA AVA FAS ARC MEM INT
8-way 1-vs-all content-based generic

classification testing set testing set

Question 1 Can CNN-based methods outperform the state-of-the-art methods in the specified task?

Answer 1 Y Y Y Y Y Y Y Y Y Y

Question 2 Which training method in Table 3 results in the best performance?

Answer 2 pt ImageNet pt ImageNet pt ImageNet pt ImageNet pt AVA pt AVA pt ImageNet pt ImageNet pt ImageNet pt ImageNet
ft-fc8 ft-fc8 ft ft ft-fc8 ft-fc8 ft ft ft ft

Question 3 Given “pt ImageNet,” which one performs better, “ft” or “ft-fc8” ?

Answer 3 ft-fc8 ft-fc8 ft ft ft Tie ft ft ft ft

Question 4 Given “pt AVA,” which one performs better, “ft” or “ft-fc8” ?

Answer 4 ft Tie ft ft ft-fc8 ft-fc8 ft ft ft ft

Question 5 Given “ft,” which one performs better, “pt ImageNet” or “pt AVA” ?

Answer 5 pt ImageNet pt AVA pt ImageNet pt ImageNet pt AVA pt AVA pt ImageNet pt ImageNet pt ImageNet pt ImageNet

Question 6 Given “ft-fc8,” which one performs better, “pt ImageNet” or “pt AVA” ?

Answer 6 pt ImageNet pt ImageNet pt ImageNet pt ImageNet pt AVA pt AVA pt ImageNet pt ImageNet pt AVA pt ImageNet

Question 7 Does the specified training method outperform “train from scratch” ?

pt ImageNet + ft Y N Y Y N N Y Y Y Y
pt ImageNet + ft-fc8 Y Y Y Y N N Y Y N N

pt AVA + ft Y N Y Y Y Tie Y Y N Y
pt AVA + ft-fc8 N N N N Y Y N N N N

Table 5. The summary of the findings in Q&A form based on the experimental results (Table 4 and the supplementary materials) of all the
abstract tasks in Table 2. We use the task ID in Table 2 and the training approach ID in Table 3 to refer to each task and each training
method respectively.

updating CNN parameters according to a small training set.
Answer 5 and 6 in Table 5 show that for most abstract tasks,
pre-training from ImageNet [6] is better than pre-training
from AVA [29]. The main exception is the task AVA, which
is more relevant to AVA [29] than to ImageNet [6].

According to the findings in Table 5, we summarize the
following tips for future researchers applying CNN-based
approaches to abstract tasks. If there is no prior knowl-
edge about the abstract task of interest, one reasonable way
is applying all the 5 training approaches in Table 3 and
selecting the one with the best performance on the valida-
tion set. However, if we have the prior knowledge of which
dataset (out of all the possible datasets at hand which can
be used for pre-training) is more relevant to the abstract
task of interest, we can directly use that dataset for pre-
training instead of trying all of them. Even if we have no
prior knowledge, from our empirical findings in Table 5,
“pt ImageNet + ft” usually performs well for abstract tasks.

4. Correlate Abstract Tasks

4.1. Experimental Setting

To find out whether the features learned from one task
can enhance the performance in another task, we select a
total of 9 tasks (the 8 abstract tasks in Table 2 and Caltech-

101 [26] object classification task) in our additional exper-
iment. We include Caltech-101 [26] object classification
task (we use CAL as its task ID) because we are also curious
about whether the features learned from a concrete task can
improve the performance in abstract tasks. For the task
CAL, following the same setting in [37] (30 training images
per class), we achieve comparable accuracy as that reported
in [37] by using the network architecture in Sec. 2.2 and the
training approach “pt ImageNet + ft.”

For each of the 9 tasks in the experiment, we train
the corresponding CNN with the network architecture in
Sec. 2.2 and the training approach “pt ImageNet + ft.” We
treat each of the 9 trained CNN as a feature extractor which
takes an image as input and outputs a 4096-d feature vector
from its topmost fully connected layer. We use “F T” to
represent the 4096-d feature vector output from the CNN
trained with the task T where we call F T “self feature.”
For example, F EMO and F AST are learned CNN features
corresponding to emotion and artist classification respec-
tively. In the task EMO, F EMO is self feature, but F AST
is not.

With the 9 trained CNN feature extractors, we illus-
trate the framework of our experiment in Figure 2. Our
goal is to evaluate the performance in each task under
different settings of concatenating learned CNN features.



