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ABSTRACT

In this paper, we describe a prior-based vanishing point esti-
mation method through global perspective structure matching
(GPSM). In contrast to the traditional approaches which re-
quire an undistorted image with straight roads for vanishing
point estimation, our method first infers vanishing point can-
didates of an input image from an image database with pre-
labeled vanishing points. An image-based retrieval method is
used to identify the best candidate images in the database by
matching image’s perspective structure. The initial estima-
tion of input image’s vanishing point is calculated from the
pre-labeled vanishing points of the best candidates. Proba-
bilistic refinement (PR) is then used to optimize the vanishing
point estimate. Experimental results show that the proposed
method works well in a variety of on-road driving environ-
ments (e.g., in urban, highway and country-side areas), espe-
cially with traffic captured by a fish-eye back-aid camera.

Index Terms— Image representation, Image matching,
Computer vision, Autonomous vehicles

1. INTRODUCTION
The problem of vanishing point estimation has been ad-
dressed many times in the past decade. Most of the existing
approaches fall into two categories: edge-based methods and
texture-based methods. Edge-based methods, e.g., in [1],
identify line segments (lane markers and road boundaries) in
edge detector outputs and determine the vanishing point by
searching a point close to most line segments. They work
well on engineered roads such as highways that are painted
with parallel lines clearly, but fail in scenes that possess
neither strong edges nor contrasting local characteristics.
Texture-based methods, e.g., in [2, 3], analyze the dominant
orientation of texture in the image to identify dominant orien-
tation rays and determine their intersection as the vanishing
point. However, these approaches have difficulties in han-
dling complex scenes (e.g. urban scenarios), where image
features (e.g. lines or rays) might not all be on parallel lines
that help to deduce the correct vanishing point. Moreover,
both approaches are sensitive to the noise. We also need a
better solution when applying these vanishing point methods

Fig. 1: Proposed Vanishing Point Estimation Approach

to real road scenes with traffic or the scenes captured by a
camera with unknown lens distortion.

In autonomous driving application, we may access to a
large image database of various road scenes with manually
labeled vanishing points and it is reasonable to estimate an
image’s vanishing point position while taking advantage of
the prior knowledge embedded in the database. Gallagher [4]
proposed a method to use the pre-labeled vanishing points in
the database to help determine vanishing point positions in the
test image. He first identified the line segments in an image
through edge analysis and then identified their intersections.
Based on similarity measurement, each intersection was as-
signed a probability of being coincident with a pre-labeled
vanishing point in the image database. Finally, weighted clus-
tering is then performed to determine the most likely vanish-
ing point which could lead to more precise estimation. How-
ever, his method is sensitive to noisy lines and lacks the ability
to deal with camera lens distortion.

Since similar global perspective structure in different im-
ages may imply similar vanishing point positions, instead
of computing numerous intersections as the vanishing point
candidates [4], we propose an approach to identify fewer
best vanishing point candidates directly from the neighboring
images in the database as prior knowledge with the closest
global perspective structure. An overview of this system



Fig. 2: Global Perspective Structure Matching (GPSM) for
vanishing point initialization. (A) Dominant orientations on
strong texture patches (B) Orientation rays spectrum (C) 2D
histogram of orientation rays (D) Probability Mass Function
(PMF) for the global perspective features (E) Retrieved set
(F) Vanishing point candidates.

is shown in Fig.1. First, in place of the traditional noise-
sensitive edge-detection step, we analyze the texture by ex-
tracting dominant orientations in the image. In contrast to
[2, 3] that identify the dominant orientation in each pixel, we
extract the dominant orientations only from the patches that
demonstrate strong perspective texture information to ensure
the algorithm’s robustness and efficiency. Second, we com-
pare the global perspective structure of the input image with
each image in the database and retrieve the best image candi-
dates to offer their vanishing points as the initial estimates of
the input image. Finally, a probabilistic refinement is applied
to iteratively improve the estimates.

The rest of this paper is organized as follows: We discuss
feature extraction in Section 2 and global perspective struc-
ture matching (GPSM) in Section 3. Then, we introduce the
probabilistic refinement algorithm in Section 4 to improve the
initial estimation. In Section 5, we show the experimental re-
sults and conclusions are given in Section 6.

