
Submitted to IEEE International Conference on Image Processing 2000 in Vancouver

Joint Geometry/Texture Progressive Coding of 3D Models

Masahiro Okuda and Tsuhan Chen

Dept. of Electrical and Computer Engineering,

Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Email: masa@andrew.cmu.edu, tsuhan@ece.cmu.edu

Abstract
Files of 3D models are often large and time-consuming to

download. Most 3D viewers need the entire file to display a
3D model even when the user is interested only in a part of or
a low-resolution version of the model. Therefore, progressive
coding of 3D models is desired. However, existing work
studies either the progressive coding of the geometry only, or
progressive coding of the texture only. In this paper, we
propose a joint geometry/texture coding technique for 3D
objects. Both of the geometry and the texture are
progressively coded and transmitted to the viewer. The most
perceptually important bits are sent before the less important
bits, allowing the users to stop the download at any time and
yet retain the best quality available at that time.

1. Summary

Due to the rapid development of computer and information

technology, 3D modeling capabilities are becoming an
increasingly important part of many fields, including video
games, CAD/CAM, medical imaging, and so on. However,
files of 3D models are often large and time-consuming to
download. Moreover most 3D viewers need the entire file to
display the model even when the user is interested only in a
part of or a low-resolution version of the model. Since the
computers used to view the file range from low-end PCs to
top-of-the-line supercomputers, and since the files are sent
over slow telephone line as well as faster ISDN, the level of
detail actually required may vary considerably. The
progressive representation of the 3D models is desired to
satisfy the variety of demands.

There exist some works on 3D model coding such as a
compressed binary format (a list of current Web3D working
groups can be found at [1]). The MPEG-4 Synthetic/Natural
Hybrid Coding subgroup (MPEG-4 SNHC) is also working
in similar areas [2]. In [3], [4] and [5], progressive 3D coders
have been proposed. In our previous work [6], we proposed
progressive 3D coding using the vertex decimation scheme,
which provides fully progressive bitstreams.

However, most existing work considers only progressive
coding of geometry of the 3D models. The 3D models of the
VRML usually have one or more attributed data such as

normals, colors, textures and so on. If the 3D models need to
look authentic, texture maps are required. In this paper, we
propose a joint geometry/texture coding scheme for the 3D
models, resulting in progressive bitstreams. In our codec,
the most perceptually important bits to represent the 3D
models are sent before the less important bits, allowing the
users to stop the download at any time.

2. Joint Geometry/Texture Coding

2.1. Vertex decimation scheme

The proposed method is an extension of our previous work

in [6]. The encoder removes vertices until we are left with a
base mesh which has only a small fraction of the vertices and
triangles in the original model. To send a 3D model
progressively, we start by sending the base mesh, which is
simply the vertex positions and triangle vertices. From this
base mesh, enhancements to the model are sent, vertex by
vertex, until all the vertices are restored.

The process of vertex decimation is as follows. In a
triangular mesh, there is a ring of triangles that surround
every vertex. For example, see Fig. 1. Vertices that satisfy
either one of the following two conditions are not decimated
by the algorithm so as not to destroy the topology and the
appearance of the model.

1. The vertex has surrounding triangles that do not form a

closed ring.
2. The vertex has extraneous triangles connected to it.

To ensure that the most perceptually important vertices are

sent before the less important vertices, we must have a way
of measuring the importance of vertices. Two measures of
the importance are introduced. The measure)(iv we
implemented is to estimate the difference in the volume
caused by the decimation, by forming tetrahedrons with the
removed vertex as the apex and the new triangles as the base,
and adding up the volumes of these tetrahedrons. The
measure)(iv is similar to the “curvature” of the mesh at the
vertex. The other measure)(ic is texture similarity. During
the simplification procedure, some triangles are decimated.

Submitted to IEEE International Conference on Image Processing 2000 in Vancouver

In case that each triangle has a corresponding small texture,
some textures are lost by the simplification. Thus, in order to
preserve the appearance of the models, we need to carefully
choose the vertices being decimated. In this paper, we adopt
the color difference as the criterion. The idea of this second
measure is as follows.

