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ABSTRACT

In using image analysis to assist a driver to avoid obstacles
on the road, traditional approaches rely on various detectors
designed to detect different types of objects. We propose
a framework that is different from traditional approaches in
that it focuses on finding a clear path ahead. We assume that
the video camera is calibrated offline (with known intrinsic
and extrinsic parameters) and vehicle information (vehicle
speed and yaw angle) is known. We first generate perspec-
tive patches for feature extraction in the image. Then, after
extracting and selecting features of each patch, we estimate
an initial probability that the patch corresponds to clear path
using a support vector machine (SVM) based probability es-
timator on the selected features. We finally perform proba-
bilistic patch smoothing based on spatial and temporal con-
straints to improve the initial estimate, thereby enhancing de-
tection performance. We show that the proposed framework
performs well even in some challenging examples with shad-
ows and illumination changes.

Index Terms— Computer vision, Feature extraction , Ob-
ject Detection, Smoothing methods , Autonomous vehicles,

1. INTRODUCTION
The traditional methods for autonomous driving first detect all
objects (e.g., vehicles, pedestrians, buildings, and trees) in the
scene, and infer the remaining area as clear path with an as-
sumption that the no-object area is the feasible region for au-
tonomous driving. During the last decade, several object de-
tection methods have been introduced in the literature. High-
cost solutions using active sensors (such as Radar [1] and
LIDAR [2]) show promising results for object detection in
the autonomous vehicle competition, 2007 Defense Advanced
Research Projects Agency (DARPA) Urban Challenge. Low-
cost solutions using passive sensors (such as cameras), com-
bined with computer vision algorithms, offer more affordable
and no-interference solutions which also track objects reason-
ably well. [3] used stereo-vision-based methods to detect ve-
hicles and objects. [4] achieved vehicle and pedestrian detec-
tion by learning information from the motion and edge cues.
[5] modeled the statistics of object appearance and non-object
appearance by two histograms of wavelet coefficient code-

Fig. 1. System Overview

words. [6] adopted spatial-temporal filters based on shifted
frame difference to augment the pedestrian detection using
spatial filters alone, which considered both motion and ap-
pearance to improve detection performance.

However, generic detection (i.e., detecting all kinds of ob-
jects) is a challenging task. The object appearance varies be-
tween different classes. Intra-class variation in each class also
makes the detection less reliable. In addition, object appear-
ance also varies depending on the host vehicle motion, light-
ing, and weather, which makes multiple-object detection sys-
tems complex.

In this paper, we turn the problem around. We detect the
clear path, whose features are clustered together due to its
similar texture, directly for autonomous driving. Therefore,
we use only one clear path detector instead of a combination
of multiple object detectors. We will show through exam-
ples that this approach has the potential to achieve improved
clear path detection. Fig.1 gives an overview of the system,
comprising of four components: perspective patch genera-
tion, feature extraction and selection, support vector machine
(SVM) status estimator, and patch-based refinement. In ad-
dition, compared to the traditional detection algorithms, there
are two novel aspects in the proposed method. 1) Perspective
Patch: We generate rectangular patches on the ground in the
world coordinates and project them to the image coordinates
for computational efficiency. And 2) Patch-based Smoothing
with Spatial and Temporal Constraints: The patch smooth-



ing method enforces the spatial and temporal constraints of
texture consistency.

The paper is organized as follows. In the next section,
we introduce perspective patch generation. We discuss initial
clear path estimation and patch-based smoothing in Section 3
and Section 4, respectively. In Section 5, experimental results
are shown that the clear path detection approach delivers high
accuracy, and conclusions are given in Section 6.

2. PERSPECTIVE PATCH GENERATION
In traditional object detection applications, there are two
kinds of patches in images without considering any perspec-
tive information: fixed-grid patch [5] and dynamic-size patch
[6], since objects are perpendicular to camera’s optical axis.
However, the clear path lies on the ground and is parallel
to the camera’s optical axis. Instead of defining patches in
image coordinates, we define the patches in the world coor-
dinates lying on the ground as shown in the Fig.2 and project
them to the image coordinates considering the perspective of
clear path.