2. GLOBAL PERSPECTIVE STRUCTURE
REPRESENTATION

There are several image representation methods widely used
for scene matching such as GIST descriptor and SIFT de-
scriptor [5, 6], which group image shape and texture features
without any depth information. Nevertheless, they do not em-
phasize the extraction of image’s global perspective structure
(e.g., the parallel line structure on road boundaries and lane
markers), which is important in structure matching to infer
vanishing point candidates. Hence, enhancing the feature ex-
traction method described in [2], the global perspective struc-
ture extraction is achieved in two stages.

First, we compute the dominant texture orientations on
grid patches of the image and keep those that have strong tex-
ture. We divide each image of size 320 × 240 into 10 × 10
pixels grid patches. The dominant orientation �i of patch i is
the direction that describes the strongest local line structure
or texture flow. Similar to the approach in [2], we analyze the

texture characteristic of the image by convolution with a set
of parameterized Gabor filters at 72 orientations to achieve a
good angular resolution. To characterize local texture proper-
ties at patch i, we examine the filter responses of the Gabor
filters at all orientations. The dominant orientation �i of the
patch i is chosen from the filter orientations which elicits the
maximum responses at the position. In contrast to [2] that
uses dense texture features from every pixel on the image, we
only adopt the orientations from the patches with strong per-
spective characteristics by thresholding their maximum filter
responses. An example of the dominant orientations com-
puted over patches is shown in Fig. 2(A) for a challenging
case with noisy lines and traffic.

Second, we render the orientation rays ri = (i, �i) along
with their dominant orientations �i on these strong texture
patches at the location (x, y) to build the 2D histogram of
rays. Each ray will pass through several patches in the image
(Fig.2(B)). After rendering all the rays, we formulate a count-
ing function for calculating the number of rays lying on the
patch i as follows:

Cx,y(i) =
∑
r′i∈R

count(i, r′i) (1)

where R represents the set of rays from all the strong texture
patches. count(i, r′i) is defined as

count(i, r′i) =

{
1, if ray r′i passes through patch i
0, otherwise (2)

This leads to the 2D histogram of orientation rays F =
[C1,1(1), C1,2(2), . . . , C(ℎ,w)(N)] over all patches (Fig.2(C)),
where N is the number of patches and (ℎ,w) are the im-
age’s height and width in terms of the number of patches
(N = w × ℎ = 768). We cascade the 2D histogram row-by-
row and generate the 1D Probability Mass Function (PMF)
as the global perspective feature as shown in Fig.2(D). Since
these features only collect the global statistical information
of perspective structure, they are invariant to color and illu-
mination changes while being discriminative to the camera’s
translation and rotation. This makes it able to reveal the
image layout for identifying the vanishing point.

3. GLOBAL PERSPECTIVE STRUCTURE
MATCHING (GPSM)

Applying a majority voting algorithm as in [2], we can get
the patch position with a maximal value as the raw estimate
of the vanishing point (indicated by a pink arrow in Fig.2(C)),
which, unfortunately, is not the correct estimate (indicated by
a black arrow in Fig.2(C)) due to the effects of noisy tex-
ture and traffic in a complex scene. In our method, we apply
GPSM to retrieve a set of images that closely match the scene
perspective and geometrical layout of the input image. After
feature extraction, we search the K nearest neighbors in fea-
ture space based on the weighted L2-norm distance DF =∑N

i=1 f
q
i (f

q
i − fdi )

2 between features, where fdi is the ith
feature value of the image in the database, and fqi is the ith



Fig. 3: Iterations of PR. (A) The vanishing point candidates
(red dots) and their weighted average (blue cross). (B) 8 PR
Iterations, the vanishing point candidates are converging. (C)
Comparison between the result by a weighted average (blue
cross) and the result using PR algorithm (yellow cross).

feature value of the input image, which also serves as the ith
weight of that feature in distance calculation.

Fig.2(E) shows the retrieved sets. Note that retrieved im-
ages only match the geometric perspective structure of the in-
put image, but the scene contents are not necessarily similar.
The labeled vanishing points of the retrieved set are treated as
the vanishing point candidates of the input image (Fig.2(F)).