Fig. 1: Illustration of 3D surfaces:
 (a) triangles with different colors
 (b) triangles with similar colors

Consider two vertices on 3D surfaces, v1 and v2 in Fig. 1.

While the triangles connected to v1 have different color
information, those of v2 have similar colors. In order to
preserve the appearance of the models, v2 should be
decimated prior to v1 even when these two have a same
curvature. This second criterion seeks to find the importance
of vertices in terms of the color difference. In practice, we
find the average of each component, and then, we use the
sum of the absolute differences between the averages as the
measure. In our framework, we calculate the weighted sum
of the two measures for each vertex as in (1) and then decide
which vertex should be decimated.

)()()(10 icaivaim += (1)

Vertices with large)(im are considered more perceptually

important. Therefore, they are decimated later in the
encoding process, and sent earlier during transmission. Note
that user can freely select the weights, 0a and 1a ,

depending on the user’s preference on the importance of
geometry and color information.

2.2. Re-triangulation and texture re-mapping

Once a vertex is decimated, re-triangulation and texture re-

mapping are needed to fill up the hole caused by the
decimation. For this, we need to consider two ways of
corresponding the 3D geometry with the texture map [7]. In
one case, each vertex in the 3D model corresponds to one
point in the texture map. In the other case, each triangle in
the 3D model corresponds to a triangle in the texture map. In
case that each vertex has one texture correspondence, once a
vertex is decimated, the textures which belong to the
triangles originally connected to the vertex can be re-mapped
directly to the base left by the decimation. Since the texture
coordinates of the remaining vertices will remain the same,
any re-triangulation scheme produces similar results.
However in case that each triangle has one texture
correspondence, the re-triangulation and the re-mapping
significantly affect the decimated model. In the following,
we discuss the re-triangulation and the texture re-mapping

schemes used in our algorithm for the case of correspondence
for each triangle.

First, among all vertices connected to the vertex that is
considered, we find the vertex that has the closest distance
from the removed vertex. Then, the removed vertex is
mapped to the closest vertex, which results in a triangle fan
(see Fig. 2). The textures owned by the triangles that are
retained are simply re-mapped to the new triangles. For
example, in Fig. 2, the decimated vertex is moved to the
vertex C. The textures of the triangles 1, 4, 5 and 6 are
mapped to the new four triangles.

Fig. 2: Re-triangulation and texture re-mapping

In the bitstream, each decimation is encoded as a seven-

tuple: the index of the closest vertex on the edge, the indices
of the two vertices on which we start the fan triangulation,
the number of triangles to traverse, the x, y, z coordinates of
the decimated vertex, and two texture coordinates, s and t, for
each vertex in the two triangles removed by the decimation.
Vertices are numbered in the order they are sent in the base
mesh, and each new vertex is assigned the next available
index.

2.3. Progressive texture coding

As is described above, there are two types of texture

correspondence in the VRML format, correspondence for
each vertex and for each triangle. In the former case, one
texture is mapped on a unit of a model. Since this type of
texture is often as smooth as ordinary images, we adopted
wavelet coding for texture compression, resulting in SNR
progressive bitstreams. Both of the geometry and the texture
get finer progressively as more bits are received.

In the latter case, the texture map contains many small and
large triangles. See Fig. 4 for an example. For this type of
texture, we encode each triangle independently and send it to
the decoder. The coding method we employ is as follows.

First consider a square circumscribing the triangle. We
choose the size of the square to be a multiple of 8. We fill up
the pixels outsize the triangle with the pixels at boundary of
the triangle by horizontal/vertical repetitive padding similar
to what is used in MPEG4. Fig. 3 shows the padding
procedure, in which black and grey pixels outside the triangle
are padded by vertical and horizontal repetitive padding,
respectively. Then, we compress the square using the DCT,
scalar quantization, zigzag scan and Huffman coding, similar

VV1 2

C : closest vertex

C

C

1

23
4

5
6

1
65

4

Submitted to IEEE International Conference on Image Processing 2000 in Vancouver

to the JPEG algorithm. In our framework, only the textures
required to render a current level of the model are transmitted.
Hence, progressive texture coding is achieved.