In our proposed method, we first define the clear path can-
didate region in the world coordinates with a 9x25 (meters)
rectangle in front of the vehicle (Fig.2(A)). Secondly, this re-
gion is divided into small patches. The sizes of these patches
are not equal. The faraway patches are long and the near-by
ones are short in the longitudinal direction (with an 8-meter
length for the farthest and a 2-meter length for the closest),
since the projected image patches have to be large enough
for accurate classification. The camera calibration parameters
and the pinhole camera model are used to project the ground
patches to the image coordinates as quadrilaterals in Fig.2(B).
We approximate quadrilateral patches as rectangular patches
for computational efficiency as shown in Fig.2(C), which are
the perspective patches.

3. INITIAL CLEAR PATH ESTIMATION
Initial clear path estimation contains two stages: feature rep-
resentation and learning. We first extract discriminative tex-
ture features to distinguish clear path vs. obstacles. Each per-
spective patch is convolved with an extended Leung-Malik
filter bank (78 filters mixed with edge, bar and spot filters
at multiple orientations and scales) and Gabor filter bank (90
filters at 9 directions with different parameters). We sum all
absolute responses of each filter within a patch as a texture
value. After normalization, we represent each patch with a
168 dimensional feature vector. Then, we adopted Adaboost

Fig. 2. Perspective Patch (A) Ground patches in world coordi-
nates. (B) Projected ground patches in image. (C) Perspective
patches.

Fig. 3. Wrongly classified patches are circled. (A) Spatial
Inconsistency. (B) Temporal Inconsistency.

[7] to select the 50 most discriminative features for classifica-
tion to improve the computational efficiency.

In the learning stage, we first train the initial clear path
estimator using Support Vector Machines (SVM) probability
estimation [8] based on the perspective patch features. Then,
in the test stage, this estimator provides the probability P 0

j (c)
of both classes (“clear path” and “obstacles”) of each patch
based on patch’s features. Finally, we use maximal likelihood
estimate ⟨ĉ0j ⟩ = arg maxc P

0
j (c) to identify each patch’s ini-

tial SVM classified label of “clear path” (ĉ0j = 0) or “obsta-
cles” (ĉ0j = 1). The initial probabilities and classified labels
are used in the next section.

4. PATCH-BASED REFINEMENT
Each patch can be simply classified into 2 classes: “clear
path” or “obstacles” by SVM. Sometimes, SVM makes wrong
decisions due to the texture ambiguities of local perspective
patches. There are two types of errors as shown in Fig.3:

1) Type I: Within the same frame, the clear path patch is
wrongly classified as “obstacles”, while it is surrounded by
clear path patches with similar texture.

2) Type II: Between successive frames, the patch in the
current frame is classified as “obstacles”, while its corre-
sponding vehicle-motion-compensated regions in the previ-
ous frames are all classified into “clear path” with similar
texture.

Both errors can be corrected if we consider the spatial
and temporal consistency between patches. Therefore, we re-
fine patch initial probability P 0

j (c) between its neighboring
patches and between its corresponding regions at the previ-
ous frames iteratively. The probability of patch sj to be clear
path or not, P t

j (c), is updated iteratively as follows:

P t
j (c) =

ntj(c)
∏

k∈N ctj,k(c)∑
c∈{0,1} n

t
j(c)

∏
k∈N ctj,k(c)

, (1)

where ntj(c) is the spatial smoothing coefficient, which
constrains neighboring patches with similar texture to be the
same class. And ctj,k(c) is the temporal smoothing coefficient
which enforces patch’s consistency in the projected regions at
the previous k frames. The maximal likelihood estimate ĉtj of
patch sj at iteration t is: ⟨ĉtj⟩ = arg maxc P

t
j (c).