4. PROBABILISTIC REFINEMENT
Since the neighbor with smaller distance in feature space
is more similar to the input image in the global perspective
structure, its corresponding labeled vanishing point candi-
date should have more importance in the initialization of
probabilistic refinement. Therefore, we define the prior
probability P0(k) of each vanishing point candidate v0k to
be the vanishing point of the input image based on its fea-
ture distance DFk between retrieved images and the input
image:P0(k) = (1/DFk)/(

∑K
k=1 1/DFk).

The GPSM candidates give rough indication of the van-
ishing point position of an input image. We can find a vanish-
ing point of the input image through a weight average of all
vanishing point candidates using P0(k) as weights for sim-
plicity. However, possible outlier vanishing point candidates
(illustrated in Fig.3(A)) will negatively influence such an av-
erage. Therefore, in our method, we refine the initial estimate
from GPSM candidates by adopting an iterative probabilistic
refinement method, whose task is to find the most plausible
vanishing point candidates supported by the most reliable line
segments to achieve more precise vanishing point estimation
of the input image.

4.1. Vanishing Point Model
Since we have obtained the vanishing point candidates and
line segments (orientation rays) from the prior-based GPSM,
the problem now is to build a probabilistic model to itera-
tively estimate parameter representing the location of vanish-
ing points vtk at iteration t.

The likelihood function L(vtk; li, k) can be formulated
in terms of their priors Pt(k) and the conditional probabil-
ity Pt(li∣k) with respect to the measured line segments li:
L(vtk; li, k) =

∏I
i=1 Pt(k)Pt(li∣k).

In the ideal case, the supported line segments will pass
through the vanishing point. Therefore, we model the off-
set d(vtk, li) between line segment li (parameterized to a

general form of �ix + �iy + 
i = 0) and vanishing point
vtk with position vtk = (xtk, y

t
k) by a normal distribution

with zero mean and a small variance (e.g., �2 = 2) in the
image: N(d(vtk, li)∣0, �2) ∝ exp(−(d2(vtk, li))/(2�2)),
where the offset d(vtk, li) defined as: d(vtk, li) = (�ix

t
k +

�iy
t
k + 
i)/(

√
�2
i + �2

i ). In addition, we weight the line
segment li via its normalized sum of maximum responses
mi within the patch i: P (mi) = mi/

∑I
i=1mi, where

I represents the number of rays in the orientation ray set
R. Therefore, the conditional probability is computed as:
Pt(li∣vk) ∝ exp(−(d2(vtk, li))/(2�2))P (mi)

4.2. Expectation Step
Given the current estimate vtk, the conditional distribution of
vanishing point candidates vk over line segments li: Pt(k∣li)
is determined by Bayes theorem. Then, the Expectation
step results in the expected log-likelihood: Q(vt+1

k ∣vtk) =
E[logL(vtk; li, k)] =

∑
k

∑
i Pt(k∣li) log(Pt(li∣k)Pt(k)).

4.3. Maximization Step
By maximizing Q(vt+1

k ∣vtk) obtained in the previous Expec-
tation step, we first re-estimate the prior probabilities that
Pt+1(k) = argmaxPt(k)Q(vt+1

k ∣vtk) = 1/I
∑I

i=1 Pt(k∣li).
Then, the new estimated location is also calculated by this
maximization separately over each vanishing point candi-
date, i.e., vt+1

k = argmaxvt
k

∑I
i=1 Pt(k∣li) logPt(li∣k).

This is equivalent to a quadratic weighted least-squares
problem of the form with Pt(k∣li) as weight: vt+1

k =

argminvt
k

∑I
i=1 Pt(k∣li)d2(vtk, li)

4.4. Merging and Removal Step
Following each iteration, we employ a greedy search algo-
rithm to find all distances between two vanishing point can-
didates. When the distance of two candidates is less than a
threshold tmin (tmin = 5 pixels)), we merge them using a
weighted average into a new vanishing point candidate with
their priors Pt(k) as the weights. When the distances of one
vanishing point candidate to all other candidates are larger
than threshold tmax (tmax = 20 pixels), we remove this can-
didate as an outlier. Moreover, we will remove the outlier
line segments when all the distances between vanishing point
candidates and a line segment are more than 3� as defined
above in each iteration. Finally, the iterative probabilistic re-
finement algorithm runs until convergence to one vanishing
point as shown in Fig. 3.