Fig. 3 Horizontal/Vertical Repetitive Padding

3. Experimental Results

We implemented a viewer to progressively display the 3D

models coded by our algorithm. Once sufficient bits are
downloaded from the server to display more detail, the new
model is updated on the screen. While the file is being
downloaded, the user can change the viewpoint to examine
the model. If the user is uninterested in the model, the
downloading can be stopped at any time. Some VRML
models, which have one correspondence for each triangle,
obtained from [8] were used in the experiments. Fig. 4 shows
what a model looks like as it is being loaded through a 56K
modem dial-up connection.� The model (a), (b) and (c) were
decoded using 8%, 28% and 100% of the bitstream,
respectively. It can be seen that even a low level version of
the model gives the user a very good idea of what the
complete model would look like. Without progressive coding,
we would need about 86 seconds to download and see the
model. Since we use the color difference as the measure of
importance for vertices, color patterns (such as an edge
between white and black feathers) are kept during the vertex
decimation procedure.

Table.1 shows the compression efficiency of the proposed
algorithm. Both the original and progressive files are
compressed by gzip. Note that all information about the
meshes such as vertex coordinates and triangle
correspondences are coded losslessly, while the lossy
compression scheme in Sec.2.3 is applied to the textures. As
can be seen from the table, about 58% of bits are saved
compared to the original files, despite the fact that they are
coded progressively.

4. Conclusion

In this paper we demonstrated joint geometry/texture

progressive coding of 3D models. We have created tools that
code VRML files into progressive bitstreams, and a browser
that allows the user to download and view these files
progressively. We examined the compression efficiency and
showed that it is not compromised by the progressive coding
process. Our viewer has been implemented and fully tested.
It is available for download on the web site:
 (http://amp.ece.cmu.edu/).

References

[1] Web3D Consortium Working Groups,

http://www.web3d.org/fs_workinggroups.htm
[2] MPEG-4 SNHC web page, http://www.es.com/mpeg4-

snhc
[3] MPEG-4 SNHC, Gabriel Taubin, editor, “SNHC

Verification Model 9.0 [3D Mesh Encoding]”, W2301,
7/10/98

[4] G. Taubin and J. Rossignac, “Geometric Compression
through Topological Surgery”, ACM Transactions on
Graphics, 1998. Also IBM Research TR RC-20340, Jan
1996.

[5] J. Li and J. Kuo, “Progressive Coding of 3-D Graphics
Models”, Proceedings of the IEEE, Vol. 86, No. 6, June 1998

[6] B. Koh and T. Chen, “Progressive VRML Browser”,
IEEE International Workshop on Multimedia Signal
Processing, Sep 1999.

[7] J.D. Foley, “Computer Graphics: Principles and
Practice”, Addison-Wesley Pub Co.

[8]

http://www.vit.iit.nrc.ca/3D/Pages_HTML/3D_Models.html
 (a) 3 seconds

(b) 11 seconds

� � (c) 40 seconds
Fig. 4: Progressively decoded 3D model

Table.1: Comparison of file sizes

Model Progressive Original
Duck 282kB 605kB

Totem Pole 291kB 683kB
Vase 1 259kB 651kB

http://amp.ece.cmu.edu/proj_Progressive3DModel.htm
http://www.web3d.org/fs_workinggroups.htm
http://www.es.com/mpeg4-snhc
http://www.es.com/mpeg4-snhc
http://www.vit.iit.nrc.ca/3D/Pages_HTML/3D_Models.html

Submitted to IEEE International Conference on Image Processing 2000 in Vancouver

Vase 2 280kB 687kB

	Joint Geometry/Texture Progressive Coding of 3D Models
	Email: masa@andrew.cmu.edu, tsuhan@ece.cmu.edu
	Abstract
	1. Summary

	2. Joint Geometry/Texture Coding
	2.1. Vertex decimation scheme
	2.2. Re-triangulation and texture re-mapping
	2.3. Progressive texture coding
	Fig. 3 Horizontal/Vertical Repetitive Padding
	3. Experimental Results

	4. Conclusion
	References