Figure 2. The framework of concatenating the CNN features
learned from different tasks. We experiment on 9 tasks (n = 9),
including the 8 abstract tasks in Table 2 and Caltech-101 [26]
object classification task. The switch Si associated with each task
Ti (i ∈ {1, 2, · · · , 9}) controls whether the CNN features learned
from task Ti are concatenated in the final feature vector.

We generate the concatenated CNN features as follows.
First, given an input image, we extract all the F Tis where
i ∈ {1, 2, · · · , 9} (Ti is one of the abstract task in Table 2
or CAL; Ti 6= Tj if i 6= j). Second, we decide whether
to concatenate F Ti by the binary switch Si associate with
F Ti. If Si is set (reset), F Ti will (will not) be part of the
features concatenated to form the final feature vector. In
other words, formed by concatenating all the F Ti with set
Si, the final concatenated CNN features are a 4096×nset-
d vector, where nset is the total number of set Si (i ∈
{1, 2, · · · , 9}).

For each of the 9 tasks, we evaluate the performance
under a total of 264 different settings of the 9 switches.
These settings include: 1) 9 different combinations of Si

such that nset = 1. 2) 28 − 1 different combinations of Si

such that nset > 1 and self feature is concatenated. For each
task, we train a classifier or regressor for each of the 264
settings using the concatenated CNN features of the training
dataset, and we test on the concatenated CNN features of the
testing dataset using the trained classifier or regressor. In
this experiment, we use support vector machine (SVM) or
support vector regression (SVR) provided in LIBSVM [5],
linear kernel, and the LIBSVM [5] default parameters to
train all the classifiers and regressors.

Considering the efficiency of the experiment, we choose
to do the first 5 folds of training/testing splits in the tasks
FAS, ARC, MEM, and INT where more than 5 folds are
provided. In the task EMO, we perform 8-way classification
instead of 1-vs-all setting. For AVA dataset [29] associated
with the task AVA, we use the generic training set with 2495
images to shorten the training time. In the task ARC, we do
the 25-way classification task specified in Table 2. In the
task CAL, we follow the setting in [37] (30 training images

per class). Other experimental settings are consistent with
Table 2 unless otherwise specified.

4.2. Experimental Results

We summarize the performance of concatenating learned
CNN features in Table 6, where we compare the perfor-
mance of concatenating all the 9 F Tis with that of self
feature in each task. The best performance out of 264
different settings is also listed in Table 6, and the corre-
sponding best concatenating setting is identified in Table 7.
In Table 6, the underlined numbers represent the perfor-
mance better than that of using self feature. The perfor-
mance of each of the 264 different settings in each task is
provided in the supplementary materials. Table 6 supports
the finding that concatenating the CNN features learned
from different tasks can improve the performance in each
task, regardless of whether the task is concrete or abstract.
Table 6 also shows that in all the 9 tasks, concatenating
all the learned CNN features is not the best concatenating
setting, which is different from most previous works [16,
17, 20, 29] where combining all the features achieves the
best performance. One possible reason is because the
amount of training data in each task is not sufficiently large
enough to perfectly train the 4096×9-d weight vector of
SVM/SVR.

Table 6 shows that in the 4 tasks (AST, CAL, ARC, and
FAS), concatenating all the learned CNN features performs
even worse than using only self feature, which suggests that
we should concatenate useful features instead of concate-
nating all the features. For each task, the best concatenating
setting out of 264 different settings is identified in Table 7,
which can serve as a guide to selecting useful features in
each task. Table 7 also shows that F AVA appears in the best
concatenating setting in 6 out of 9 tasks, which supports that
our trained model MAVA we plan to release in Sec. 2.3 is
beneficial to different tasks.

To be consistent with most previous works [14, 16, 17,
20, 23, 29] where the performance of each single feature is
reported, we summarize the performance ranking in each
task in Table 8, where the numbers are presented in the
form “rank (performance).” In Table 8, the rank 1 (9) repre-
sents the best (worst) performance in each task. We also
separately list the best and the worst performances out of
the 9 F Tis in each task. We want to address that even
the worst performance in each task is much better than
random guessing, which indicates that the non-best perfor-
mance of concatenating all the features shown in Table 6 is
not simply because of combining useless features together.
In Table 8, using self feature (the diagonal performances)
performs the best in all the 9 tasks except the two regres-
sion tasks MEM and INT. One possible reason is that SVR
is not designed to maximize ρ, the evaluation metric speci-
fied by the works [14, 17] proposing these tasks.