4.1. Spatial patch smoothing
Let sl denote one of the current patch sj’s neighboring
patches with its associated initial probability P 0

l (c) and max-



Fig. 4. Spatial Patch Smoothing. The patches in the current
frame are projected onto the previous frame given the vehi-
cle’s speed and yaw rate.

imal likelihood estimate ĉ0l obtained from SVM. The spatial
smoothness enforces the constraint that neighboring patches
with similar texture should have the same class c. Therefore,
we model class similarity of the neighboring patches of patch
sj by a contaminated Gaussian distribution with mean ĉt−1

l

and variance �2
l . We define spatial smoothness coefficient

ntj(c) to be:

ntj(c) =
∏
sl

N(c; ĉt−1
l , �2

l ) + ", (2)

where " is a small constant (e.g., 10−10) in case of division by
zero. We calculate the variance �2

l using 1) the texture sim-
ilarity N(Δj,l; 0, �2

Δ) of the patches Δj,l, which measures
the texture difference between patches sj and sl by Gaus-
sian model, 2) the neighboring connectivity bj,l, which con-
tains the percentage of patch sj’s border between patches sj
and sl, and 3) the probability of patch sl: P t−1

l (c) obtained
from the last iteration t − 1. Hence, �2

l is defined as �2
l =

g/P t−1
l (c)2bj,lN(Δj,l; 0, �2

Δ), where g and �2
Δ are constants

(g = 8 and �2
Δ = 20 in our experiment). Therefore, if

patch sj and its neighboring patch sl have similar textures,
and patch sj’s class is consistent with its neighbor’s label es-
timates (they are both classified as obstacles or clear path), we
expect spatial smoothness coefficient ntj(c) of patch sj to be
large.

4.2. Temporal patch smoothing
Given the vehicle’s speed and yaw rate, we can map the lo-
cations of clear path patches in the current frame (blue rect-
angles in Fig.4(B)) to the previous k frames (red rectangles
in Fig.4(A), k = 1) by assuming that they are stationary on
the ground without any occlusion. The temporal smoothing
coefficient ctj,k(c) is used to ensures that the patch sj’s esti-
mate is consistent with its corresponding estimates at the pre-
vious frames. If the obstacles occlude a clear path patch, we
can not find the corresponding area in the previous frames.
Therefore, in the proposed method, we define the temporal
smoothing coefficient ctj,k(c) of clear path based on temporal
consistency, visibility, and patch sj’s initial probability ob-
tained from SVM.

Temporal Consistency: Given the host vehicle speed
v, yaw rate 
 and frame rate of video f , we first calcu-
late the host vehicle motion (distance v/f and yaw angle

/f ) between two neighboring frames. Then, we project
the motion-compensated region to its neighboring frames

using a pinhole camera model. Finally, since the projected
region may cover several patches in previous frames, we
calculate patch sj’s projecting distribution btj,k(c) based
on the probability distribution at the projected previous k
frames to estimate the temporal consistency without occlu-
sion: btj,k(c) = 1/numsj

∑
x∈Sj

P t−1
r(k,x)(c).

As shown in Fig.4, the yellow patch at frame k + 1 is
mapped to the a smaller yellow patch at frame k via vehicle
motion compensation. r(k, x) is the patch index representing
which patch the pixel x belongs to at frame k. And numsj is
the number of the pixels on patch sj . If the projected region’s
status is consistent with patch sj’s status, we expect btj,k(c) to
be large when patch sj is visible at the previous frame.

Visibility: Due to possible occlusions, a patch might not
have the corresponding pixels in the previous frame. We esti-
mate the likelihood vj,k to measure a patch’s visibility. This
likelihood is modeled by a Gaussian distribution represented
by the texture similarity between the current patch and each
projected region at the previous frame as follows: vj,k =
N(Δj,k; 0, �2

Δ), where Δj,k is texture similarity of patches
sj and sk, and �2

Δ is a constant (�2
Δ = 20).

Now, we combine the visible and occluded cases. If the
patch is visible, ctj,k(c) is calculated from the visible consis-
tency likelihood btj,k(c)P t−1

j (c). Otherwise, its occluded con-
sistency likelihood is a fixed prior P t(e.g., 1/2). Therefore,

ctj,k(c) = vj,kb
t
j,k(c)P t−1

j (c) + (1− vj,k)P 0. (3)

5. EXPERIMENTS
The videos for experiments were captured on a Cadillac CTS
2006 vehicle. The frame rate is 5 fps and the videos have 1478
frames at 320*240 pixels manually labeled clear path patches
and non-clear path patches: 981 frames are used for training,
and 497 frames are for test. In these videos, various condi-
tions are covered. Some sample images are shown in Fig.5
in urban, highway, shadows and illumination change condi-
tions. Our experiments confirm that we achieved reasonable
performance in these situations.