5. EXPERIMENTS
In this section, we show the qualitative and quantitative re-
sults of our proposed method. The database has 5500 images
sampled at 5 frame per second from the videos covering dif-
ferent road scene scenarios. The collected videos with size
320× 240 provide a diversity of image perspectives and their
corresponding vanishing point positions (red dots) as illus-
trated in Fig. 4. We extracted the global perspective structure

Fig. 4: Sample images from image database.



Fig. 5: Experimental results. Left: query images. Right: best
matched images. (Red dot: GPSM result. Blue cross: GPSM
+ WA result. Yellow cross: GPSM + PR results.)

Fig. 6: GPSM + PR results. Vanishing point estimates are
shown as red dots, with Gaussian fits of a set of human re-
sponses marked with pink ellipses.
features from each image and saved them along with man-
ually labeled vanishing point of each image in the database.
The test set comprises 300 images also from the same video
sequences, but from different road scene scenarios.

Fig.5 demonstrates estimation results 1 . For each query
image, we find the best 6 matched candidates from the
database with the closest global perspective structures shown
on the right. The vanishing point candidates from neighbors
are refined and merged to the final estimate (yellow cross) by
probabilistic refinement (PR). Independent of the context of
images, our method matches the structures from various sce-
narios well and gives reasonable positions of vanishing point,
even in the complex road scenes such as urban scenario,
traffic scenario and distortion scenario, which are difficult to
solve by previous methods [1, 2, 3].

To assess the algorithm’s performance, we evaluate the
proposed vanishing point estimation by comparing the results
to human perception, as shown in Fig.6. We indicate the dis-
tribution of human choices (10 trained persons for each im-
age) with pink 3� error ellipses. The mean position differ-
ence at the 320×240 scale between our algorithm’s estimates
and the human choices is 3.5 pixels horizontally and 3.7 pix-
els vertically, compared to [2] which yields differences of 6.4
pixels horizontally and 6.8 pixels vertically.

Table 1 details the performance of different methods in
various scenarios. We compare our proposed GPSM with
weighted average and GPSM with PR to the Rasmussen’s
work in [2]. The proposed methods are slightly better than

1More results are available on http://www.ece.cmu.edu/˜qwu/
Research/Vanishing/

Table 1: Comparison of Rasmussen’s method and the pro-
posed methods via mean position difference between algo-
rithm’s estimates and human choices.

Pos. Diff. Rasmussen’s GPSM+WA GPSM+PR
Mean W/O W/ W/O W/ W/O W/
(STD) traffic traffic traffic traffic traffic traffic
Urban H:4.8 H:5.6 H:4.2 H:4.6 H:3.4 H:3.5

V:5.1 V:7.2 V:4.1 V:4.8 V:3.5 V:3.6
Highway H:4.1 H:4.9 H:3.8 H:4.5 H:3.2 H:3.2

V:3.8 V:5.4 V:3.7 V:4.3 V:2.8 V:3.4
Country H:4.2 H:5.8 H:3.8 H:4.4 H:3.2 H:3.4

Side V:4.1 V:5.6 V:3.9 V:4.6 V:3.2 V:3.4
Distorted H:7.3 H:9.3 H:5.9 H:6.9 H:5.4 H:5.7

V:7.7 V:11.3 V:5.6 V:6.8 V:5.3 V:6.2
Overall H:6.4(5.4) H:4.4(3.6) H:3.5(2.7)

V:6.8(5.6) V:4.6(3.8) V:3.7(2.5)

baseline method in urban and highway scenarios without traf-
fic since perspective texture in those scenarios dominates the
scene and is sufficient to conduct a simple voting. However,
adding the traffics or in complicated scenarios, our prior-
based GPSM approaches greatly outperform the baseline
method [2]. Especially, we perform fairly well in handling
distorted images, where it is difficult to estimate the vanishing
point via traditional texture voting and edge-based methods.

6. CONCLUSIONS
We presented a prior-based framework which enabled us to
estimate image vanishing point under a wide range of condi-
tions. By extracting features from images with perspective
texture information and efficiently exploiting similar struc-
tural regularities from the images in the database with pre-
labeled vanishing points, we deduce the initial guess of van-
ishing point positions of input images using GPSM. Proba-
bilistic refinement (PR) algorithm is adopted to optimize re-
sults iteratively and to improve the estimation accuracy. We
compared the proposed method to a state-of-the-art method
and observed that our method provides better accuracy and
reliability.
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