task ID EMO AST ART AVA FAS ARC MEM INT CAL
evaluation metric accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) ρ ρ accuracy (%)

self feature 36.228 55.148 67.555 69.423 76.957 54.440 0.398 0.573 88.217
best concatenating setting (Table 7) 39.082 57.509 71.048 69.980 77.609 55.382 0.507 0.630 88.394

concatenate all 36.971 54.596 69.210 69.458 74.348 53.489 0.504 0.629 85.969

Table 6. The summary of the experimental results using the framework in Figure 2. The task CAL and the 8 abstract tasks listed in
Table 2 are included in this experiment. In this table, ρ is the Spearman rank correlation between the prediction and the ground truth. The
underlined numbers indicate the performance better than that of using self feature. The best concatenating setting in each task is shown in
Table 7. This table shows that concatenating the CNN features learned from different tasks can improve the performance. However, in our
experiment, concatenating all the learned CNN features never performs the best in each task. In fact, in 4 out of 9 tasks, concatenating all
the learned CNN features performs even worse than using self feature.

task ID ART AST CAL ARC EMO AVA FAS MEM INT

F ART v v v v v v
F AST v v v v
F CAL v v v v
F ARC v v v v
F EMO v v v v v v
F AVA v v v v v v
F FAS v v v v v v

F MEM v v v v v
F INT v v

Table 7. The best concatenating setting out of 264 different settings
in each task. The corresponding performance is listed in Table 6.
This table shows that the best performance of each task is not
achieved by concatenating all the learned CNN features, but by
concatenating a subset of them.

Given that self feature usually performs the best (out of 9
learned CNN features) as shown in Table 8, we are curious
about the effect if we add an additional feature to the self
feature. In Table 9, we analyze the performance ranking
of using self feature plus the CNN features learned from
another task. The format of the numbers is the same as that
of Table 8 except that the underlined numbers represent the
performance better than that of using only self feature. The
best and the worst performances in each task out of the 8
different combinations of features are listed at the bottom
of Table 9, where the performance of using only self feature
is also provided.

Table 9 supports that most combinations of using self
feature and another CNN features outperform using only
self feature, which encourages us to use the CNN features
learned from another task when solving the task of interest.
However, there are some cases where combining features
decreases the performance (as shown in Table 9). These
cases address the importance of choosing useful features,
and both Table 8 and Table 9 can serve as the indicators
of choosing useful features. For instance, in the task ART,
we should consider using F AST to enhance the perfor-
mance. Table 8 and Table 9 are also examples of using
CNN as a tool to correlate different tasks. Leveraging the
characteristic of CNN that the features learned from one

task can be naturally bundled as a feature set (for example,
F ART), we are able to interpret a given task using higher-
level semantics. For example, in fashion style classification
(FAS), aesthetic features (F AVA) are more useful (in terms
of enhancing performance) than the features learned from
artist classification (F AST) according to both Table 8 and
Table 9.

5. Future Work
Encouraged by the performance improvement from our

proposed framework in Figure 2, we plan to replace the
switches (Sis) with real-valued weights and design a new
framework to automatically learn these weights from the
task of interest such that the performance can be improved
the most. In addition, this work combines the CNN features
learned from different tasks by concatenating them, but
there are other ways to combine different features. One
of the goals of our ongoing project is to design an algo-
rithm to better fuse different features. Furthermore, we
will continue studying the relationship between different
abstract tasks such that the knowledge learned from one task
can be utilized in other tasks.

6. Conclusion
In this work, we apply 5 different CNN-based training

approaches to the selected 8 abstract tasks receiving great
attention in computer vision recently, showing that our
results outperform the state-of-the-art results in all the 8
tasks. Unlike previous researchers who use standard or
handcrafted features to solve abstract tasks, we propose
a framework to leverage the CNN features learned from
different tasks. By evaluating the performance of concate-
nating features in different settings, we show that using the
CNN features leaned from one task can enhance the perfor-
mance in another task. We also show that concatenating all
the learned CNN features in this work is not the best option.
Instead, we should identify the useful features in each task
to achieve the best performance.

To identify the useful features in each task, we not only
show the best concatenating setting but also use CNN as a