Fig. 5. Sample images from the database. (A) Urban (B)
Illumination change (C)Shadow (D) Highway.

In the test stage, each frame is represented by 30 perspec-
tive patches with 50 features for each patch. The SVM classi-
fier with RBF kernel and parameters C = 32 and 
 = 0.0313
provides the initial probability estimation. Considering the
computational efficiency, we only calculated the influence
from the previous frame (k = 1). Fig.6 shows some detection
results without smoothing in the urban and highway cases.
The results show that the proposed algorithm distinguished
clear path from different types of obstacles (e.g., vehicles



Fig. 6. Result of initial detection using SVM

or road-side) without any smoothing. However, SVM-based
approach wrongly classified lane-markers as non-clear path
as shown in Fig.7(A). Furthermore, in the challenging cases
as shown in Fig.7(A,2) and Fig.7(A,3), the bridge’s shadow
and illumination change influenced a patch’s texture causing
a wrong decision. We applied spatial and temporal smooth-
ing to further improve the detection performance. Fig.7(B)
demonstrates the results after smoothing. For example, the
wrongly classified patch in Fig.7(A,1) was corrected by the
spatial smoothing of its neighboring patches. The wrongly
classified patches in Fig.7(A.2) and (A.3) were corrected by
the temporal and spatial smoothing of neighboring patches.

Fig.8 summarizes the performance of clear path detection
with and without smoothing using ROC curve. Compared
with SVM classification which had 92.23% in accuracy (the
number of correctly classified patches / the number of total
patches), 4.6% in FAR (False Alarm Rate) and 5.1% in FRR
(False Rejection Rate), additional patch-based smoothing im-
proved the accuracy to 94.57% and reduced FAR to 3.2% and
FRR to 4.5%. Additional results are shown in Fig.9 which
demonstrates our method performing well in various scenar-
ios such as urban, countryside and highway.

Fig. 7. Patch-based smoothing

Fig. 8. Comparison of clear path detection

6. CONCLUSIONS
Traditional methods for autonomous driving detect all objects
in the scene, and infer the remaining areas as clear path. How-
ever, such a system, which requires multiple object detectors,
is complex, slow and not very reliable.

Fig. 9. Additional results in various scenarios

In this paper, we proposed a method to detect clear path
directly in the scene only using one clear path detector and
showed that it performed robustly even in some challenging
situations with shadows and illumination changes via spatial
and temporal smoothing.

7. REFERENCES

[1] S. Sugimoto, H. Takahashi, and M. Okutomi, “Obstacle
detection using millimeter-wave radar and its visualiza-
tion on image sequence,” IEEE international Conference
on Pattern Recognition, pp. 342–345, 2004.

[2] C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detec-
tion and tracking of moving objects from a ground vehi-
cle at high speeds,” IEEE Intelligent Vehicles Symposium,
2003.

[3] M. Salinas, E. Rafael, and F. Aguirre, “People detection
and tracking using stereo vision and color,” Image Vision
Computing, pp. 995–1007, 2007.

[4] I. Alonso, D. Llorca, and M. Garrido, “Combination of
feature extraction methods for svm pedestrian detection,”
IEEE Transactions on Intelligent Transportation Systems,
pp. 292–307, 2007.

[5] D. Ramanan, D. A. Forsyth, and A. Zisserman, “Tracking
people by learning their appearance,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 65–81,
2007.

[6] P. Viola and M. Jones, “Rapid object detection using a
boosted cascade of simple features,” IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recog-
nition, p. 551, 2001.

[7] D. Karuppiah P. Silapachote and A. Hanson, “Feature
selection using adaboost for face expression recognition,”
International Conference on Visualization, Imaging, and
Image Processing, p. 551, 2004.

[8] T. F. Wu, C. J. Lin, and R. C. Weng, “Probability esti-
mates for multi-class classification by pairwise coupling,”
Journal of Machine Learning Research, pp. 975–1005,
2004.


	 Introduction
	 Perspective Patch Generation
	 Initial Clear Path Estimation
	 Patch-based Refinement
	 Spatial patch smoothing
	 Temporal patch smoothing

	 Experiments
	 Conclusions
	 References