task ID ART AST CAL ARC EMO AVA FAS MEM INT

F ART 1 (67.555) 2 (48.569) 4 (81.080) 4 (48.845) 7 (31.138) 5 (63.181) 4 (68.478) 3 (0.454) 5 (0.520)
F AST 1 (67.555) 1 (55.148) 5 (81.066) 6 (48.320) 6 (31.139) 7 (62.915) 6 (66.739) 6 (0.442) 6 (0.508)
F CAL 3 (61.121) 5 (45.907) 1 (88.217) 3 (50.411) 5 (31.886) 3 (63.297) 7 (66.739) 1 (0.464) 8 (0.493)
F ARC 4 (60.938) 4 (46.760) 2 (83.667) 1 (54.440) 2 (33.868) 4 (63.277) 2 (71.739) 7 (0.434) 9 (0.487)
F EMO 4 (60.938) 3 (47.564) 8 (70.771) 2 (50.629) 1 (36.228) 2 (63.392) 5 (68.043) 2 (0.459) 7 (0.497)
F AVA 7 (56.985) 7 (41.487) 6 (80.475) 7 (46.824) 4 (33.372) 1 (69.423) 3 (69.565) 5 (0.445) 1 (0.575)
F FAS 6 (57.813) 6 (44.751) 3 (81.514) 5 (48.697) 3 (33.748) 6 (63.006) 1 (76.957) 4 (0.450) 4 (0.542)

F MEM 9 (51.838) 9 (37.167) 9 (65.643) 9 (40.986) 9 (27.170) 9 (61.004) 9 (60.870) 8 (0.398) 3 (0.560)
F INT 8 (55.790) 8 (40.532) 7 (74.316) 8 (43.925) 8 (30.029) 8 (61.666) 8 (66.087) 9 (0.346) 2 (0.573)

evaluation metric accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) ρ ρ
best performance 67.555 55.148 88.217 54.440 36.228 69.423 76.957 0.464 0.575

worst performance 51.838 37.167 65.643 40.986 27.170 61.004 60.870 0.346 0.487

Table 8. The performance ranking in each task by using the CNN features learned from a single task. The numbers are presented in the
form “rank (performance).” The rank 1 (9) represents the best (worst) performance in each task. The table shows that self feature usually
performs the best if we use the CNN features learned from one task. The best and the worst performances out of the 9 different features
in each task are listed at the bottom of the table, which shows that even the worst performance is non-trivial (much better than random
guessing).

task ID ART AST CAL ARC EMO AVA FAS MEM INT

self feature + F ART n / a 3 (56.404) 4 (88.231) 2 (55.124) 1 (37.095) 6 (69.498) 2 (76.957) 7 (0.459) 6 (0.598)
self feature + F AST 1 (70.129) n / a 5 (87.823) 6 (54.574) 3 (36.560) 3 (69.528) 7 (74.348) 3 (0.466) 4 (0.599)
self feature + F CAL 2 (68.658) 2 (56.605) n / a 5 (54.747) 5 (36.352) 8 (69.323) 4 (76.522) 2 (0.468) 5 (0.598)
self feature + F ARC 2 (68.658) 7 (55.098) 3 (88.244) n / a 7 (35.855) 5 (69.503) 5 (75.652) 5 (0.463) 7 (0.598)
self feature + F EMO 4 (68.382) 1 (57.308) 6 (87.728) 1 (55.149) n / a 7 (69.473) 6 (75.435) 1 (0.470) 3 (0.599)
self feature + F AVA 6 (67.739) 6 (55.349) 1 (88.319) 4 (54.990) 2 (36.601) n / a 1 (77.391) 4 (0.465) 1 (0.610)
self feature + F FAS 7 (67.647) 4 (56.103) 2 (88.299) 3 (55.064) 6 (36.105) 1 (69.729) n / a 6 (0.461) 2 (0.603)

self feature + F MEM 5 (67.831) 5 (55.550) 7 (86.975) 7 (53.271) 4 (36.479) 3 (69.528) 2 (76.957) n / a 8 (0.585)
self feature + F INT 8 (67.096) 8 (53.541) 8 (85.834) 8 (52.359) 8 (35.361) 2 (69.594) 7 (74.348) 8 (0.417) n / a

evaluation metric accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) accuracy (%) ρ ρ
self feature only 67.555 55.148 88.217 54.440 36.228 69.423 76.957 0.398 0.573
best performance 70.129 57.308 88.319 55.149 37.095 69.729 77.391 0.470 0.610

worst performance 67.096 53.541 85.834 52.359 35.361 69.323 74.348 0.417 0.585

Table 9. The performance ranking in each task by using self feature and the CNN features learned from another task. The format of the
numbers is the same as that of Table 8 except that the underlined numbers represent the performance better than that of using only self
feature. The best and the worst performances in each task out of the 8 different combinations of features are listed at the bottom of the table,
where the performance of using only self feature is also provided. The table shows that most of the listed feature combinations outperform
using only self feature in each task.

tool to correlate different tasks. By presenting the perfor-
mance ranking of the CNN features learned from different
tasks, we provide suggestions of which CNN features to use
in each task. We hope that the results of this work will
encourage researchers proposing new tasks or interested
in existing tasks to cooperate instead of only focusing on
the task of interest without utilizing the knowledge learned
from existing tasks.

References
[1] P. Agrawal, R. Girshick, and J. Malik. Analyzing the perfor-

mance of multilayer neural networks for object recognition.
In ECCV, pages 329–344, 2014.

[2] Y. Bar, N. Levy, and L. Wolf. Classification of artistic styles
using binarized features derived from a deep neural network,
2014.

[3] I. Ben-Shalom, N. Levy, L. Wolf, N. Dershowitz, A. Ben-
Shalom, R. Shweka, Y. Choueka, T. Hazan, and Y. Bar.
Congruency-based reranking. In CVPR, pages 2107–2114,
2014.

[4] B. Celikkale, A. Erdem, and E. Erdem. Visual attention-
driven spatial pooling for image memorability. In CVPRW,
pages 976–983, 2013.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li.
Imagenet: A large-scale hierarchical image database. In
CVPR, pages 248–255, 2009.

[7] deviantart. http://www.deviantart.com.

[8] A. Deza and D. Parikh. Understanding image virality. In
CVPR, 2015.



[9] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional
activation feature for generic visual recognition. CoRR,
abs/1310.1531, 2013.

[10] dpchallenge. http://www.dpchallenge.com/.
[11] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL visual object classes (VOC)
challenge. IJCV, 88:303–338, 2010.

[12] Y. Fu, T. M. Hospedales, T. Xiang, S. Gong, and Y. Yao.
Interestingness prediction by robust learning to rank. In
ECCV, pages 488–503, 2014.

[13] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
In ECCV, pages 392–407, 2014.

[14] M. Gygli, H. Grabner, H. Riemenschneider, F. Nater, and
L. V. Gool. The interestingness of images. In ICCV, pages
1633–1640, 2013.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV, pages 346–361, 2014.

[16] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva.
What makes a photograph memorable? IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1469–
1482, 2014.

[17] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an
image memorable? In CVPR, pages 145–152, 2011.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[19] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell,
A. Hertzmann, and H. Winnemoeller. Recognizing image
style. In BMVC, 2014.

[20] F. S. Khan, S. Beigpour, J. V. D. Weijer, and M. Fels-
berg. Painting-91: a large scale database for computational
painting categorization. Machine Vision and Applications,
25:1385–1397, 2014.

[21] A. Khosla, A. D. Sarma, and R. Hamid. What makes an
image popular? In WWW, pages 867–876, 2014.

[22] A. Khosla, J. Xiao, A. Torralba, and A. Oliva. Memorability
of image regions. In NIPS, pages 296–304, 2012.

[23] M. H. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg.
Hipster wars: Discovering elements of fashion styles. In
ECCV, pages 472–488, 2014.

[24] J. Kim, S. Yoon, and V. Pavlovic. Relative spatial features
for image memorability. In ACMMM, pages 761–764, 2013.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems 25,
pages 1097–1105. 2012.

[26] F.-F. Li, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories. In
CVPRW, 2004.

[27] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. RAPID: rating
pictorial aesthetics using deep learning. In ACMMM, 2014.

[28] J. Machajdik and A. Hanbury. Affective image classifica-
tion using features inspired by psychology and art theory. In
Proceedings of the International Conference on Multimedia,
pages 83–92, 2010.

[29] N. Murray, L. Marchesotti, and F. Perronnin. AVA: A large-
scale database for aesthetic visual analysis. In CVPR, pages
2408–2415, 2012.

[30] K.-C. Peng, A. Sadovnik, A. Gallagher, and T. Chen. A
mixed bag of emotions: Model, predict, and transfer emotion
distributions. In CVPR, 2015.

[31] Merriam-Webster Online: Dictionary and Thesaurus.
http://www.merriam-webster.com/.

[32] X. Wang, J. Jia, J. Yin, and L. Cai. Interpretable aesthetic
features for affective image classification. In IEEE Interna-
tional Conference on Image Processing, pages 3230–3234,
2013.

[33] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff,
S. Belongie, and P. Perona. Caltech-UCSD Birds 200.
Technical Report CNS-TR-2010-001, California Institute of
Technology, 2010.

[34] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
SUN database: Large-scale scene recognition from abbey to
zoo. In CVPR, pages 3485–3492, 2010.

[35] Z. Xu, D. Tao, Y. Zhang, J. Wu, and A. C. Tsoi. Archi-
tectural style classification using multinomial latent logistic
regression. In ECCV, pages 600–615, 2014.

[36] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In NIPS, pages
3320–3328, 2014.

[37] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, pages 818–833, 2014.

[38] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-
based R-CNNs for fine-grained category detection. In
ECCV, pages 834–849, 2014.


